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Stochastic Sampling Algorithms for State Estimation
of Jump Markov Linear Systems

Arnaud Doucet, Andrew Logothetis, and Vikram Krishnamurthy

Abstract—Jump Markov linear systems are linear systems  v; andw, uncorrelated Gaussian white noise se-
whose parameters evolve with time according to a finite-state quences;
Markov chain. Given a set of observations, our aim is to estimate . Lo
the states of the finite-state Markov chain and the continuous ¥ observation at time;

(in space) states of the linear system. The computational cost in ¢ a known exogenous input sequence;
computing conditional mean or maximuma posteriori(MAP) state A(ry), B(ry), time-varying matrices that evolve ac-
estimates of the Markov chain or the state of the jump Markov C(ry), D(ry) cording to the realization of the fi-
linear system grows exponentially in the number of observations. 1 s . -

F(ry), andG(r;) nite-state Markov chain,.

In this paper, we present three globally convergent algorithms N
based on stochastic sampling methods for state estimation of jump For notational convenience, lety = (v, - -, yr),
Markov linear systems. The cost per iteration is linear in the data A o A ~
length. The first proposed algorithm is a data augmentation (DA) z = (@0, »or), andr = (1,  77) denotfa the se
scheme that yields conditional mean state estimates. The seconflu€nce of measurements, the states of the jump Markov
proposed scheme is a stochastic annealing (SA) version of DA thatlinear system, and the states of the finite-state Markov chain,
computes the joint MAP sequence estimate of the finite and con- respectively.
tinuous states. Finally, a Metropolis—Hastings DA scheme based on Jump Markov linear systems appear in several fields in

SAis designed to yield the MAP estimate of the finite-state Markov . . . . .
chain is proposed. Convergence results of the three above-men-(alecmc"jll engineering (see [12] and references therein), in

tioned stochastic algorithms are obtained. cluding control (e.g., hybrid systems, target tracking), signal
Computer simulations are carried out to evaluate the perfor- processing (e.g., blind channel equalization), communications

mances of the proposed algorithms. The problem of estimating (e.g., interference suppression in mobile telephony), and other

a sparse signal developing from a neutron sensor based on a setyreas, such as econometrics and biometrics. In these fields,

of noisy data from a neutron sensor and the problem of narrow- . - o .
band interference suppression in spread spectrum code-division given theT’ observationgs, » yr generated by the signal

multiple-access (CDMA) systems are considered. model (1), (2), and assuming the parametetl), - - -, A(s),
B(1)7 ) B(S)’ C(l)v ) C(S)’ D(1)7 ) D(S)’ and
)y, -+, F(s), G(1), ---, G(s)) are known, it is of interest

. INTRODUCTION to compute the following state estimates:
DISCRETE time jump Markov linear system can be mod- < conditional mean state estimates gfand =, namely,
eled as E{r:ly} andE{z:|y},fort =1, 2, ---, T;
e maximum a posteriori (MAP) sequence estimates
Tyl IA(TH_l).’L’t + B(Tt—l—l)vt-l—l + F(TH_l)uH_l, (1) and z; defined aS(.’i', @) = argmaxg r f(.’L', ’I'|y) and
yr =C(r4)ze + D(re)wy + G(re)ue, @) 7 = argmaxy f(r|y), where f(-|-) denotes the condi-

tional probability density (or mass) function.
Unfortunately, it is well known that exact computation

WhteLeL 2, - discrete time: of these estimates involves a prohibitive computational cost
- unknown  realization of a fi- of orders”, whereT denotes the number of measurements
nite-state Markov chain with states@nds’ corresponds to all possible realizations of the finite

in{1,2, -, sh Markoy chain [25]. Thus, itis necessary to consider in practice

z unknown state of the jump linear systemSUPoptimal estimation algorithms. A variety of such suboptimal

algorithms have been proposed; see, for example, [7], [24],
and [25]. In particular, [25] presents a truncated (approximate)
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annealing (SA) algorithms. The algorithms have a computa- oped recursive (on-line) state and parameter estimation al-
tional cost ofO(T') per iteration. gorithms. Our objective is to illustrate the use of stochastic

Although the DA algorithm proposed in [21] and [22] is a  Sampling algorithms in these applications.
well-known algorithm in the statistical literature, it is rarely
mentioned or applied in the engineering literature. The DA Il. PROBLEM FORMULATION
algorithm is one of the simplest Markov chain Monte Carlo |n, this section, we present the signal model and outline the
(MCMC) algorithms [21], [22]. MCMC are powerful stochasticestimation objectives.
algorithms used to sample from complex multivariate proba-
bility distributions. These methods are well known in imaga. Signal Model
processing because they have been introduced by Geman and . .
Geman in 1984 [6] to simulate from the Gibbs distributior&irsl‘certese_ﬁm{el’ t?Fn.é-ﬁo(rjneonoetﬁe(gférs?ieurzfét-lz;?zec:ehr}lc;tr?(o?/
of a Markov random field. Their introduction in the early hain with t ' i bgb'l't' '
1990’s has revolutionized the field of applied statistics. The !N With fransition probabiiities
key idea behind MCMC methodology consists of sampling A ) ) o
from a “target” complex probability distribution by simulating pij = Prirp =gl =4}, (1, ] € 5);
a Markov chain that admits as its invariant (or stationary) s={1,2,---, s} 3)
distribution, the “target” distribution. In this paper, we show A
how the DA algorithm can be used to estimate conditionBlenote the initial probability distribution gg = Pr{r, = 4},
mean estimate&[z,|yy, ---, yr] and E[r¢|yy, ---, yr] for fori € S, such thatp; > 0, Vi € S and Zf:l p; = 1.
jump Markov linear systems. Then, we propose two new hybriche transition probability matrikp;;], is ans x s matrix, with
SA/DA algorithms that yield MAP sequence estimates. elements satisfying;; > 0 and}__, p;; = 1, for eachi € S.

In recent work [12], we have used the expectation maximiza-s? possible realizations of the Markov chairexist. The set
tion algorithm to iteratively compute MAP sequence estimates all realizations ofr is denoted agr(1), r(2), - -+, 7(s)}.
for jump Markov linear systems. Although these EM algorithm$he realizations:(7) for/ = 1, ---, s are ordered arbitrarily
in some cases perform remarkably well, convergence to a lotalsimplify notation.
stationary point (maximum, minimum, or saddle point) is a Let R denote the set of realizations of the finite Markov chain
major drawback. A significant advantage of the SA methods of non-null prior probability; that is
proposed in this paper is that they are asymptotically globally

convergent. _ o . . T
Main Results: We now list the main results and organization ~ 2¢= {7(0 = (D), -, rr(D); L€ {1, -, 57}
of this paper: T-1
« Section Il formally presents the signal model and estima- such thab,. o) [] prwre > 0} ' @
t=1

tion objectives.

