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Abstract. Consider a multivariate Gaussian random vector which can
be partitioned into observed and unobserved components.We review a technique
proposed almost twenty years ago in the astrophysics literature to sample from
the posterior Gaussian distribution of the unobserved components given the
observed components [6]. This technique can be computationally cheaper than
the standard approach which requires computing the Cholesky decomposition
of the posterior covariance matrix. This useful method does not appear to be
widely known and has been rediscovered independently in various publications.
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Preliminary Remark. This note contains no original material and will never
be submitted anywhere for publication. However it might be of interest to people
working with Gaussian random fields/processes so I am making it publicly available.

1. Problem Statement
Let Z be a Rn−valued Gaussian random vector such that

Z =

(
X
Y

)
where X takes values in Rnx and Y in Rny . We assume that Z follows a multivariate
normal distribution of mean m and covariance Σ

Z ∼ N (m,Σ)

with

m =

(
mx

my

)
and Σ =

(
Σxx Σxy

ΣT
xy Σyy

)
where mx = E (X) , my = E (Y ) , Σxx = cov (X) , Σyy = cov (Y ) and Σxy =
cov (X, Y ).
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It is easy to establish that given Y = y, we have

X| (Y = y) ∼ N
(
mx|y,Σx|y

)
where

mx|y = mx + ΣxyΣ
−1
yy (y −my) ,

Σx|y = Σxx − ΣxyΣ
−1
yy ΣT

xy.

Assume we are interested here in sampling from N
(
mx|y,Σx|y

)
. The standard

approach consists of computing the Cholesky decomposition of Σx|y denoted here√
Σx|y and using

X = mx|y +
√

Σx|y U

where U ∼ N (0, I) is a nx-dimensional vector of independent standard normal ran-
dom variables. It is indeed easy to check that X ∼ N

(
mx|y,Σx|y

)
. However, it might

too expensive to compute this Cholesky decomposition if nx � 1.

2. Methodology
2.1. Algorithm. The algorithm proposed in [6] to sample N

(
mx|y,Σx|y

)
can be

summarized as follows.

• Sample Z =

(
X
Y

)
∼ N (m,Σ) .

• Return X = X + ΣxyΣ
−1
yy (y − Y ) .

Compared to the standard method, this algorithm bypasses the computation of
the posterior covariance Σx|y and of its Cholesky decomposition. Contrary to the
standard method, it requires being able to simulate a random vector from the prior
and to use a standard regression update. In many applications, it is computationally
much cheaper and easier to implement this algorithm than the standard method.

2.2. Validity of the algorithm. To establish that X ∼ N
(
mx|y,Σx|y

)
, we note

that X satisfies
X = mx|y +X − E (X|Y ) . (1)

It follows that

E
(
X
∣∣Y ) = mx|y + E (X|Y )− E (X|Y ) = mx|y

Hence, we have
E
(
X
)

= E
(
E
(
X
∣∣Y )) = mx|y.
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We also have
cov
(
X|Y

)
= cov ((X − E (X|Y )) |Y ) = Σx|y

as the posterior covariance is independent of the specific realization of the observa-
tions. Hence, we obtain

cov
(
X
)

= Σx|y

which establishes the validity of the sampling method.

3. Applications
To the best of our knowledge, this algorithm first appeared in astrophysics where it
was applied to Gaussian random fields [6]; see [7] for a recent review. In this context,
nx is so large that it is virtually impossible to compute Σx|y and its Cholesky decom-
position. This algorithm might also prove useful for Gaussian processes applications
arising in spatial statistics [2] and machine learning [8].
We present here two different applications of this algorithm which have been

derived independently from [6].

