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Stochastic Sampling Algorithms for State Estimation
of Jump Markov Linear Systems

Arnaud Doucet, Andrew Logothetis, and Vikram Krishnamurthy

Abstract—Jump Markov linear systems are linear systems
whose parameters evolve with time according to a finite-state
Markov chain. Given a set of observations, our aim is to estimate
the states of the finite-state Markov chain and the continuous
(in space) states of the linear system. The computational cost in
computing conditional mean or maximuma posteriori(MAP) state
estimates of the Markov chain or the state of the jump Markov
linear system grows exponentially in the number of observations.

In this paper, we present three globally convergent algorithms
based on stochastic sampling methods for state estimation of jump
Markov linear systems. The cost per iteration is linear in the data
length. The first proposed algorithm is a data augmentation (DA)
scheme that yields conditional mean state estimates. The second
proposed scheme is a stochastic annealing (SA) version of DA that
computes the joint MAP sequence estimate of the finite and con-
tinuous states. Finally, a Metropolis–Hastings DA scheme based on
SA is designed to yield the MAP estimate of the finite-state Markov
chain is proposed. Convergence results of the three above-men-
tioned stochastic algorithms are obtained.

Computer simulations are carried out to evaluate the perfor-
mances of the proposed algorithms. The problem of estimating
a sparse signal developing from a neutron sensor based on a set
of noisy data from a neutron sensor and the problem of narrow-
band interference suppression in spread spectrum code-division
multiple-access (CDMA) systems are considered.

I. INTRODUCTION

A DISCRETE time jump Markov linear system can be mod-
eled as

(1)

(2)

where
discrete time;
unknown realization of a fi-
nite-state Markov chain with states
in ;
unknown state of the jump linear system;
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and uncorrelated Gaussian white noise se-
quences;
observation at time;
a known exogenous input sequence;

, ,
, ,
, and

time-varying matrices that evolve ac-
cording to the realization of the fi-
nite-state Markov chain .

For notational convenience, let ,

, and denote the se-
quence of measurements, the states of the jump Markov
linear system, and the states of the finite-state Markov chain,
respectively.

Jump Markov linear systems appear in several fields in
electrical engineering (see [12] and references therein), in-
cluding control (e.g., hybrid systems, target tracking), signal
processing (e.g., blind channel equalization), communications
(e.g., interference suppression in mobile telephony), and other
areas, such as econometrics and biometrics. In these fields,
given the observations generated by the signal
model (1), (2), and assuming the parameters ,

, , , and
, are known, it is of interest

to compute the following state estimates:

• conditional mean state estimates ofand , namely,
and , for ;

• maximum a posteriori (MAP) sequence estimates
and defined as and

, where denotes the condi-
tional probability density (or mass) function.

Unfortunately, it is well known that exact computation
of these estimates involves a prohibitive computational cost
of order , where denotes the number of measurements
and corresponds to all possible realizations of the finite
Markov chain [25]. Thus, it is necessary to consider in practice
suboptimal estimation algorithms. A variety of such suboptimal
algorithms have been proposed; see, for example, [7], [24],
and [25]. In particular, [25] presents a truncated (approximate)
maximum likelihood procedure for parameter estimation
and a truncated approximation of the conditional mean state
estimates. The estimates are computed using a bank of Kalman
filters.

This paper presents three stochastic iterative algorithms for
computing conditional mean state estimates and MAP estimates
of the Markov state and the state of the jump Markov linear
system in (1) and (2). These algorithms are based on the data
augmentation (DA) algorithm (proposed by Tanner and Wong
[21], [22]) and two originally proposed hybrid DA/stochastic
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annealing (SA) algorithms. The algorithms have a computa-
tional cost of per iteration.