* In Section Ill, we use the DA algorithm, proposed by [21], Notation: We will usen,, to denote the dimension of an ar-
together with the law of large numbers [20], to computBitrary vectorz. We use/[ ¢(r) dr instead OET(I)CST o(r(l)
conditional mean state estimates of the finite-state Mark@yy .. s7 — R, whereST = S x S x --- x S. We do not dis-
chain and the state of jump Markov linear system. In Theingyish between random variables and their realizatigts.)
orem 3.1, we prove the convergence of the DA applied {gjl| be used to represent distributions of both discrete and con-
the state-space model (1) and (2). _ tinuous random variables. Superscripts denote exponentiation,

* In Section IV, a new SA algorithm is derived based 0B g r/7(k) Superscripts enclosed in brackets, exf) de-
the DA algorithm. The algorithm yields joint MAP statenotes iteration number. The indexi: denotes iteration number
sequence estimates of the finite-state Markov chain agglhe various iterative algorithms. o
the state of jump Markov linear system. Sufficient condi- consider the jump Markov linear system of (1) and (2),
tions for the convergence of the proposed algorithm to ﬂWnerea:t € R"™ is the system stata;, € R is the ob-
global maxima are presented in Theorem 4.1. servation at timet, v, € R™ is a known deterministic

* In Section V, a Metropolis—Hastings SA algorithm, basegipyt, v, € R™ is a zero-mean white Gaussian noise se-
on DA, which yields the MAP state sequence estimai,ence with identity covariancé,,, and B(i)Bt(:) > 0
of the Markov chain, is derived. Sufficient conditions fory; ¢ §)1 w, € R+, is a zero-mean white Gaussian noise
the convergence of the. proposed algorithm to the globgbquence with identity covariande, and D(i)D'(i) > 0
maxima are presented in Theorem 5.1. _ (Vi € S). A, B,C, D, F, andG are functions of the

* In Section VI, the proposed algorithms are applied to WQiarkov chain stater,, i.e., {4, B,C, D, F,G} C
practical examples: 1) estimation of sparse signals and 2}y B(:), C(i), D(i),lF(i), G(i);i € S}, and they
narrowband interference suppression in spread spectrdlve according to the realization of the finite-state Markov
code-division multiple access (CDMA) mobile communi-

cation systems. As detailed in Section VI, several recentlThiS assumption is not restrictive as in numerous applications when
' B(i)B’(i) is singular. The jump Markov linear system can be transformed to

papgrs in the communicatigns and adaptive signal prope, system where the noise covariance matrix is positive definite. See [10,
cessing literature have studied these problems and dese. 3.9] or [5] for details.
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chainr,. We assume ~ N(2g, Py) and letzy, v; andu, be These estimates are “theoretically” obtained by integration

mutually independent for atl. with respect to the joint posterior distributiof{r (1), z|y).
Assumption 2.1:The model parameters are assumed If we were able to obtainV (for large N) i.i.d. samples
known where {@®, £"). k = 1,.--, N} according to the distribution
A f(r(l), z|ly), then using the Law of Large Numbers [20],
A ={pi, pij, A7), B(i), C(i), D(i), F'(3), conditional mean estimates can be computed by averaging, thus
G(i), &0, Po; i,j€ S}, (5) solving the state estimation problem. Unfortunately, obtaining

such i.i.d. samples from the posterior distributiffr, z|y) is

Remark 2.1: The assumption that, is normally distributed not straightforward. Thus, alternative sampling schemes must
is easily relaxed to finite Gaussian mixture distributions. Bédse investigated.
cause any regular distribution can be approximated arbitrarily
closely by a finite mixture of Gaussians, this assumption is nat Data Augmentation
really restrictive. The procedure for dealing with finite-mixture
Gaussian distributeg, is as follows. Suppose, satisfiestg ~
S miN(mi, 3;), whereS" Y 7 = 1 andw; > 0. Intro-
duce the indicator variablg € {1, - - -, n} such thaty|(1y =
i) ~ N (m;, 3;). Then, conditioned upofdy, r1,---, rr), the

system (1) and (2) is linear Gaussian, so we can use the al%()éummarized in Fig. 1
rithms presented below. o

o Remark 3.1: Theoreticall king, the DA algorithm
Remark: In many applications, the model parameters are emark 3 eoretically speaking, the algorithm does

. . not have a stopping criterion. However, a reasonable choice (see,
known. For example, in spread spectrum communications sy,

tems (see Section VI-B);; are knowna priori since they are of example, [4]) is to terminate the algorithm Whigr( V) —

. . . ) (N — 1)||2 is less than some specified tolerance limit.
a function of the spreading code. In cases in which the. mogégampling SchemesThe DA algorithm presented in Fig. 1
parameters are not known, several algorithms for estimatin

r(gﬂuires us to compute samples frofifz|y, r*~Y) and

these parameters are available; see, for example, [25]. S{% ly, ™). One possible scheme is the efficient forward

models are al nsider nder namic linear m . : . .
odels are aiso col sidered u_de a dyna I lin€ar Mo ering—backward sampling recursions introduced by Carter
framework in [26]. It is also possible in a Bayesian framewor

to use alaorithms presented in this paber to iointly com nd Kohn [2] and independently by Fruwirth-Schnatter [5].
u gori P . ! 'S pap Jointly p"%;uese recursions are given in the Appendix. An alternative
state and parameter estimates. An important issue beyond

X . ; o scﬁeme, not investigated here, for sampling from posterior
scope of this paper is the identifiability of the model paramete&sénsities of Gaussian state space systems is the simulation
of a jump Markov linear system.

smoother of De Jong and Shephard [3].

In this paper, we compute samples from the posterior distri-
bution f(r, z|y) using MCMC methods, and in particular, we
use DA algorithm. The samples are then used to compute condi-
tional mean estimates of the stateandx. The proposed condi-
tional mean state estimator via the data augmentation algorithm

B. Estimation Objectives .
] ) ) B. Convergence of Data Augmentation
Given the observationg, assuming the model parame-

ters A are exactly known, all Bayesian inference for jum _ o . :
Markov linear systems relies on the joint posterior distributio ] for identification of linear state-space models with errors that

F(r(1), zly). In this paper, the following three BayesiarF‘re a mixture of normals and coefficients that can switch with
estimétion broblems are co;lsidered' time. We generalize the model in [2] to our jump Markov linear

. . ] . system given by (1) and (2). Our main contribution here is to
D C_:ond|t|onal mean eshmatesaif_andtr. C(;;ngute_optlrgal prove that sampling via the DA algorithm converges uniformly
gﬁy?iig’g?;gf sense) estimates 7 given by geometrically fast to yield samples that mimic samples from the
. ' . . desired t t) distribution. A , the L f
2) MAP estimate ofc andr: compute optimal (in a MAP esired (or target) distribution. As & consequence, the Law o

n tat timat &ndr by maximizing the ioint Large Numbers holds, which states that sample averaging will
s€ se)' stale estimatesmoandr by max gtheJjo converge almost surely (a.s.) to the expected value.
posterior distribution, i.e.,

