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Summary. Solving Bayesian estimation problems where the posterior distribution evolves over
time through the accumulation of data has many applications for dynamic models. A large num-
ber of algorithms based on particle filtering methods, also known as sequential Monte Carlo
algorithms, have recently been proposed to solve these problems.We propose a special particle
filtering method which uses random mixtures of normal distributions to represent the posterior
distributions of partially observed Gaussian state space models. This algorithm is based on a
marginalization idea for improving efficiency and can lead to substantial gains over standard
algorithms. It differs from previous algorithms which were only applicable to conditionally linear
Gaussian state space models.Computer simulations are carried out to evaluate the performance
of the proposed algorithm for dynamic tobit and probit models.
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1. Introduction

1.1. Background
Many data analysis tasks involve estimating the state of a dynamic model when only partial or
inaccurate observations are available (West and Harrison, 1997). Except in a few special cases,
including linear Gaussian state space models, on-line state estimation is a problem that does
not admit a closed form solution. As most real world models are non-linear and non-Gaussian,
it is of great interest to develop efficient computational methods to solve this so-called Bayesian
filtering problem numerically.

Many approximation schemes, such as the extended Kalman filter, have been proposed to
surmount this problem. However, in many realistic scenarios, these approximating methods are
unreliable and faults are difficult to diagnose on line. Recently there has been a surge of interest
in sequential Monte Carlo (SMC) methods for non-linear or non-Gaussian time series analysis
(Doucet et al., 2001). These methods, initiated in Gordon et al. (1993), utilize a random-sample-
(or particle-) based representation of the posterior probability distributions.

1.2. General problem
For any sequence lt; we define
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li:j � .li; li+1;. . .; lj/:

In this paper, we shall concentrate on the following class of state space models. Let t = 1; 2;. . .
denote discrete time: then

xt = Atxt−1 + Btvt + Ftut; x0 ∼ N .x̂0; P0/; .1/

yt = Ctxt + Dt"t + Gtut; .2/

zt ∼ p .zt| yt/; .3/

where ut ∈ Rnu is an exogenous process and xt ∈ Rnx and yt ∈ Rny are unobserved processes.
The sequences

vt
IID∼ N .0; Inv/ ∈ Rnv

and

"t
IID∼ N .0; In"/ ∈ Rn"

are independent identically distributed (IID) Gaussian. We assume that P0 > 0; x0; vt and wt
are mutually independent for all t, and the model parameters

λ � .x̂0; P0;At;Bt;Ct;Dt; Ft;Gt; t = 1; 2;. . ./

are known. The processes .xt/ and .yt/ define a standard linear Gaussian state space model. We
do not observe .yt/ in our case, but .zt/. The observations .zt/ are conditionally independent
given the processes .xt/ and .yt/ and marginally distributed according to p.zt|yt/; it is assumed
that p.zt|yt/ can be evaluated pointwise up to a normalizing constant. Typically p.zt|yt/ be-
longs to the exponential family. Alternatively zt may be a censored or quantized version of yt .
This class of partially observed Gaussian state space models has numerous applications; many
examples are discussed for instance in de Jong (1997), Manrique and Shephard (1998) and West
and Harrison (1997).

We want to estimate sequentially in time some characteristics of the posterior distribution
p.x0:t|z1:t/. Typically, we are interested in computing E.xt|z1:t/ (filtering), E.xt+L|z1:t/ (predic-
tion) and E.xt−L|z1:t/ (fixed lag smoothing), where L is a positive integer. These estimates do
not in general admit analytical expressions and we must resort to numerical methods.

1.3. Resolution
SMC methods are, loosely speaking, a combination of importance sampling and resampling
methods that allow us to propagate efficiently over time a large set of samples or particles distrib-
uted approximately according top.x0:t|z1:t/. We could apply standard SMC methods such as the
bootstrap filter (Gordon et al., 1993) to estimate p.x0:t ; y1:t|z1:t/ and consequently p.x0:t| z1:t/.
However, in its standard form, this algorithm does not use all the salient structure of the model.
Our algorithm is based on a marginalization technique, often called the Rao–Blackwellization
method (Gelfand and Smith, 1990), that improves the efficiency of the procedure. It focuses
on the estimation of p.y1:t|z1:t/ rather than on the joint density p.x0:t ; y1:t|z1:t/: The process
.xt/ is integrated out analytically. Once p.y1:t|z1:t/ has been estimated, we can obtain estimates
of E.xt|z1:t/, E.xt+L|z1:t/ and E.xt−L|z1:t/ through the Kalman filter as discussed further. In a
Markov chain Monte Carlo framework, de Jong (1997) has proposed the so-called scan sampler
to sample from p.y1:t|z1:t/ in a similar class of state space models; see Manrique and Shephard
(1998) for some applications.
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1.4. Plan
The rest of the paper is organized as follows. Section 2 shows how it is possible to restrict
ourselves to estimating p.y1:t|z1:t/ instead of p.x0:t ; y1:t|z1:t/, leading to an improvement in the
Monte Carlo efficiency. The particle filtering algorithm is then described in detail. Section 3
demonstrates the performance of the proposed algorithm via computer simulations for dynam-
ic tobit and probit models.