Although the DA algorithm proposed in [21] and [22] is a
well-known algorithm in the statistical literature, it is rarely
mentioned or applied in the engineering literature. The DA
algorithm is one of the simplest Markov chain Monte Carlo
(MCMC) algorithms [21], [22]. MCMC are powerful stochastic
algorithms used to sample from complex multivariate proba-
bility distributions. These methods are well known in image
processing because they have been introduced by Geman and
Geman in 1984 [6] to simulate from the Gibbs distribution
of a Markov random field. Their introduction in the early
1990’s has revolutionized the field of applied statistics. The
key idea behind MCMC methodology consists of sampling
from a “target” complex probability distribution by simulating
a Markov chain that admits as its invariant (or stationary)
distribution, the “target” distribution. In this paper, we show
how the DA algorithm can be used to estimate conditional
mean estimates and for
jump Markov linear systems. Then, we propose two new hybrid
SA/DA algorithms that yield MAP sequence estimates.

In recent work [12], we have used the expectation maximiza-
tion algorithm to iteratively compute MAP sequence estimates
for jump Markov linear systems. Although these EM algorithms
in some cases perform remarkably well, convergence to a local
stationary point (maximum, minimum, or saddle point) is a
major drawback. A significant advantage of the SA methods
proposed in this paper is that they are asymptotically globally
convergent.

Main Results: We now list the main results and organization
of this paper:

• Section II formally presents the signal model and estima-
tion objectives.

• In Section III, we use the DA algorithm, proposed by [21],
together with the law of large numbers [20], to compute
conditional mean state estimates of the finite-state Markov
chain and the state of jump Markov linear system. In The-
orem 3.1, we prove the convergence of the DA applied to
the state-space model (1) and (2).

• In Section IV, a new SA algorithm is derived based on
the DA algorithm. The algorithm yields joint MAP state
sequence estimates of the finite-state Markov chain and
the state of jump Markov linear system. Sufficient condi-
tions for the convergence of the proposed algorithm to the
global maxima are presented in Theorem 4.1.

• In Section V, a Metropolis–Hastings SA algorithm, based
on DA, which yields the MAP state sequence estimate
of the Markov chain, is derived. Sufficient conditions for
the convergence of the proposed algorithm to the global
maxima are presented in Theorem 5.1.

• In Section VI, the proposed algorithms are applied to two
practical examples: 1) estimation of sparse signals and 2)
narrowband interference suppression in spread spectrum
code-division multiple access (CDMA) mobile communi-
cation systems. As detailed in Section VI, several recent
papers in the communications and adaptive signal pro-
cessing literature have studied these problems and devel-

oped recursive (on-line) state and parameter estimation al-
gorithms. Our objective is to illustrate the use of stochastic
sampling algorithms in these applications.

II. PROBLEM FORMULATION

In this section, we present the signal model and outline the
estimation objectives.

A. Signal Model

Let denote discrete time. Let denote a
discrete-time, time-homogeneous,-state, first-order Markov
chain with transition probabilities

(3)

Denote the initial probability distribution as ,
for , such that and .
The transition probability matrix , is an matrix, with
elements satisfying and , for each .

possible realizations of the Markov chainexist. The set
of all realizations of is denoted as .
The realizations for are ordered arbitrarily
to simplify notation.

Let denote the set of realizations of the finite Markov chain
of non-null prior probability; that is

such that (4)

Notation: We will use to denote the dimension of an ar-
bitrary vector . We use instead of
for , where . We do not dis-
tinguish between random variables and their realizations.
will be used to represent distributions of both discrete and con-
tinuous random variables. Superscripts denote exponentiation,
e.g., . Superscripts enclosed in brackets, e.g., de-
notes iteration number. The index denotes iteration number
of the various iterative algorithms.

Consider the jump Markov linear system of (1) and (2),
where is the system state, is the ob-
servation at time , is a known deterministic
input, is a zero-mean white Gaussian noise se-
quence with identity covariance , and

,1 , is a zero-mean white Gaussian noise
sequence with identity covariance and

. and are functions of the
Markov chain state , i.e.,

, and they
evolve according to the realization of the finite-state Markov

1This assumption is not restrictive as in numerous applications when
B(i)B (i) is singular. The jump Markov linear system can be transformed to
a new system where the noise covariance matrix is positive definite. See [10,
Sec. 3.9] or [5] for details.
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chain . We assume and let and be
mutually independent for all.