From construction [see (8) and (9)], the process
{(®, "), ke N} is a homogeneous Markov chain
with transition kernel given by

The DA algorithm described in Section 111-A has been used in

(2, 7) = arg max f(z, r(Dly). (6)

3) MAP estimate ofr: compute optimal (in a MAP sense)
state estimates @fby maximizing the marginal posterior K ((’r(k_l), :c(k_l)) = (r(l), x); ('r(k), :v(k))

distribution, i.e., . . .
= (r(m), @) ) = [ (@ly, 7)) f (r(m)ly, &) . (20)
= argma f(r(l)ly) ¥
The following theorem (proven in Appendix 11-A) and corol-

lary are the main results of this section.
[1ll. CONDITIONAL MEAN ESTIMATION Theorem 3.1—Uniform Geometric Ergodicityk constant

The aim of this section is to compute the conditional megh< p < 1,0 =1-3" ., cr miny@ecr K(r(l); r(m)) exists,
estimatesF {r|y} and E{z|y} for the signal model (1), (2). such that, for any initial distributiopy (r, z) of (9, £(®)), the
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Data Augmentation Algorithm
1. Initialization: Select randomly (r(®,x(®).

2. Tteration: Given (r(*~Y),x(*-1), compute (r{*),x(¥) for the kth iteration (for k =

1,2,...) as follows:

e Simulate x*) from

x®) v  (x]y,e6-D) @®)

e Simulate r*) from

r® ~ £ (x]y,x®) ©)

3. State Estimation: Compute conditional mean estimates using the empirical estima-
tors X(N) and F(V) (defined in Eqs. (14) and (15)) or the mixture estimators (V)

and £(N) (defined in Eqs. (16) and (17)).

Fig. 1. Algorithm I: Conditional mean state estimator via the data augmentation algorithm.

state distribution of the Markov chai@r®), z(*)) at iteration p is not known, we cannoa priori choose the number of
k, denoted agy(r, x), satisfies iterations . required for the DA algorithm to converge to a
desired level of accuracy.
o Computing Conditional Mean Estimate€orollary 3.1 can
/ lpr(r, ) — f(r, zly)| drde < 29" (11) straightforwardly be applied to compute the conditional mean
estimates of- andz by the ergodic averag@sN) andz (N )2:

Thus, the sequendgdr®, £(¥)); k € N} obtained from the
DA sampling scheme is a Markov chain with invariant distribu- _ Al = )
tion f(r, z|y) and is ergodic. Ergodicity implies convergence Y =N Z r (14)
of ergodic (sample) averages [23, Th. 3, p. 1717]. Uniform er-
godicity implies that the Law of Large Numbers and a central _ al k
limit theorem also hold [4], [18], and [23, Th. 5, p. 1717]). BN = N Z z (15)
Corollary 3.1—Convergence of Ergodic Aages: For every =0

real-valued functionp: 5% x R(*+m — R, let us consider \perer andz are known as thempirical estimatorgsee [11]).

the the average ?f thev first outputs of the Markov chain  cqngitional mean estimates may also be computed via the
on = (/N2 o™, a8 A E sz [le(r, ®)]] < mixture estimatorgsee [11]), i.e.,

o0, then, for any initial distribution,

k=0
N—-1

N—-1
— - Al (k)
On = Efir ajyle(r, )] a.s. (12) #(N) = N 2 E [r|y, z } (16)
N—-1
If E s, aly)[|(r, £)]*] < +oo, then a constant(y) exists Ay AL E ) 17
such that the distribution of &(N) N ~ [I|y’ " } ' (@7
VN (@n = Ejgr ziy lo(r, 2)]) (13) The empirical estimator and the mixture estimator will almost

surely converge to the true condition mean estimates. The ques-
converges in distribution to a zero-mean normal distribution §Pn is to determine which of the two estimators yields smaller
variances2(). asymptotic variances.
Remark 3.2:Theorem 3.1 states that the sample The following proposition shows that the mixture estimator
(r®, z®). ke N) generated for largé: via the DA al- yields smaller asymptotic variances.

gorithm, will mimic a sample from the posterior distribution Proposition 3.1: When the Markov chairi(r(*), z®)); k €
f(r, zly). N} is in its stationary regime, then the estimates

. k—2 ; H
Remark 3.3:2p in (11) of Theorem 3.1, IS an UPPer  2gn) and#(N') defined subsequently in (16), denote the average dver
bound on the rate of convergence of the DA algorithm. Becaliggations. They are not to be confused with) defined in (4).
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Simulated Annealing Data Augmentation Algorithm

1. Initialization: Select randomly (r(®,x(®).

2. Tteration: Given (r®*=1, x(-1)), compute (r*),x(¥)) for the kth iteration (for k¥ =

1,2,...) as follows:

e Simulate x*) from

x(k) ~ TI/T(k) (x| Y, r(k_l)) (21)

o Simulate r®) from
£ & FTE (] y,x®) (22)
where F/T® (x|y,r-V) and FHT® (r]y,x(¥)) are defined in Eqs. (23) and

(24), respectively.

Fig. 2. Algorithm Il: SA-DA algorithm for computing joint MAP sequence estimates of the finite-state Markovchaihthe state of the jump linear system

(1/N) S0 Elrly, z®] and (1/N)Y o Elzly, #¥]  To implement this algorithm, we sample from
converge a.s. ti[r|y] andE[z|y], respectively, and satisfy ~ f1/T) (g]y, +*~1) and f1/T®) (r|y, (X)) using the efficient
forward filtering—backward sampling recursions. The desired

| V-1 | V-1 densities in (21) and (22) are defined as follows:
var lﬁ Z E [r|y, :E(k)} < var I Z r(k)] (18)
k=0 k=0 FUT®) (_,,|y7 T(k‘—l)) o fLUTHE (:c|y, T(k—l)) (23)
N-1 N—1
1 1 _
ar | — E ® || < var | = O 1/T(k) (k) 1/T (k) (k)
var lN ,;0 [:c|y, 'S H < var [N ;::0 T (19) f (r|y, T ) o f (r|y, T ) (24)

wherex denotes proportionality.
Proof: The proof can be found in [11, Th. 4.1].