2. Rao–Blackwellized particle filtering

2.1. Marginalization
Consider the state space model defined by equations (1)–(3). We have

p.x0:t|z1:t/ =
∫

p.x0:t|y1:t/ p.y1:t|z1:t/ dy1:t :

Thus if we obtain (through an SMC method described further) an approximation of the prob-
ability distribution that is associated with the density p.y1:t|z1:t/ of the form

p̂N .dy1:t|z1:t/ =
N∑
i=1
w.i/t δ

ỹ
.i/
1:t
.dy1:t/; w.i/t � 0;

N∑
i=1
w.i/t = 1;

then p.x0:t|z1:t/ can be approximated by using

p̂N .x0:t| z1:t/ =
N∑
i=1
w.i/t p.x0:t| ỹ.i/1:t/;

i.e. a mixture of Gaussian densities. From such an approximation, we can estimate E.xt|z1:t/

and E.xt−L|z1:t/. For example an estimate of E.xt|z1:t/ is given by

ÊN.xt| z1:t/ =
∫

xt p̂N.x0:t| z1:t/ dx0:t =
N∑
i=1
w.i/t E.xt| ỹ.i/1:t/;

whereE.xt|ỹ.i/1:t/ is computed through the Kalman filter associated with the linear Gaussian state
space model defined by equations (1) and (2). Using the variance decomposition formula, it is
clear that for any function h.·/

var {h .xt/| z1:t} � var[E {h .xt/| y1:t ; z1:t} |z1:t ];

which shows that estimating p.y1:t|z1:t/ only is more efficient.
To obtain an SMC approximation of the marginal posterior density p.y1:t|z1:t/, we need to

be able to estimate this ‘target’ density pointwise up to a normalizing constant. We have

p.y1:t| z1:t/ ∝
t∏

k=1
p.zk| yk/p.yk| y1:k−1/; .4/

where

p .y1| y1:0/ � p .y1/ :

As p.zk|yk/ is assumed known up to a normalizing constant, it is only necessary to estimate
p.yk|y1:k−1/ up to a normalizing constant. This predictive density can be computed by using
the Kalman filter.

The Kalman filter equations are the following. Set x0|0 = x̂0 and P0|0 = P0; then for t =
1; 2;. . . compute
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xt|t−1 = Atxt−1|t−1 + Ftut;

Pt|t−1 = AtPt−1|t−1A
T
t + BtB

T
t ;

yt|t−1 = Ctxt|t−1 + Gtut;

St = CtPt|t−1C
T
t + DtD

T
t ;

xt|t = xt|t−1 + Pt|t−1C
T
t S

−1
t .yt − yt|t−1/;

Pt|t = Pt|t−1 − Pt|t−1C
T
t S

−1
t CtPt|t−1;




.5/

where

xt|t−1 � E.xt|y1:t−1/;

xt|t � E.xt|y1:t/;

yt|t−1 � E.yt|y1:t−1/;

Pt|t−1 � cov.xt|y1:t−1/;

Pt|t � cov.xt|y1:t/

and

St � cov.yt|y1:t−1/:

We obtain p.yk|y1:k−1/ = N .yk; yk|k−1; Sk/, where N .yk;yk|k−1; Sk/ is a Gaussian distribution
of argument yk, mean yk|k−1 and covariance Sk.

2.2. Particle filtering
2.2.1. Sequential importance sampling and resampling
We describe briefly here how to apply the sequential importance sampling–resampling (SISR)
method to sample approximately from p.y1:t|z1:t/; see Doucet et al. (2001) for further details.