Assumption 2.1:The model parameters are assumed
known where

(5)

Remark 2.1:The assumption that is normally distributed
is easily relaxed to finite Gaussian mixture distributions. Be-
cause any regular distribution can be approximated arbitrarily
closely by a finite mixture of Gaussians, this assumption is not
really restrictive. The procedure for dealing with finite-mixture
Gaussian distributed is as follows. Suppose satisfies

, where and . Intro-
duce the indicator variable such that

. Then, conditioned upon , the
system (1) and (2) is linear Gaussian, so we can use the algo-
rithms presented below.

Remark: In many applications, the model parameters are
known. For example, in spread spectrum communications sys-
tems (see Section VI-B) are knowna priori since they are
a function of the spreading code. In cases in which the model
parameters are not known, several algorithms for estimating
these parameters are available; see, for example, [25]. Such
models are also considered under a dynamic linear model
framework in [26]. It is also possible in a Bayesian framework
to use algorithms presented in this paper to jointly compute
state and parameter estimates. An important issue beyond the
scope of this paper is the identifiability of the model parameters
of a jump Markov linear system.

B. Estimation Objectives

Given the observations , assuming the model parame-
ters are exactly known, all Bayesian inference for jump
Markov linear systems relies on the joint posterior distribution

. In this paper, the following three Bayesian
estimation problems are considered:

1) Conditional mean estimates ofand : compute optimal
(in a mean-square sense) estimates ofand given by

and .
2) MAP estimate of and : compute optimal (in a MAP

sense) state estimates ofand by maximizing the joint
posterior distribution, i.e.,

(6)

3) MAP estimate of : compute optimal (in a MAP sense)
state estimates ofby maximizing the marginal posterior
distribution, i.e.,

(7)

III. CONDITIONAL MEAN ESTIMATION

The aim of this section is to compute the conditional mean
estimates and for the signal model (1), (2).

These estimates are “theoretically” obtained by integration
with respect to the joint posterior distribution .
If we were able to obtain (for large ) i.i.d. samples

according to the distribution
, then using the Law of Large Numbers [20],

conditional mean estimates can be computed by averaging, thus
solving the state estimation problem. Unfortunately, obtaining
such i.i.d. samples from the posterior distribution is
not straightforward. Thus, alternative sampling schemes must
be investigated.

A. Data Augmentation

In this paper, we compute samples from the posterior distri-
bution using MCMC methods, and in particular, we
use DA algorithm. The samples are then used to compute condi-
tional mean estimates of the statesand . The proposed condi-
tional mean state estimator via the data augmentation algorithm
is summarized in Fig. 1.

Remark 3.1:Theoretically speaking, the DA algorithm does
not have a stopping criterion. However, a reasonable choice (see,
for example, [4]) is to terminate the algorithm when

is less than some specified tolerance limit.
Sampling Schemes:The DA algorithm presented in Fig. 1

requires us to compute samples from and
. One possible scheme is the efficient forward

filtering–backward sampling recursions introduced by Carter
and Kohn [2] and independently by Früwirth-Schnatter [5].
These recursions are given in the Appendix. An alternative
scheme, not investigated here, for sampling from posterior
densities of Gaussian state space systems is the simulation
smoother of De Jong and Shephard [3].

B. Convergence of Data Augmentation

The DA algorithm described in Section III-A has been used in
[2] for identification of linear state-space models with errors that
are a mixture of normals and coefficients that can switch with
time. We generalize the model in [2] to our jump Markov linear
system given by (1) and (2). Our main contribution here is to
prove that sampling via the DA algorithm converges uniformly
geometrically fast to yield samples that mimic samples from the
desired (or target) distribution. As a consequence, the Law of
Large Numbers holds, which states that sample averaging will
converge almost surely (a.s.) to the expected value.

From construction [see (8) and (9)], the process
is a homogeneous Markov chain

with transition kernel given by

(10)

The following theorem (proven in Appendix II-A) and corol-
lary are the main results of this section.