In our caseE[z]y, r®] andE[r|y, *)] can be easily com- B. Convergence of the Algorithm
puted using, respectively, a Kalman smoother [1] and the for'Here we obtain sufficient conditions dr(k) to ensure con-
ward—backward recursions of a hidden Markov model SmOOtWJrgenc,:e of the Markov chai{(r““) :c(k))' k € N} to the set

[17]. of global maxima. First, we note that obtaining MAP estimates
of » andz is equivalent to solve a NP (nondeterministic poly-

nomial) hard combinatorial optimization problem. Indeed (6) is
equivalent to

IV. MAXIMUM A POSTERIORISTATE SEQUENCEESTIMATION
OF £ AND 7

A. Simulated Annealing Data Augmentation Scheme

SA is a numerical optimization technique that allows us (F, %) = e frDly) f(zly, (D). (25)
to solve combinatorial optimization problems [14]. It is a ’

stochastic algorithm, which will converge to globally optimal Note, f(x|y, (1)) is an, (T + 1)-dimensional Gaussian dis-

solutions, by randomly generating a sequence of POSSillg, tion of meanm; and covarianc&;, with a strictly positive

solutions. _ _ o determinantX;|. Thus,# is obtained as
In this section, we introduce an algorithm for obtaining op-

timal, in the MAP sense, joint sequence estimates of the states . _
andr defined in (6). We propose an SA version of the DA algo- TS esr FerDly) 372, (26)
rithm; i.e., we build a nonhomogeneous version of the DA algo-
rithm dependent on a deterministic so-called cooling schedwg denoter C R the set of these global maxima. Origesay,
{L(k); k € N}, verifying # = (1), has been obtained, thén= m, andm, is obtained
via a Kalman smoother [1].
T(k+1)<T(k) and lim T(k)=0. (20) Our proof of convergence relies on the fact _th_at the stochastic
k—+o0 process{r*); k ¢ N} is a inhomogeneous finite-state space
Markov chain that converges asymptotically toward the set
The proposed algorithm is summarized in Fig. 2. of global maximaAt. From the definition of our algorithm,
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{(»® £})); k € N} is an inhomogeneous Markov chain with Lemma 4.3: The sequence of invariant discrete distributions
transition kernel at timé given by fYTE) (r|y) satisfies

(k=1) LB=1)Y. (fF) ) X e
Kk((T & )v(’ & )) S [F/TE (rly) — FTO (rly) dr < 400, (33)
— JUTR) ($<k> ly, 'r(k_l)) FLUTW) ('r(k) ly, :c(k)) . @7) k=0

Proof. See Appendix II-D.
Thus, {r®); & € N} is an inhomogeneous finite-state space Lemma 4.4:k, € N exists such that the sequence
Markov chain of transition kernel of transitions kernels K; of the inhomogeneous fi-
nite-state—space Markov chaifr®); & € N} satisfies

K. (r(’“*l) (1) ) = T(m)) for any (r(I), r(m)) € R x Randk > kg

= [ 79 ()l ) T (alyr () d. (28) Ku(rlls ) 2 Coxp (<05 ) @9
The main result in this section is given by the following thewhere0 < C < oo and0 < L < oc are some constants
orem, which is proven in Appendix II-F. independent of.
Theorem 4.1:1f {T'(k); k& € N} satisfies Proof: See Appendix II-E.
T(k) = ¥ (29) V. MAXIMUM A POSTERIORISTATE SEQUENCEESTIMATE OF 7

In(k + w) A. Metropolis—Hastings/Data Augmentation Simulated

Annealing Scheme

In this section, we present an SA algorithm based on DA for
obtaining the MAP state sequence estimate of the finite Markov
chainr defined in (7). We build a nonhomogeneous Markov
chain whose transition kernel at iteratibdepends on a cooling
lim / pi(r) — F°(rly)| dr = 0 (30) schedule{T(k); k& € N}, verifying

k—-+4o0

with v > L, whereL is defined in (81) and: > 0, then the
Markov chain{r®); k € N} is strongly ergodic. For any initial
distribution, the distributiom () of r*) satisfies

B T(k+1)<T(k) and lim T(k)=0. (35)
wheref > (r|y) is defined in (32). Furthermore, and the Markov koo

chain the distributiop(x) of =1 satisfies The proposed algorithm is summarized in Fig. 3.

To implement the proposed algorithm, we sample from

lim / lp(x) — fi(z)|de =0 31) flzly. r*Y) and f(rly, z¥)) using the forward fil-
k—+oo tering—backward sampling recursions. To evaluate the accep-
tance ratio (38), we need to evalugte|y) up to a normalizing
where f,. (z) A [ FHTE) (gly, 7Y F(rly) dr. constant. We havé(r|y) « f(r)f(y|r). The first term is the
The proof of Theorem 4.1 involves the following fourPror distribution of the realization of the finite-state Markov
lemmas. chain. The second term is the likelihood that is evaluated using

Lemma 4.1 K3 ((r*—D, z*=D): (¢®) £0))  admits the weighted sequence of innovations given by the Kalman
FUT®(r gly)  as its ’invariant7 dis7tribution where filter [1]. Because the Kalman filter is used to compute samples
71/T(k)(r’ zly) x f/T®(r, zly). Thus, the marginal transi- from f(z|y, r), the additional computational cost of evaluating

tion kernel K (+®=1); r®)) admitsH/T®) (rly) 2 [ FL/TH) f(rly) is minimal.
(r, z|y) dz as its invariant distribution.
Proof: See Appendix II-B.
Lemma 4.2:The sequence of invariant distributions Ve obtain sufficient conditions off’(%) to ensure conver-
TYT®(r(1)|y) converges, a goes to infinity, to a distribu- 9ence of the algorithm toward the sat* c R of global

tion 7°(r(1)|y) localized on the sem maxima of f(r|y) following the approach of Mitrat al. [14].
From the definition of the algorithm{=(*); k ¢ N} is an

inhomogeneous finite-state Markov chain of transition kernels

B. Convergence of the Algorithm

TR 11 s . {Ku; k € N}
JZrOly) = S =" dm(r(l)) 32) F
r(m)cm K (r(l); m(m)) = an(r(l), r(m)) Kn(r(l); v(m))
whered o ((1)) = 1if 7(I) € M andé(r(1)) = 0 otherwise. R /(1 — an(rl), ) Kn(r(D; 7) dr

Proof: See Appendix II-C. (39)
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Metropolis-Hastings/Data Augmentation Simulated Annealing Algorithm
1. Initialization: Select randomly (r(®,x(®) and set k = 1.
2. Iteration: Given (r*—1,x(*-1)), compute (r(¥),x(¥) for the kth iteration as follows:

o Simulate x®) from

x®) ~ £ (xy,5-D) (36)

e Simulate a ’candidate’ r. from

re~ f (rly,x®) )

Evaluate the acceptance ratio o (r%*—),r):

f(r | ) 1/T(k)—1
a (r(k—l)’rc) = min{ [f(r("—fgly)] , 1} (38)

Simulate an uniform random variable u on [0,1], » ~ U (0,1).