3.1. Ensemble Kalman filter. Consider a linear Gaussian state-space model
satisfying for n ≥ 1

Xn = AXn−1 + Vn,

Yn = CXn +Wn,

whereX0 ∼ N (0,Σ0) , Vn ∼ N (0,Σv) andWn ∼ N (0,Σw). For any generic sequence
{zk}k≥0, let us denote zi:j = (zi, zi+1, . . . , zj). We are interested in the posterior
densities {p (xn| y1:n)}n≥1. These posterior densities are Gaussian and their statistics
mx,n|n = E (Xn| y1:n) and Σxx,n|n = cov (Xn| y1:n) can be computed using the Kalman
filter. However if the dimension nx of the state Xn is very high, then it is not possible
to implement the Kalman filter equations. This has motivated the development of
approximation techniques in geosciences.
A very popular approach in this field is known as the Ensemble Kalman filter [4].

In the ensemble Kalman filter, the posterior distributions are approximated by ran-
dom samples. Assume you have at time n−1,N samplesX

(i)

n−1 ∼ N
(
m̂x,n−1|n−1, Σ̂xx,n−1|n−1

)
(i = 1, ..., N) where

(
m̂x,n−1|n−1, Σ̂xx,n−1|n−1

)
are estimates of

(
mx,n|n,Σxx,n|n

)
. Then

at time n, the algorithm proceeds as follows.

• Sample X(i)
n ∼ N

(
AX

(i)

n−1,Σv

)
and Y (i)n ∼ N

(
CX

(i)
n ,Σw

)
.

• Compute m̂x,n|n−1 = 1
N

∑N
i=1X

(i)
n , m̂y,n|n−1 = 1

N

∑N
i=1 Y

(i)
n , Σ̂xy,n|n−1 = 1

N

∑N
i=1X

(i)
n

(
Y
(i)
n

)T
−

m̂x,n|n−1 m̂
T
y,n|n−1, Σ̂yy,n|n−1 = 1

N

∑N
i=1 Y

(i)
n

(
Y
(i)
n

)T
− m̂y,n|n−1 m̂

T
y,n|n−1.
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• Compute X(i)

n = X
(i)
n + Σ̂xy,n|n−1Σ̂

−1
yy,n|n−1

(
yn − Y (i)n

)
.

• Compute m̂x,n|n = 1
N

∑N
i=1X

(i)

n and Σ̂xx,n|n = 1
N

∑N
i=1X

(i)

n

(
X
(i)

n

)T
− m̂x,n|n

m̂T
x,n|n.

As N goes to infinity, it follows directly from the previous developments that
X
(i)

n ∼ N
(
mx,n|n,Σxx,n|n

)
.

3.2. Posterior simulation in Gaussian state-space models. Consider again
a linear Gaussian state-space model

Xn = AXn−1 + Vn, (2)

Yn = CXn +Wn, (3)

where X0 ∼ N (0,Σ0) , Vn ∼ N (0,Σv) and Wn ∼ N (0,Σw). Let us denote y1:n =
(y1, y2, . . . , yn). When implementing a Markov chain Monte Carlo (MCMC) algorithm
to estimate the hyperparameters of this model, it is usually necessary to sample
from p (x0:n| y1:n). This is typically achieved using the Forward Filtering Backward
Sampling (FFBS) technique [1], [5]. An alternative to this well-known technique is
given by the following algorithm [3].

• Sample X0:n, Y1:n using Eq. (2)-(3).

• Use the Kalman smoother to compute both E (X0:n|Y1:n) and E (X0:n| y1:n).

• Return X0:n = E (X0:n| y1:n) +X0:n − E (X0:n|Y1:n) .

The fact that X0:n ∼ p (x0:n| y1:n) follows directly from Eq. (1). A minor ad-
vantage of this method over the FFBS approach is that it only relies on standard
Kalman smoothing code. Actually, the algorithm discussed in [3] is slightly differ-
ent. In this paper, the authors propose to sample from p (x0, v1:n| y1:n) instead of
p (x0:n| y1:n) using the disturbance smoother E (V1:n|Y1:n). The rationale for sam-
pling from p (x0, v1:n| y1:n) is that Σv is typically a low-rank matrix.
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