Theorem 3.1—Uniform Geometric Ergodicity:A constant
, exists,

such that, for any initial distribution of , the
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Fig. 1. Algorithm I: Conditional mean state estimator via the data augmentation algorithm.

state distribution of the Markov chain at iteration
, denoted as , satisfies

(11)

Thus, the sequence obtained from the
DA sampling scheme is a Markov chain with invariant distribu-
tion and is ergodic. Ergodicity implies convergence
of ergodic (sample) averages [23, Th. 3, p. 1717]. Uniform er-
godicity implies that the Law of Large Numbers and a central
limit theorem also hold [4], [18], and [23, Th. 5, p. 1717]).

Corollary 3.1—Convergence of Ergodic Averages: For every
real-valued function , let us consider
the time average of the first outputs of the Markov chain

. If
, then, for any initial distribution,

(12)

If , then a constant exists
such that the distribution of

(13)

converges in distribution to a zero-mean normal distribution of
variance .

Remark 3.2:Theorem 3.1 states that the sample
generated for large via the DA al-

gorithm, will mimic a sample from the posterior distribution
.

Remark 3.3: in (11) of Theorem 3.1, is an upper
bound on the rate of convergence of the DA algorithm. Because

is not known, we cannota priori choose the number of
iterations required for the DA algorithm to converge to a
desired level of accuracy.

Computing Conditional Mean Estimates:Corollary 3.1 can
straightforwardly be applied to compute the conditional mean
estimates of and by the ergodic averages and 2 :

(14)

(15)

where and are known as theempirical estimators(see [11]).
Conditional mean estimates may also be computed via the

mixture estimators(see [11]), i.e.,

(16)

(17)

The empirical estimator and the mixture estimator will almost
surely converge to the true condition mean estimates. The ques-
tion is to determine which of the two estimators yields smaller
asymptotic variances.

The following proposition shows that the mixture estimator
yields smaller asymptotic variances.

Proposition 3.1: When the Markov chain
is in its stationary regime, then the estimates

2rrr(N) and r̂rr(N) defined subsequently in (16), denote the average overN

iterations. They are not to be confused withrrr(�) defined in (4).
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Fig. 2. Algorithm II: SA–DA algorithm for computing joint MAP sequence estimates of the finite-state Markov chainrrr and the state of the jump linear systemxxx.

and
converge a.s. to and , respectively, and satisfy

(18)

(19)

Proof: The proof can be found in [11, Th. 4.1].
In our case, and can be easily com-

puted using, respectively, a Kalman smoother [1] and the for-
ward–backward recursions of a hidden Markov model smoother
[17].

IV. M AXIMUM A POSTERIORISTATE SEQUENCEESTIMATION

OF AND

A. Simulated Annealing Data Augmentation Scheme

SA is a numerical optimization technique that allows us
to solve combinatorial optimization problems [14]. It is a
stochastic algorithm, which will converge to globally optimal
solutions, by randomly generating a sequence of possible
solutions.

In this section, we introduce an algorithm for obtaining op-
timal, in the MAP sense, joint sequence estimates of the states
and defined in (6). We propose an SA version of the DA algo-
rithm; i.e., we build a nonhomogeneous version of the DA algo-
rithm dependent on a deterministic so-called cooling schedule

, verifying

and (20)

The proposed algorithm is summarized in Fig. 2.

To implement this algorithm, we sample from
and using the efficient

forward filtering–backward sampling recursions. The desired
densities in (21) and (22) are defined as follows:

(23)

(24)

where denotes proportionality.

B. Convergence of the Algorithm

Here, we obtain sufficient conditions on to ensure con-
vergence of the Markov chain to the set
of global maxima. First, we note that obtaining MAP estimates
of and is equivalent to solve a NP (nondeterministic poly-
nomial) hard combinatorial optimization problem. Indeed (6) is
equivalent to

(25)

Note, is a -dimensional Gaussian dis-
tribution of mean and covariance , with a strictly positive
determinant . Thus, is obtained as

(26)

We denote the set of these global maxima. Once, say,
, has been obtained, then and is obtained

via a Kalman smoother [1].
Our proof of convergence relies on the fact that the stochastic

process is a inhomogeneous finite-state space
Markov chain that converges asymptotically toward the set
of global maxima . From the definition of our algorithm,
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is an inhomogeneous Markov chain with
transition kernel at time given by

(27)

Thus, is an inhomogeneous finite-state space
Markov chain of transition kernel

(28)

The main result in this section is given by the following the-
orem, which is proven in Appendix II-F.