Ifu < o, (r®=V,r.) then set r¥) =r,, otherwise set r®) = r(-1) |

Fig. 3. Algorithm IlIl: Metropolis—Hastings/DA—SA algorithm for computing the MAP estimate of the finite-state Markovchain

where Lemma 5.1:For any &k € N*, Ki(r(m); r(I)) admits
8., Kronecker delta; FYT®) (r) as its invariant distribution, where
K;, associated (homogeneous) DA Markov chain kernel
defined as follows: 71/T<k)(,_) o fl/T<k)(,_|y)_ (44)

) A Proof: See Appendix II-G.
K (r(l); m(m)) = / Flr(m)ly, =)f (zly, 7(1)) dz. (40) We obtain straightforwardly the following lemmas; see, for

The following th is th . It of thi . q example, [14] and [27].
e following theorem is the main result of this section and is | o\ =" £ 5. The sequence of

proven in Appendix II-I.
Theorem 5.1:1f {T'(k); k& € N} satisfies

> invariant distributions
FYT®) () [defined in (44)] converges, as goes to infinity,
toward the set of global maxim&t™ of f(r(1)|y); that is,

~
Tk = ———— 41 — .
= v “h P = 2 (@)
with v > L, wherelL is defined in (85), and. > 0, then the
Markov chain{r*); k € N} is strongly ergodic. For any initial
distribution, the distributiom, (r) of #(*) satisfies

whereéa (r(l)) = 1if r(I) € M* andérq (r(1)) = 0 other-
wise. M* denotes the cardinality of1*.

Lemma 5.3: The sequence of invariant discrete distributions
-~ FYT®)(r) satisfies
Jim [l =7l =0 @)

+oo
F1/T(k+1) _ F1/T(k)

where f>(r) is defined in (45). Furthermore, the distribution kz_o / ‘f (rly) =/ (rfy)| dr < toc.
pr(x) of z(*) satisfies -

Lemma 5.4: kq exists such that, for any > k, and for any

lim / lpk(z) — fu(®)|dz =0 43) (r(l), r(m)) € Rx R, the sequence of transitions kern&lg of
koo the inhomogeneous finite-state—space Markov ckelif¥; & €
N} satisfies

wheref>(z) 2 [ f(z|y, r)F>(r) dr.
The proof of Theorem 5.1 involves the following four L
lemmas. Ki(r(D); v(m)) > Cexp <—m>
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2 T T T T

where0 < C < oo and0 < L < oo are some constants
independent of;.
Proof: See Appendix II-H. 8

VI. APPLICATIONS AND NUMERICAL EXAMPLES "

Theoretically, the DA and SA based on DA algorithms re-
quire an infinite number of iterations to give the exact values o o
conditional mean estimates and of global maxima, respectivel |-

In all of our computer simulations below, the fir8f, iter-
ations of the DA algorithm are discarded. The fifg§ itera-
tions are assumed to correspond to the so-called “burn in p1'°‘5;‘
riod” (or the transient period prior to the convergence) of the Y : vl
Markov chainé As in [4], the DA algorithm is iterated until the - & ©: PR .
desired computed values of the ergodic averages are no long
modified. % % 100 150 200 250

As shown in Sections IV and V, the SA algorithms require
logarithmic cooling schedules. Such schedules are too slowrie 4. Typical realization of the data: (—) true signal @nd ) noisy observed
be implemented in practice. As is usually done in practice [6]9"2"

[14], [27], we have implemented exponential and polynomig',g
cooling schedules; i.eZ(k) = Ca* with 0 < « < 1 and x

T(k) = Ck™. Our simulations (not presented here) show the os} x
little difference exists between polynomial and exponentic '
cooling schedules. Therefore, in the simulations presents o4r
below, only exponential cooling schedules are used.

Computer simulations were carried out to evaluate the pe %%
formances of our three algorithms. Section VI-A considers th
problem of estimating a sparse signal developing from a ne
tron sensor based on a set of noisy data. Section VI-B conside
the problem of narrowband interference suppression in spre - :
spectrum CDMA communication systems. =

0

A. Estimation of a Sparse Signal

In several problems related to geophysics, nuclear science, x
speech processing, the signal of interest can be modeled as -°3; = s e 200 2%
autoregressive process excited by a noise that admits as mar-

ginal distribution a mixture of Gaussians [13]. We consider tHeg. 5. True (x) and estimated (0) dynamic noise sequence. The estimates are
foIIowing model: the conditional mean estimates computed via Algorithm 1.

(46) andB(r,) = (o;, 0)’ with ¢ = r,. In the following simulations,
we set the following parameters: = 250, Markov noisep; =
0.1, p2 = 0.9, p11 = 0.05, po> = 0.894 (sor; is in its stationary
regime),a; = 1.51, as = —0.55, A = 0.05, o1 = 0.30, and
oo = 0.01. It models a neutron sensor in a noisy environment.
. ) ) In Fig. 4, the signak, and its noisy observationg are dis-
oy ~ AN(0, 07) + (1 = VN(0, 03), w ~N(0, 1). played. We have chosen to illustrate the performance of our
three algorithms by comparing the estimates of the dynamic
v, is often assumed to be a white noise sequence, but it Collgise,, which are directly obtained from the estimates of the
be also modeled as a first-order Markov sequence to take if@tes. The closer the estimate of the dynamic noise to the true
account the dead time of the sensor. This model (46) and (4i{hamic noise, the better the performance of the algorithm [13].
can be reexpressed as the jump Markov linear system (1) 3q¢ig. 5, we display the conditional mean estimate of the dy-
(2), where the state vector is = (s¢, s;—1)" and for allk, namic noiseE{#|y}, computed using Algorithm 1. In Fig. 6,

Sy =a15¢-1 + azs¢_2 + Uy
Yt =5t T 0wy 47

wherev is the dynamic (mixture) noise process

up =0 we present{#|y, v}, wherer is computed using Algorithm
2. Finally, in Fig. 7, we preseifit{¢;|y, r}, wherer is the MAP
A= <“1 @2 ) , C=(1 0) estimate given by Algorithm 3. In all cases, the algorithms were
1.0 initialized randomly.
D=0y, F=0 G=0, Algorithms 1 and 3 give satisfactory results, because the

3Methods for determining the burn-in peridé, are beyond the scope of this Signal'to'nc’ise ratio (SNR) is quite_ low. Algorithm 2 under-
paper. estimates the number of impulses in the signal. We must not
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08 i ' ' " CDMA systems. CDMA provides a means of separating the
signals of multiple users transmitting simultaneously and
occupying the same radio frequency (RF) bandwidth. It is
well known that system performance is greatly enhanced if
the receiver employs some means of suppressing narrowband
interference before signal “despreading” [28].