At time t − 1, assume that we have say N particles {ỹ.i/1:t−1}Ni=1 approximately distributed
according to p.y1:t−1|z1:t−1/ and we want to obtain N particles {y.i/1:t}Ni=1 distributed accord-
ing to p.y1:t|z1:t/. At time t, we ‘extend’ each particle ỹ

.i/
1:t−1 by sampling ỹ

.i/
t according to a

conditional density qt.yt|ỹ.i/1:t−1; z1:t/. Thus, each particle ỹ
.i/
1:t is distributed according to

p.y1:t−1|z1:t−1/ qt.yt|y1:t−1; z1:t/. To correct for the discrepancy between p.y1:t−1|z1:t−1/

× qt.yt|y1:t−1; z1:t/ and p.y1:t|z1:t/, we use importance sampling so that the distribution asso-
ciated with the density p.y1:t|z1:t/ is approximated by

p̂N.dy1:t| z1:t/ =

N∑
i=1
w.ỹ.i/1:t/ δ

ỹ
.i/
1:t
.dy1:t/

N∑
i=1
w.ỹ.i/1:t/

=
N∑
i=1
w.i/t δ

ỹ
.i/
1:t
.dy1:t/; .6/

where, using equation (4), we have for the importance weight

w.y1:t/ ∝ p.y1:t| z1:t/

p.y1:t−1|z1:t−1/qt.yt| y1:t−1; z1:t/
∝ p.zt| yt/p.yt| y1:t−1/

qt.yt| y1:t−1; z1:t/
:
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The performance of the algorithm depends on the importance density qt.yt| y1:t−1; z1:t/. We can
select p.yt| y1:t−1/ since it is a Gaussian density. In this case the associated importance weight
is equal to w .y1:t/ ∝ p .zt| yt/. Note that the ‘optimal’ importance density, i.e. the density
minimizing the conditional variance of the weight conditional on y1:t−1 (Doucet et al., 2000),
is

p.yt| y1:t−1; z1:t/ ∝ p.zt| yt/ p.yt| y1:t−1/;

and the associated importance weight is

w.y1:t/ ∝ p.zt| y1:t−1/ =
∫

p.zt| yt/ p.yt| y1:t−1/ dyt: .7/

It might be possible to compute this weight or not, depending on p.zt|yt/.
Finally, we obtain N particles {y.i/1:t}Ni=1 approximately distributed according to p.y1:t|z1:t/ by

resampling from the weighted empirical distribution given in equation (6). Several resampling
procedures are available in the literature. We adopt here the stratified sampling scheme described
in Kitagawa (1996).

Alternative SMC methods can be applied to estimate p.y1:t|z1:t/. In particular, the auxiliary
particle filtering (APF) technique of Pitt and Shephard (1999) could be used. The idea behind
APF is to extend existing particles ỹ.i/1:t−1 that are the most promising, in the sense that the predic-
tive likelihoodp.zt|ỹ.i/1:t−1/ is large. Whenp.zt|ỹ.i/1:t−1/ cannot be computed analytically, APF pro-
poses an analytical approximation. In this case, APF and SISR differ significantly. However,
when p.zt|ỹ.i/1:t−1/ can be computed analytically, then APF uses the optimal importance density.
This is referred to as ‘perfect adaptation’ (Pitt and Shephard, 1999). In this particular case, APF
and SISR are essentially similar except that APF reverses the order of the sampling and resam-
pling steps; this is possible as the importance weight is independent of yt and this is obviously
more efficient.

2.2.2. Algorithm
We limit our presentation to standard choices of importance densities where qt.yt|y1:t−1; z1:t/

depends on .y1:t−1; z1:t/ only via zt and the set of low-dimensional sufficient statistics xt|t−1 and
Pt|t−1. We shall write

qt.yt| x t|t−1; P t|t−1; zt/ � qt.yt| y1:t−1; z1:t/:

This class of densities includes

p.yt| x t|t−1; P t|t−1/ � p.yt| y1:t−1/ = N .yt; y t|t−1; St/;

where yt|t−1 and St are deterministic functions of xt|t−1 and Pt|t−1. As one typically focuses
on features of the marginal p.yt|z1:t/, it is only necessary to store in memory {y.i/t ; x

.i/
t|t−1}Ni=1

and Pt|t−1 instead of {y.i/1:t}Ni=1. Contrary to algorithms presented in Chen and Liu (2000) and
Doucet et al. (2000), we point out that we do not have to compute N ‘full’ Kalman filter
recursions as most of the calculations need to be done only once. More precisely, we note that
P
.i/
t|t−1 = Pt|t−1 and S

.i/
t|t = St|t for any i ∈ {1;. . .;N}.