Theorem 4.1:If satisfies

(29)

with , where is defined in (81) and , then the
Markov chain is strongly ergodic. For any initial
distribution, the distribution of satisfies

(30)

where is defined in (32). Furthermore, and the Markov
chain the distribution of satisfies

(31)

where .
The proof of Theorem 4.1 involves the following four

lemmas.
Lemma 4.1: admits

as its invariant distribution, where
. Thus, the marginal transi-

tion kernel admits
as its invariant distribution.

Proof: See Appendix II-B.
Lemma 4.2:The sequence of invariant distributions

converges, as goes to infinity, to a distribu-
tion localized on the set

(32)

where if and otherwise.
Proof: See Appendix II-C.

Lemma 4.3:The sequence of invariant discrete distributions
satisfies

(33)

Proof: See Appendix II-D.
Lemma 4.4: exists such that the sequence

of transitions kernels of the inhomogeneous fi-
nite-state–space Markov chain satisfies
for any and

(34)

where and are some constants
independent of .

Proof: See Appendix II-E.

V. MAXIMUM A POSTERIORISTATE SEQUENCEESTIMATE OF

A. Metropolis–Hastings/Data Augmentation Simulated
Annealing Scheme

In this section, we present an SA algorithm based on DA for
obtaining the MAP state sequence estimate of the finite Markov
chain defined in (7). We build a nonhomogeneous Markov
chain whose transition kernel at iterationdepends on a cooling
schedule , verifying

and (35)

The proposed algorithm is summarized in Fig. 3.
To implement the proposed algorithm, we sample from

and using the forward fil-
tering–backward sampling recursions. To evaluate the accep-
tance ratio (38), we need to evaluate up to a normalizing
constant. We have . The first term is the
prior distribution of the realization of the finite-state Markov
chain. The second term is the likelihood that is evaluated using
the weighted sequence of innovations given by the Kalman
filter [1]. Because the Kalman filter is used to compute samples
from , the additional computational cost of evaluating

is minimal.

B. Convergence of the Algorithm

We obtain sufficient conditions on to ensure conver-
gence of the algorithm toward the set of global
maxima of following the approach of Mitraet al. [14].
From the definition of the algorithm, is an
inhomogeneous finite-state Markov chain of transition kernels

(39)



194 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 1, JANUARY 2000

Fig. 3. Algorithm III: Metropolis–Hastings/DA–SA algorithm for computing the MAP estimate of the finite-state Markov chainrrr.

where
Kronecker delta;
associated (homogeneous) DA Markov chain kernel
defined as follows:

(40)

The following theorem is the main result of this section and is
proven in Appendix II-I.

Theorem 5.1:If satisfies

(41)

with , where is defined in (85), and , then the
Markov chain is strongly ergodic. For any initial
distribution, the distribution of satisfies

(42)

where is defined in (45). Furthermore, the distribution
of satisfies

(43)

where .
The proof of Theorem 5.1 involves the following four

lemmas.

Lemma 5.1:For any , admits
as its invariant distribution, where

(44)

Proof: See Appendix II-G.
We obtain straightforwardly the following lemmas; see, for

example, [14] and [27].
Lemma 5.2:The sequence of invariant distributions

[defined in (44)] converges, as goes to infinity,
toward the set of global maxima of ; that is,

(45)

where if and other-
wise. denotes the cardinality of .

Lemma 5.3:The sequence of invariant discrete distributions
satisfies

Lemma 5.4: exists such that, for any and for any
, the sequence of transitions kernelsof

the inhomogeneous finite-state–space Markov chain
satisfies
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where and are some constants
independent of .

Proof: See Appendix II-H.

VI. A PPLICATIONS AND NUMERICAL EXAMPLES

Theoretically, the DA and SA based on DA algorithms re-
quire an infinite number of iterations to give the exact values of
conditional mean estimates and of global maxima, respectively.