Numerous recent papers study the problem of narrowband
interference suppression in CDMA systems; see [15], [16], and
l [29], and the references therein. Our aim here is to examine the
: use of the iterative stochastic sampling algorithms proposed in
the previous sections for narrowband interference suppression.
Note, however, that realistic algorithms would be recursive (on-

06

04

02

(=]

line).
oer : 1 In the papers [15], [16], [29], the following signal model is
o ; . . . used: the sampled received sigpatonsists of the spread spec-
) 50 100 150 200 20 trumsignal, from NV users, the narrowband interfererigeand

) . o ) observation noise, that is
Fig. 6. True (x) and estimated (0) dynamic noise sequence. The estimates are

given byE{ .|y, r}, wherer is computed using Algorithm 2. )
Yo =Tt + 4 + Twwy (48)

08 T T T T
* wherew; is a zero-mean white Gaussian process of variance
o8| : x - 1. As in [15], [16], and [29], the narrowband interferenge

is modeled as a second-order autoregressive process with both
] poles atz = 0.99; i.e.,

04r-

0.2F

T T ’ iy = 1.986,_1 — 0.98i,_2 + oecy (49)

The power of the received spread spectrum signal for each user
; was held constant with amplitudes +1, randomly selected, and
~04f . - r¢ was binomially distributed.

l wheree; is a zero-mean white Gaussian process of variance 1.

The CDMA spread spectrum model (48) and (49) can be re-
-08f 1 expressed as the jump Markov model of (1) and (2), where the
< state vector; = (¢; ¢;—1)" denotes the state of the narrowband
0% % 100 50 200 = interference at timek andk — 1, u, = 1 for all £k and
Fig. 7. True (x) and estimated (0) dynamic noise sequence. The estimates are 1.98 —0.980 Oe
given byE{®,|y, r}, wherer is computed using Algorithm 3. A= 1 0 , B= 0
_ ) ) o C=(1 0), D=o,, F=0 (50)
be surprised by this result. Other works using these criteria in
the specific field of sparse signal deconvolution report similging (1) = 1, G(2) = —1. In the numerical examples below,
Algorithm 3. the performance of the three proposed algorithms for increased

In this example, we discard the firsf, = 20 samples simu- ghservation noise. We compute the conditional mean estimate
lated by the DA algorithm. Then, we take into account the 15(q the MAP estimates of the discrete sequencin this case,
following iterations of the DA algorithm. For the SA algorithmspe joint MAP estimate given by Algorithm 2 and the MAP es-
we implement an exponential cooling schediil) = Ca*  (imate given by Algorithm 3 are theoretically equal. We present
with ¢'= 1 anda = 0.93, and we use 150 iterations. the bit error rate for these algorithms. To evaluate the bit error

. rate from the conditional mean estimdp |y|, we set’; = 1
B. Narrowband Interference Suppression in Spread Spectrum;t(N) > 0 and#, = —1 otherwise.
CDMA The algorithms were run on 400 points, and averaged over

CDMA spread-spectrum signaling is among the mo400 independent runs. In all cases, the algorithms were initial-
promising multiplexing technologies for cellular telecomized randomly.
munications services, such as personal telecommunicationsThis problem is statistically easier than the problem described
mobile telephony, and indoor wireless networks. The explosiueSection VI-A. In this example, we discard the firsy = 20
growth in cellular telephony, in conjunction with emerging newamples simulated by the DA algorithm. Then, taking into ac-
applications, has inspired significant interest in interfereno@unt the 50 following iterations of the DA algorithm has ap-
suppression techniques for enhancing the performance pefared to be sufficient. For the SA algorithms, we implement
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TABLE | 1) Kalman Filter—Forward Filtering Setmgq = %o and
BIT ERROR RATE (IN PERCENT) OF THE THREE ALGORITHMS FOR P0|0 =P Then.fort = 1. --.. T compute using the
= = , 1,

INTERFERENCESUPPRESION INCDMA SYSTEMS . .
Kalman filter equations

ow | Algorithm 1 | Algorithm 2 | Algorithm 3 Maje—1 = A(re)m,_ et + Flrou (52)

0.5 3.13 3.51 3.25 Py = A(re) P11 A () + B(ry) B/ (ry) (53)

0.6 5.88 6.82 6.48 -1 = Clro)my—y + G(re)u (54)

Sy =C(r)Pyy_1C' (1) + D(r) D' (v 55

07| 884 10.23 10.61 ¢ =Clr) P Ore) + D) D'(re) (55)

My =Myjp—1 + Prem1C (1) ST Yy — Ze—1) (56)

0.8 11.89 13.02 14.90 Pt|t :Pt|t—1 _ Pt|t—10/(7’t)5t_lC(Tt)Pﬂt—l (57)
0.9 14.54 16.12 17.88

and store fort = 1, -, T, myp—1 = E{aely, 1, 7},

1.0 17.29 18.04 21.12 My = [E{:]jt|yt7 'r}, Pt|t—1 = |E{({]jt — mt|t—1)($t —

Mepe—1) Y1, v}, and By, = E{(z; — myp)(wr —

mt|t)/|yt7 T} )

an exponential cooling schedulék) = Co* with ¢ = 1and ~ 2) Backward SamplingFort = T',---,0, samplez; from

« = 0.80, and we use 50 iterations. N(my, Py), wheremy, = mqp, P; = Prir, and for
Our numerical examples presented here and other simulations 0<t<T

(not presented here) suggest that Algorithm 1 performs the best . , .

for the CDMA narrowband interference suppression problem. 7 =Mt + Py A (7’t+1)Pt+1|t($t+l —myp1))  (58)

The results obtained are better than those obtained usingthe EM  pr = P, — PtltA/(7’t+1)Pt111|tA(7’t+1)Pt|t- (59)

algorithm [12].

B. Sampling fro
VIl. CONCLUSION pling fronp(r|y, =)
p(r|y, ) can be decomposed as follows:

Inthis paper, we have presented three iterative stochastic sam-
pling algorithms to compute conditional mean estimates and -
MAP state estimates of jump Markov linear models. The com- p(rly, ) = p(rrlyr, zr H (relyes T, me41),  (60)
putational cost of an iteration of each algorithm is linear in the t=1
data length. Convergence results for these algorithms toward re- A _
quired estimates have been obtained. A key property of the thdere y, = (y17 oY)y B = (o, oo, @), GIVEN ey,
algorithms for MAP state estimation is that they are asymptdt¢’+|%:, %+, 7++1) is a discrete distribution. It suggests the
ically globally convergent. This property is in contrast to grafollowing algorithm to sample from(r|y, ).
dient type algorithms, such as the EM algorithm [12], which 1) Optimal Filter—Forward Filtering For¢ = 2, ---, T,
suffer from convergence to stationary points. Two applications ~ compute the optimal filter [17]. For arty evaluate
(in sparse signal detection/estimation and narrowband interfer-
ence suppression in CDMA communication systems) were pre- .
sented tlc))pshow their performances. ’ ) PBlr =il wi) Z pjip(rt—1 = il¥r—1, ®e-1)  (61)
Future work will focus on adaptive recursive versions of the =t
proposed algorithms in narrowband interference suppress@r@” = ily,, z)

and multiuser detection in CDMA systems. _ PYes Telyr 1, o1, 10 = Op(re = iy, 1)

Zp(yt, $t|yt—1a Tr—1,7Tr = j)p(Tt = j|yt—1a $t—1)
APPENDIX | =t
FORWARD FILTERING—-BACKWARD SAMPLING RECURSIONS (62)
A. Sampling fronp(z|y, r) and storefot =1, ---, Tandfori =1, ---, s p(ry =
; it ilye_1, Te—1) andp(ry = ily,, x1).