GivenN particles {y.i/t−1}Ni=1 at time t−1 distributed approximately according top.yt−1|z1:t−1/

and the associated sufficient statistics {x.i/t|t−1}Ni=1 andPt|t−1, the particle filter proceeds as follows
at time t. In the sequential importance sampling step:

(a) for i = 1;. . .;N, set

x̃
.i/
t|t−1 � x

.i/
t|t−1
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and sample

ỹ
.i/
t ∼ qt.yt|x̃.i/t|t−1; Pt|t−1; zt/;

(b) for i = 1;. . .;N, evaluate and normalize the importance weights

w.i/t ∝ p.zt|ỹ.i/t / p.ỹ
.i/
t |x̃.i/t|t−1; Pt|t−1/

qt.ỹ
.i/
t |x̃.i/t|t−1; Pt|t−1; zt/

;
N∑
i=1
w.i/t = 1: .8/

In the resampling step: multiply or discard particles {ỹ.i/t ; x̃
.i/
t|t−1}Ni=1 with respect to high

or low importance weights w.i/t to obtain N particles {y.i/t ; x
.i/
t|t−1}Ni=1.

In the updating step:

(a) compute Pt+1|t given Pt|t−1 using one step of the Kalman recursion (5);
(b) for i = 1;. . .;N, use one step of the Kalman recursion (5) to compute x

.i/
t+1|t given

y
.i/
t ; x

.i/
t|t−1 and Pt|t−1.

The computational complexity of this algorithm at each time step is O.N /. If the (unnormal-
ized) importance weights given by equation (8) are upper bounded, then asymptotic convergence
(N → ∞) of Monte Carlo estimates towards their true values can be ensured (Crisan, 2001).

2.3. Extensions
There are many potential extensions to both the model and the algorithm.

2.3.1. Model
For the linear Gaussian model (1)–(2), we can readily consider the case where vt and wt are
correlated and/or add a non-linear term ϕ.y1:t−1/ to the right-hand side of equation (2). It is
also possible to apply the marginalization method presented above to integrate out analytically
.xt/ when the model (1)–(2) is not linear Gaussian but conditionally linear Gaussian as des-
cribed in Shephard (1994); this extension allows us to consider finite or continuous mixtures of
Gaussian distributions.

Another interesting extension consists of partially observed hidden Markov models: .xt/ is
modelled as a finite state space Markov chain and

p .y1:t ; z1:t| x1:t/ =
t∏

k=1
p.yk| xk; y1:k−1/ p.zk| yk/:

We can integrate out .xt/ and compute p.yk| y1:k−1/ by using the hidden Markov model filter
instead of the Kalman filter as part of the method developed in the previous section.

2.3.2. Algorithm
When the distribution of the importance weights w.i/t is skewed, the particles {ỹ.i/1:t}Ni=1 having
high importance weights are selected many times; this results in a ‘depletion’ of samples
as numerous particles y.i/1:t and y

.j/
1:t are in fact equal for i �= j. To perform sample ‘regeneration’,

it is possible to use a recently proposed approach based on Markov chain Monte Carlo steps
(Gilks and Berzuini, 2001). It consists of applying to each particle y.i/1:t a (possibly non-ergodic)
transition kernel Kt.y1:t|y.i/1:t/ of invariant density p.y1:t|z1:t/. There are an infinite number of
possible choices for this kernel. One possibility consists of updating at time t the values yt−M+1:t
(M > 0) by using the efficient scan sampler (de Jong, 1997), whose computational complexity
is O.M/. Though this step is not necessary to ensure theoretical convergence of the algorithm,
it can improve results.
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3. Simulations

3.1. Dynamic tobit model
Let us consider the following tobit model (Manrique and Shephard, 1998):

xt+1 = φxt + σvvt+1; x0 ∼ N{0;σ2
v=.1 − φ2/}; vt IID∼ N .0; 1/ ;

yt = xt + σ""t; "t
IID∼ N .0; 1/;

zt = max.yt; 0/:

It is clear that this model is of the form (1)–(3). We chose as importance density the ‘optimal’
density p.yt| y1:t−1; zt/. (We could not use p.yt| y1:t−1/ for the importance density when zt = 0.
In this case, the importance weight does not exist.) If zt > 0, then yt = zt and, if zt = 0, then

p.yt| y1:t−1; zt = 0/ ∝ p.yt| y1:t−1/I.−∞;0/.yt/:

For the importance weight, we obtain using equation (7)

w.y1:t/ ∝
{

Φ.−yt|t−1=
√
St/ if zt = 0;

N .zt; y t|t−1; St/ if zt > 0;

where Φ.·/ is the cumulative function of the standard normal distribution.
We simulatedT = 200 observations with the known hyperparametersφ = 0:99,σ2

v = 0:05 and
σ2
w = 0:30. For various numbers of particles N, we generated K = 100 different realizations of

our Rao–Blackwellized (RB) filter and of the standard algorithm that estimates p.x0:t ; y1:t| z1:t/

using the importance density p.xt; yt| xt−1; yt−1; zt/ as p.xt; yt| xt−1; yt−1/ cannot be used. Our
comparison is in terms of the mean and variance of the square error SE computed as follows:

SE .l/ =
T∑
t=1

{xt − ÊN;l .xt| z1:t/}2;

m.SE/ = 1
K

K∑
l=1

SE .l/ ;

σ2.SE/ = 1
K

K∑
l=1

{SE .l/ − m.SE/}2;

where ÊN;l .xt| z1:t/ is computed using the lth realization of the particle filter. We present in
Tables 1 and 2 the performance of the standard and RB filters. For a fixed number of particles,
the RB filter is not more computationally intensive than the standard filter and it performs
significantly better.

3.2. Dynamic probit model
We analyse here a non-stationary binary time series and more specifically the (aggregated) Tokyo
rainfall data set (Knorr-Held, 1999). It consists of T = 366 observations with zt = 1 indicating
that it rained on the tth day of the year and zt = 0 otherwise. We model zt by using a dynamic
probit model, i.e.

Pr.zt = 1| αt/ = Φ .αt/;

where .αt/ is modelled by using a second-order random walk

αt = 2αt−1 − αt−2 + σvvt; vt
IID∼ N .0; 1/: .9/
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Table 1. m(SE) for the standard filter and RB filter

Algorithm Results for the following values of N:

100 250 500 1000 2500 5000 10000 25000

Standard filter 33.70 33.64 33.90 33.41 33.45 33.55 33.54 33.52
RB filter 33.52 33.49 33.51 33.50 33.50 33.49 33.51 33.50

Let us introduce an artificial latent process .yt/ such that

yt = αt + "t; "t
IID∼ N .0; 1/; .10/

and define
zt = I[0;∞/ .yt/ : .11/

It is easy to check that we have

Pr.zt = 1| αt/ = Pr.yt > 0| αt/ = Pr."t > −αt/ = Φ.αt/ :

We can easily rewrite equations (9)–(11) in a state space model of the form (1)–(3) by defining

xt � .αt ;αt−1/:

In this case, as the introduction of .yt/ is artificial, it is necessary to compare our proce-
dure with a particle filtering method applied to the estimation of p .x0:t| z1:t/ and not with
p .x0:t ; y1:t| z1:t/. The motivation for introducing .yt/ comes from the fact that it is possible to
use the optimal density as importance density

p.yt| y1:t−1; zt/ ∝
{
p.yt| y1:t−1/ I[0;∞/.yt/ if zt = 1;
p.yt| y1:t−1/ I.−∞;0/.yt/ if zt = 0;

which is a truncated Gaussian distribution, and, using equation (7), we obtain

w.y1:t/ ∝ p.zt| y1:t−1/ =
{

1 − Φ
(

−yt|t−1√
St

)}zt

Φ
(

−yt|t−1√
St

)1−zt

:

If we consider p .x0:t| z1:t/, the optimal density cannot be used since the associated importance
weight p.zt| xt−1/ does not admit an analytical expression. Note that the introduction of .yt/

Table 2. 10 σ(SE) for the standard filter and RB filter

Algorithm Results for the following values of N:

100 250 500 1000 2500 5000 10000 25000

Standard filter 3.76 2.19 1.61 1.20 0.83 0.62 0.37 0.26
RB filter 2.50 1.30 1.21 0.99 0.51 0.38 0.29 0.14
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(a)

(b)

Fig. 1. (a) Binary observations (zt) and (b) E{�.αt/jy1:t} ( ) and E{�.αt/jy1:t} ˙ p
var{�.αt/jy1:t}

( )

has already been used to develop efficient Markov chain Monte Carlo samplers (Albert and
Chib, 1993).

The hyperparameter σ2
v was set to 0:01. In Fig. 1, we display the observations zt ,E{Φ.αt/| y1:t}

and E{Φ.αt/| y1:t}±√
var{Φ.αt/| y1:t}; the estimates are obtained by using N = 1000 particles.

To obtain similar results, the bootstrap filter (Gordon et al., 1993) requires as many asN = 5000
particles.

4. Conclusion

This paper has proposed a method for recursive state estimation of partially observed Gaussian
models. Our algorithm is an SMC method based on marginalization. This marginalization is
performed through Kalman filtering methods. Our simulations show that our approach can
significantly outperform standard SMC methods.

Throughout the paper, the model parameters λ are assumed known. It is possible, however,
to perform batch and recursive estimation of these parameters, combining the particle filtering
method developed here and recent methods proposed in Liu and West (2001).
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