In all of our computer simulations below, the first iter-
ations of the DA algorithm are discarded. The first itera-
tions are assumed to correspond to the so-called “burn in pe-
riod” (or the transient period prior to the convergence) of the
Markov chain.3 As in [4], the DA algorithm is iterated until the
desired computed values of the ergodic averages are no longer
modified.

As shown in Sections IV and V, the SA algorithms require
logarithmic cooling schedules. Such schedules are too slow to
be implemented in practice. As is usually done in practice [6],
[14], [27], we have implemented exponential and polynomial
cooling schedules; i.e., with and

. Our simulations (not presented here) show that
little difference exists between polynomial and exponential
cooling schedules. Therefore, in the simulations presented
below, only exponential cooling schedules are used.

Computer simulations were carried out to evaluate the per-
formances of our three algorithms. Section VI-A considers the
problem of estimating a sparse signal developing from a neu-
tron sensor based on a set of noisy data. Section VI-B considers
the problem of narrowband interference suppression in spread
spectrum CDMA communication systems.

A. Estimation of a Sparse Signal

In several problems related to geophysics, nuclear science, or
speech processing, the signal of interest can be modeled as an
autoregressive process excited by a noise that admits as mar-
ginal distribution a mixture of Gaussians [13]. We consider the
following model:

(46)

(47)

where is the dynamic (mixture) noise process

is often assumed to be a white noise sequence, but it could
be also modeled as a first-order Markov sequence to take into
account the dead time of the sensor. This model (46) and (47)
can be reexpressed as the jump Markov linear system (1) and
(2), where the state vector is and for all ,

3Methods for determining the burn-in periodN are beyond the scope of this
paper.

Fig. 4. Typical realization of the data: (—) true signal and(� � �) noisy observed
signal.

Fig. 5. True (×) and estimated (o) dynamic noise sequence. The estimates are
the conditional mean estimates computed via Algorithm 1.

and with . In the following simulations,
we set the following parameters: , Markov noise:

, , , (so is in its stationary
regime), , , , , and

. It models a neutron sensor in a noisy environment.
In Fig. 4, the signal and its noisy observations are dis-

played. We have chosen to illustrate the performance of our
three algorithms by comparing the estimates of the dynamic
noise , which are directly obtained from the estimates of the
states. The closer the estimate of the dynamic noise to the true
dynamic noise, the better the performance of the algorithm [13].
In Fig. 5, we display the conditional mean estimate of the dy-
namic noise , computed using Algorithm 1. In Fig. 6,
we present , where is computed using Algorithm
2. Finally, in Fig. 7, we present , where is the MAP
estimate given by Algorithm 3. In all cases, the algorithms were
initialized randomly.

Algorithms 1 and 3 give satisfactory results, because the
signal-to-noise ratio (SNR) is quite low. Algorithm 2 under-
estimates the number of impulses in the signal. We must not
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Fig. 6. True (×) and estimated (o) dynamic noise sequence. The estimates are
given by f~v jyyy; rrrg, whererrr is computed using Algorithm 2.

Fig. 7. True (×) and estimated (o) dynamic noise sequence. The estimates are
given by f~v jyyy; rrrg, whererrr is computed using Algorithm 3.

be surprised by this result. Other works using these criteria in
the specific field of sparse signal deconvolution report similar
results [13] and adopt the criterion that we maximize using
Algorithm 3.

In this example, we discard the first samples simu-
lated by the DA algorithm. Then, we take into account the 150
following iterations of the DA algorithm. For the SA algorithms,
we implement an exponential cooling schedule
with and , and we use 150 iterations.

B. Narrowband Interference Suppression in Spread Spectrum
CDMA

CDMA spread-spectrum signaling is among the most
promising multiplexing technologies for cellular telecom-
munications services, such as personal telecommunications,
mobile telephony, and indoor wireless networks. The explosive
growth in cellular telephony, in conjunction with emerging new
applications, has inspired significant interest in interference
suppression techniques for enhancing the performance of

CDMA systems. CDMA provides a means of separating the
signals of multiple users transmitting simultaneously and
occupying the same radio frequency (RF) bandwidth. It is
well known that system performance is greatly enhanced if
the receiver employs some means of suppressing narrowband
interference before signal “despreading” [28].