We have the following decomposition 2) Backward Samplingsampler; fromp(r¢ |y, ). Then,
_ fort=T-1, ---, 1, sampler, from p(rs|y,, ¢, 7141),

p(aly, ) = p(orlyr, 7) H (@il 7 wes1)  (51) where fori =1, ---, s

p(7’t+1|7’t = i)P(ﬁ = i|yta xt)

A A p(Tt = i|yt7 T, 'rt+1) = s .
wherey, = (y, -, %), e = (r1, -+, 1), andro =y = 0. ZP(H—HV& = p(re = jlyy, )
Givenzyyy, p(ai|y,,r, z141) is @ Gaussian distribution. This =
decomposition suggests the following algorithm [2]. (63)
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APPENDIX |l Using (66), we now prove the uniform ergodicity of the Markov
PROOF OFTHEOREMS AND LEMMAS chain{r® z*); k € N}
A. Proof of Theorem 3.1
|pr(r, ) — f(r, x|y)| dr dx
The marginal sequende‘®); k € N} is a Markov chain with
transition kernel given by _ / \f(rly, 2)pi(x) — frly, z)f(zly)| dr dz
K (r = r(:r® = r(m)) < [ sty =) [ lonta) — ol dode
. 4
/f m)ly, x)f(zly, r(1)) dz (64) /|pk f(zly)| dz
k—2
By construction [21], [22],{(®), 2®)); k& € N} admits <2070 (68)

f(r, z|y) as its invariant distribution. Thuge®); k € N}

admits f(r|y) as its invariant distribution. From the modelB. Proof of Lemma 4.1
assumptions given in Section II-A and (4) in particular, the

posterior distributionf (r|y) is strictly positive onR and null

on ST\R. Moreover, we haveX (r(l); 7(m)) > 0 for any / K ((r, z); (7, 2) FY/T O (r, z) dr dx
(r(D), r(m)) € ST x R and K(r(l); r(m)) = 0 for any -
(r(l), r(m)) € ST x ST\R; i.e,, atk = 1, the finite-state - // FUTE) (g |y, ) FHTE) (g |y, ') FL/TR)
Markov chain enters inZ and never leaves this set. Thus, B
{r®): k. € N} is irreducible and aperiodic oR. Hence, it is (xly, v FTE) (rly) dr d
uniformly ergodic. From [19, pp. 401-40207*): k € N} — Tk — LTk
poktolls = [ PO ) Oy o
— FYTR) (! ! )
[ )= st ar < 2 frm )

[and [ |pi(r)— f(rly)| dr < 2p*if r©® € R],whered < p < 1 C. Proof of Lemma 4.2
satisfies See (69) at the bottom of the next page, wheen, (T'+1).
If #(I) ¢ M, r(m) € M exists such that
p=1-— Z min_ K(r(l); r(m)).

r()ER —1/2\ VT
r(meR | <f<r<m>|y>|2m| ) oo (70)

lim
k=too \ - F(r(Dy) [0

Other bounds exist in the literature. Applying ttieality prin-
ciple of Robert and Diebolt [4], [18], [23], we now show that and thus

" m fHTE =0.
[ tont@) - stalwl e < 204, (65) L 7Dl =0 (73

If »(I) € M, then
Thus, the property of uniform geometric convergence of the

Markov chain{r(*); k € N} is “transferred” to the continuous P, I, /2
state-space Markov chaife®); k € N}. To prove (65), first ~, lim f D=1 > = 1172 - (72)
note that r(m)eM 1% |
p(r(), ') = fr(D|z’, ) / pr_1(r)f(&|r, y)dr D. Proof of Lemma 4.3
— (D2, y)pu(a’). (66) The proof of this result follows from arguments similar to

those of Mitraet al. [14, Proposition 3.3, pp. 755-756]. For
anyr(l) € R, by differentiating with respect &’ the function
YT (r(D)|y), we obtain

/ 1p(2) — f(aly)| dz YT (r (D)

/‘/fwlryml dr—/f:vlry (rly) dr| d -

_ |3 |1/2 (f(r(my) = |_1/2)1/
< // Flalr, ) (7) — flrly)| dr dz

C2(T)T?
T —1/2
— [ Ipres(r) - el (et (2] 2) ln<f<r<m>|y>|zm| )
[ peestr)= sttt (st (=) Py 3|72
< 20472, (67) (73)

Z |2m|1/2

r(m)ER
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where Thus, forT — 0, df Y7 (r(1)|y)/dT > 0. The setR\ M being
finite, ak’ € N exists such that, for any > %/

_ 1/2 —/2\M* _ _
C@) = 3 (Sl (frln)[Bnl ™) T T prrean ) IO <0, it r1) € BAM
r(m)eER (78)
Then, following Mitraet al.[14, Proposition 5.1, pp. 762—-763],

From this result, it follows that, for ang(l) € M and fork > 0
) - from (75) and (78) and fok > £/, we have

Pl = POk >0 75 [T ()ly) - PO ()|
because each term on the right-hand side of (73) is either zero( JeR - _
or negative; thusff'/Z (r(I)|y)/dT < 0. From (20), (75) im- = > (fl/T(k+1)(7‘(l)|y) - fl/T(k)(T(l)|y))
mediately follows. r(Hem
Let H(1), for »(I) € R\ M, denote the set af(m) such that _ F1/T(k+1) /TR
f(r(m)|y)|2m|*l/2 > f(’r‘(l)|y)|21|71/2; that is T([);\M (f (r(Dly) — f (’f‘(l)|y))
H(D) = {r(m): Frml) (Sl 2 > FOly) (572, =2 35 (el - PO e m).
r(hem
r(m) € R,r(l) € R\M}. (76) Hence
+oo
Forr(l) € R\M % ‘71/T<k+1>(,_|y) _71/T<k>(,_|y)‘ <2 (79
CA(T)T? 7Y (r(1 K ren
@) TN 2 / d(;( o) The result (33) immediately follows.
1/2 —1/2
<|El| (f(r(l)|y) %] ) ) E. Proof of Lemma 4.4
1S |1/2 <f('r(m)|y) |E'rn,|_1/2> yr Using Bayes's rule
rmbeny S\ @l 1= T (r(m)ly, o)
(r(m)|y) |2m|—1/2 _ fl/T(k)( "ly, r(m ))fl/T(k)( (m)ly)
n
< FrOly =72 [, v ir
s < (r(m)ly >|zm|—1/2>”T _ Ty, rm) T (m)ly)
R KNG OL7T > [Py D@ ey dr