Numerous recent papers study the problem of narrowband
interference suppression in CDMA systems; see [15], [16], and
[29], and the references therein. Our aim here is to examine the
use of the iterative stochastic sampling algorithms proposed in
the previous sections for narrowband interference suppression.
Note, however, that realistic algorithms would be recursive (on-
line).

In the papers [15], [16], [29], the following signal model is
used: the sampled received signalconsists of the spread spec-
trum signal from users, the narrowband interference, and
observation noise , that is

(48)

where is a zero-mean white Gaussian process of variance
1. As in [15], [16], and [29], the narrowband interference
is modeled as a second-order autoregressive process with both
poles at ; i.e.,

(49)

where is a zero-mean white Gaussian process of variance 1.
The power of the received spread spectrum signal for each user
was held constant with amplitudes ±1, randomly selected, and

was binomially distributed.
The CDMA spread spectrum model (48) and (49) can be re-

expressed as the jump Markov model of (1) and (2), where the
state vector denotes the state of the narrowband
interference at times and , for all and

(50)

and , . In the numerical examples below,
we considered a single user, with and we compared
the performance of the three proposed algorithms for increased
observation noise. We compute the conditional mean estimate
and the MAP estimates of the discrete sequence. In this case,
the joint MAP estimate given by Algorithm 2 and the MAP es-
timate given by Algorithm 3 are theoretically equal. We present
the bit error rate for these algorithms. To evaluate the bit error
rate from the conditional mean estimate , we set
if and otherwise.

The algorithms were run on 400 points, and averaged over
100 independent runs. In all cases, the algorithms were initial-
ized randomly.

This problem is statistically easier than the problem described
in Section VI-A. In this example, we discard the first
samples simulated by the DA algorithm. Then, taking into ac-
count the 50 following iterations of the DA algorithm has ap-
peared to be sufficient. For the SA algorithms, we implement
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TABLE I
BIT ERROR RATE (IN PERCENT) OF THE THREE ALGORITHMS FOR

INTERFERENCESUPPRESION INCDMA SYSTEMS

an exponential cooling schedule with and
, and we use 50 iterations.

Our numerical examples presented here and other simulations
(not presented here) suggest that Algorithm 1 performs the best
for the CDMA narrowband interference suppression problem.
The results obtained are better than those obtained using the EM
algorithm [12].

VII. CONCLUSION

In this paper, we have presented three iterative stochastic sam-
pling algorithms to compute conditional mean estimates and
MAP state estimates of jump Markov linear models. The com-
putational cost of an iteration of each algorithm is linear in the
data length. Convergence results for these algorithms toward re-
quired estimates have been obtained. A key property of the two
algorithms for MAP state estimation is that they are asymptot-
ically globally convergent. This property is in contrast to gra-
dient type algorithms, such as the EM algorithm [12], which
suffer from convergence to stationary points. Two applications
(in sparse signal detection/estimation and narrowband interfer-
ence suppression in CDMA communication systems) were pre-
sented to show their performances.

Future work will focus on adaptive recursive versions of the
proposed algorithms in narrowband interference suppression,
and multiuser detection in CDMA systems.

APPENDIX I
FORWARD FILTERING–BACKWARD SAMPLING RECURSIONS

A. Sampling from

We have the following decomposition

(51)

where , , and .
Given , is a Gaussian distribution. This
decomposition suggests the following algorithm [2].

1) Kalman Filter—Forward Filtering: Set and
. Then, for , compute using the

Kalman filter equations

(52)

(53)

(54)

(55)

(56)

(57)

and store for , ,
,

, and
.

2) Backward Sampling: For , sample from
, where , , and for

(58)

(59)

B. Sampling from

can be decomposed as follows:

(60)

where , . Given ,
is a discrete distribution. It suggests the

following algorithm to sample from .

1) Optimal Filter—Forward Filtering: For ,
compute the optimal filter [17]. For any, evaluate

(61)

(62)

and store for and for
and .