Flr(m)ly) S |72 TYT® (p(m!]y) = FYTE (r(I)]y); thus, the denominator of
the expression above can be bounded
Following the same arguments as in [14], we make the fol-

n< FrDly) |2~ ) _ (77) ko € N exists such that, for angr(m’), r(I')) € M x R,

lowing observations: the first term on the right-hand side of (77) / 71/T(k)($/|y7 T)?l/T(k)(ﬂy) dr

is monotonically increasing with decreasiiigand the second

term on the right-hand side of (77) is monotonically decreasing < 71/T(k)(T(m/)|y) / 71/T(k)($/|y7 ) dr

with decreasind’. Furthermore, in the limif" — 0, the first

term tends toware-oc, and the second term tends toward zero. < FYT®E (r(m! ) ly) Rby, (80)

[ 1Oty r0) do T 0l)
J[ #2020 o b
(2 s g2) " @y prr o e o)

> (a2 @ o emy

r(m)CR

1/2 12\ YTW\ T
oy El <f(r(m)ly)|2m_ll/2> (69)
=72\ S Oly) (=

r(m)CR

FEOEW)ly) =
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whereR is the cardinality ofR and

b= s, (V70 = e, 10970

= (22T(k)™™? max |Zp|"Y2.
(2n (k)™ Tg};gRlzl

Thus
Ki(r(1); r(m)
- / FYT® (r(mly, /YT TE (2 ly, (1)) de’
FHT® (r(m)|y) /_l/T(k) /
FYT0) (|, r(m))

= T (o) R
THT® ey, 7(1) da.

For any(r(l), r(m)) € R x R

| PO el O aly. 7)) do
N (my,, T(K)X,,) d.
We obtain

/ THT® (gly, (1) T TO (aly, r(m)) da

_ |2l,rn |1/2
@rT (k)2 S V2 |2 [V

-1
" €xXp <T(k) (mq

A

whereX; !

IL,m

¢ =R (r(D), rgrlli)%eRxR (|El’m|1/2/|212m|1/2)/

1/2

max_|Xy|" 7 >0
r(I')ER
and
L= 1 max (mi —my,)
(r(l) r(rn))&RXR
N (21 + 2771) (ml - mrn)-
Then

Ki(r(1); v(m))

o (L) PO m)ly)
>C p< T(k)) JYE® (r(m)|y)

Using (69), we have
JYT®E (r(m)y)
FUT®(r(m/)|y)

_ < = | )”2 [ Fr(m)ly) S |7
S 1) L)) [ |2

] 1/T(k)

- mrn)/ (21 + 2771)_1 (ml - mrn))

37 + X, Define the following constants:

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 1, JANUARY 2000

Thus, with

1/2
c=c min <|E |>
(r(), r(m))ERXR | |

§

L J(r(m)[y) S |~

= a —1/2
o, o erer frDly) [

and
L=L+ L, (81)
we obtain the result.

F. Proof of Theorem 4.1

We first prove thafr(*); k € N} is weakly ergodic ([8, Def-
inition V.1.1, p. 137], [14, Definition 4.4, p. 758]). The inho-
mogeneous Markov chaitK; k£ € N*} is weakly ergodic if
> req [1 = ¢(Ki)] = +0o0, where the ergodic coefficied{ P)
of any Markov transition kernel (stochastic matriX)on R is
defined as

¢(P)y=1- min Z
(1), r(m))ERXR r(eR

-min(P(r(l); r(k)), P(r(m); r(k))). (82)
Using Lemma 4.4, the ergodic coefficient &, is given by

C(Ky) = min
(r(), r(m))ERXR ~(ICR

-min (K (r(l); 7(I")), Ki(r(m); r(I')))

<1-— - Hoa(r(l)
B (T(l),rgrlzl)r)le}sz k(T() T(m))

<1-Cexp <-%) (83)

Thus, ifT(k) = v/In(k + u)

iop_ Kk]>CZ <k+u>m.

k=ko

The ergodic coefficienf(K) diverges ify > L, implying the
weak ergodicity of r(k); k£ € N}. Now, using Lemma 4.3 and
[8, Theorem V.4.3, p. 160] (see also [14, Theorem 4.2, p. 759]),
we obtain that{r(k); k¥ € N} is strongly ergodic and (30) is
thus satisfied.

To prove the result in (31), we make use of the following
which implies a weak convergence result

I=CE
-/ \ [T ) (utr) - T el |
/ |pk — f r|y)| fl/T(k+1)(z|y r)drdz

< / |k (r) — T=(rly)]| dr- (84)

frrr(z)] de

From (30) and (84), (31) immediately follows.
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G. Proof of Lemma 5.1 Hence, a finiteks exists such that, for any > ks,
Our algorithm is nothing but a Metropolis—Hastings al-  £x(r(1); 7(m)) > Cexp(—(L/T(k))). Now, choosing

gorithm of invariant distributionf1/7®*)(7) and proposal ko = max(k2, ks), the result follows.

distribution K3 (r(1); #(m)) [23]. The simple expression

of the acceptance ratio (38) follows from the fact thdt Proof of Theorem 5.1

K (r(l); 7(m)) is in detailed balance witlf(r(m)|y); i.e., The first part is similar to the proof of Theorem 4.1 and is
fr@)Kn(r(l); 7(m)) = f(r(m)Kn(r(m); r(1)). thus omitted.

Equation (43) is obtained from the following result by taking
H. Proof of Lemma 5.4 the limit ask goes to infinity

We denoteV as the set of global minima ¢i{+(m)|y) on R.

e For all 7(I) € R\N, r(m) € R exists such that | )| d
flrm)ly) < f(rDy). Afinite k; exists such that, for Pre+1 | ax
anyk > ki, 1/T(k) > 1, and for anyr(m) € R\{r(])}, _
we have I/‘/fﬂ% pr(r) — flzly, r) f>(r) dr| dz
Kn(r(1); r(m) = [ sty )| [ o) - Ty do
= ap(r(l), r(m)) Kn(r(l); r(m)) o
Fr(m)ly 1/T(k)—1 S/|pk( f |dr/f:c|y,
- {6“%% SEorn
r(m)e T )
< |pk(r) — f°°(r)| dr.
Kn(r(l); r(m /
r(rn)ER\{'r(l)} }( ( ) ( ))
C exp < )
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