2) Backward Sampling: Sample from . Then,
for , sample from ,
where for

(63)
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APPENDIX II
PROOF OFTHEOREMS ANDLEMMAS

A. Proof of Theorem 3.1

The marginal sequence is a Markov chain with
transition kernel given by

(64)

By construction [21], [22], admits
as its invariant distribution. Thus,

admits as its invariant distribution. From the model
assumptions given in Section II-A and (4) in particular, the
posterior distribution is strictly positive on and null
on . Moreover, we have for any

and for any
; i.e., at , the finite-state

Markov chain enters in and never leaves this set. Thus,
is irreducible and aperiodic on. Hence, it is

uniformly ergodic. From [19, pp. 401–402],
satisfies

[and if ], where
satisfies

Other bounds exist in the literature. Applying theduality prin-
ciple of Robert and Diebolt [4], [18], [23], we now show that

(65)

Thus, the property of uniform geometric convergence of the
Markov chain is “transferred” to the continuous
state-space Markov chain . To prove (65), first
note that

(66)

Thus,

(67)

Using (66), we now prove the uniform ergodicity of the Markov
chain

(68)

B. Proof of Lemma 4.1

C. Proof of Lemma 4.2

See (69) at the bottom of the next page, where .
If , exists such that

(70)

and thus

(71)

If , then

(72)

D. Proof of Lemma 4.3

The proof of this result follows from arguments similar to
those of Mitraet al. [14, Proposition 3.3, pp. 755–756]. For
any , by differentiating with respect to the function

, we obtain

(73)
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where

(74)

From this result, it follows that, for any and for

(75)

because each term on the right-hand side of (73) is either zero
or negative; thus, . From (20), (75) im-
mediately follows.

Let , for , denote the set of such that
; that is

(76)

For

(77)

Following the same arguments as in [14], we make the fol-
lowing observations: the first term on the right-hand side of (77)
is monotonically increasing with decreasing, and the second
term on the right-hand side of (77) is monotonically decreasing
with decreasing . Furthermore, in the limit , the first
term tends toward , and the second term tends toward zero.

Thus, for , . The set being
finite, a exists such that, for any

if
(78)

Then, following Mitraet al. [14, Proposition 5.1, pp. 762–763],
from (75) and (78) and for , we have

Hence

(79)

The result (33) immediately follows.

E. Proof of Lemma 4.4

Using Bayes’s rule

exists such that, for any ,
; thus, the denominator of

the expression above can be bounded

(80)

(69)
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where is the cardinality of and

Thus

For any

We obtain

where . Define the following constants:

and

Then

Using (69), we have

Thus, with

and

(81)

we obtain the result.

F. Proof of Theorem 4.1

We first prove that is weakly ergodic ([8, Def-
inition V.1.1, p. 137], [14, Definition 4.4, p. 758]). The inho-
mogeneous Markov chain is weakly ergodic if

, where the ergodic coefficient
of any Markov transition kernel (stochastic matrix)on is
defined as

(82)

Using Lemma 4.4, the ergodic coefficient of is given by

(83)

Thus, if

The ergodic coefficient diverges if , implying the
weak ergodicity of . Now, using Lemma 4.3 and
[8, Theorem V.4.3, p. 160] (see also [14, Theorem 4.2, p. 759]),
we obtain that is strongly ergodic and (30) is
thus satisfied.

To prove the result in (31), we make use of the following
which implies a weak convergence result

(84)

From (30) and (84), (31) immediately follows.
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G. Proof of Lemma 5.1

Our algorithm is nothing but a Metropolis–Hastings al-
gorithm of invariant distribution and proposal
distribution [23]. The simple expression
of the acceptance ratio (38) follows from the fact that

is in detailed balance with ; i.e.,
.

H. Proof of Lemma 5.4

We denote as the set of global minima of on .

• For all , exists such that
. A finite exists such that, for

any , , and for any ,
we have

where

(85)

and

• If ,

As increases, monotonically increases as

monotonically decreases. Thus, a finite
exists such that, for any ;

.
• If , then, for any , we have

and

Hence, a finite exists such that, for any ,
; . Now, choosing

, the result follows.

I. Proof of Theorem 5.1

The first part is similar to the proof of Theorem 4.1 and is
thus omitted.

Equation (43) is obtained from the following result by taking
the limit as goes to infinity
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