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In this paper, we propose an original approach to the solution of Fredholm equations of the
second kind. We interpret the standard Von Neumann expansion of the solution as an
expectation with respect to a probability distribution defined on a union of subspaces of
variable dimension. Based on this representation, it is possible to use trans-dimensional
Markov chain Monte Carlo (MCMC) methods such as Reversible Jump MCMC to approxi-
mate the solution numerically. This can be an attractive alternative to standard Sequential
Importance Sampling (SIS) methods routinely used in this context. To motivate our
approach, we sketch an application to value function estimation for a Markov decision pro-
cess. Two computational examples are also provided.
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1. Fredholm equations and Von Neumann’s Expansion

Fredholm equations of the second kind and their variants appear in many scientific fields including optimal control [1],
molecular population genetics [2] and physics [3]. Formally, we are interested in solving the integral equation
f ðx0Þ ¼
Z

E
Kðx0; x1Þf ðx1Þdx1 þ gðx0Þ; ð1Þ
where g : E! R and K : E� E! R are known and f : E! R is unknown.
Let us define K0(x, y) , 1, K1(x, y) , K(x, y) and
Knðx; yÞ,
Z

Kðx; zÞKn�1ðz; yÞdz:
If
 X1
n¼0

Z
E
jKnðx0; xnÞgðxnÞjdxn <1; ð2Þ
then the solution of the Fredholm equation (1) admits the following Von Neumann series representation; see [3,4] for
details:
f ðx0Þ ¼
Z

E
K x0; x1ð Þf x1ð Þdx1 þ gðx0Þ ¼

Z
E

K x0; x1ð Þ
Z

E
K x1; x2ð Þf x2ð Þdx2 þ gðx1Þ

� �
dx1 þ gðx0Þ

¼
Z

E

Z
E

K x0; x1ð ÞK x1; x2ð Þf x2ð Þdx1dx2 þ
Z

E
K x0; x1ð Þg x1ð Þdyþ gðx0Þ;
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and, by iterating, one obtains
f ðx0Þ ¼ gðx0Þ þ
X1
n¼1

Z
En

Yn

k¼1

Kðxk�1; xkÞ
 !

gðxnÞdx1:n; ð3Þ
where xi:j , (xi,. . ., xj) for i 6 j.
Introducing the notation
f0ðx0Þ ¼ gðx0Þ; ð4Þ
and, for n P 1,
fnðx0:nÞ ¼ gðxnÞ
Yn

k¼1

Kðxk�1; xkÞ; ð5Þ
it is possible to rewrite (3) as
f ðx0Þ ¼ f0ðx0Þ þ
X1
n¼1

Z
En

fnðx0:nÞdx1:n: ð6Þ
We will address two problems in this paper: how to estimate the function f(x0) over the set E and how to estimate this func-
tion point-wise.

There are few scenarios in which a Fredholm equation of the second kind admits a closed-form analytic solution. A great
deal of effort has been expended in the development of numerical techniques for the approximate solution of such systems.
These fall into two broad categories: deterministic techniques and Monte Carlo techniques. Deterministic techniques typi-
cally depend upon quadrature or explicitly obtaining a finite-dimensional representation of the system (by discretisation or
projection onto a suitable basis, for example) and then solving that system using numerical techniques. Although good per-
formance can be obtained by these methods, they typically rely upon obtaining a good finite dimensional characterisation of
the solution. This remains an active area of research, see [5,6] and references within. Finding such a representation is some-
what problem-specific and is unlikely to be practical for problems in high dimensions or in which the support of the function
of interest is not compact. For this reason, we concentrate on Monte Carlo approaches in the remainder of this paper.

2. Monte Carlo methods to solve Fredholm equations

Computing (3) is challenging as it involves an infinite sum of integrals of increasing dimension. Monte Carlo methods pro-
vide a mechanism for dealing with such integrals. A sequential importance sampling strategy arises as a natural approach to
this problem and that is the approach which has been taken most often in the literature. Section 2.1 summarises this ap-
proach and provides a path-space interpretation of the importance sampling which motivates the development of a novel
approach in Section 2.2.

2.1. Sequential Importance Sampling

Section 2.1.1 presents the algorithm most commonly presented in the literature; Section 2.1.2 sketches some techniques
for reducing the variance of the estimator provided by this algorithm and a path-space interpretation illustrating the unbi-
asedness of these techniques is given in Section 2.1.3. This interpretation leads naturally to a different approach to the prob-
lem which is summarised in the next section.

2.1.1. Algorithm
The use of Monte Carlo methods to solve problems of this type can be traced back 50 years. The standard approach con-

sists of using Sequential Importance Sampling (SIS) to numerically approximate (3); see for example [3,4]. Consider a Markov
chain with initial probability distribution/density l(x) on E and a transition kernel M(x, y) which gives the probability or
probability density of moving to state y when the current state is x. We select l and M such that l(x) > 0 over E and
M(x, y) > 0 if K(x, y) – 0. Moreover, M is chosen to have an absorbing/cemetery state, say � R E, such that M(x, {�}) = Pd for
any x 2 E.

The algorithm which approximates the function f proceeds as follows:

� Simulate N independent Markov chain paths fXðiÞ
0:kðiÞþ1

gN
i¼1 until absorption (i.e. XðiÞ

kðiÞþ1
¼ y).

� Calculate the associated importance weights
W1 XðiÞ
0:kðiÞ

� �
¼

1
l XðiÞ0ð Þ

QkðiÞ
k¼1

K XðiÞ
k�1

; XðiÞ
kð Þ

M XðiÞ
k�1

; XðiÞ
kð Þ

 !
g XðiÞ

kðiÞ

� �
Pd

if kðiÞ P 1;

g XðiÞ0ð Þ
l XðiÞ0ð ÞPd

if kðiÞ ¼ 0:

8>>>><>>>>: ð7Þ
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� The empirical measure
f̂ ðx0Þ ¼
1
N

XN

i¼1

W1 XðiÞ
0:kðiÞ

� �
d x0 � XðiÞ0

� �
ð8Þ
is an unbiased Monte Carlo approximation of the function f (i.e. for any set A; E½
R

A f̂ ðx0Þdx0� ¼
R

A f ðx0Þdx0).

If the objective is the estimation of the function f(x0) at a given point say x0 = x, then, by simulating paths fXðiÞ
0:kðiÞþ1

gN
i¼1

starting from XðiÞ0 ¼ x according to M until absorption/death and using the importance weights
W2 XðiÞ
0:kðiÞ

� �
¼

QkðiÞ
k¼1

K XðiÞ
k�1

;XðiÞ
kð Þ

M XðiÞ
k�1

;XðiÞ
kð Þ

 !
g XðiÞ

kðiÞ

� �
Pd

if kðiÞ P 1;

gðxÞ
Pd

if kðiÞ ¼ 0;

8>>><>>>: ð9Þ
we obtain the following unbiased estimate of f(x)
f̂ ðxÞ ¼ 1
N

XN

i¼1

W2 x;XðiÞ
1:kðiÞ

� �
: ð10Þ
2.1.2. Variance reduction
The following technique applies to both of the algorithms introduced in the previous section. Notice that, as the proba-

bility of death at a given iteration is independent of the path sampled, it is possible to use all paths of length at least k to
estimate the k-fold integral over Ek. That is, the variance is potentially reduced and the estimator remains unbiased if we
replace (8) with:
~f ðx0Þ ¼
1
N

XN

i¼1

fW 1 XðiÞ
0:kðiÞ

� �
d x0 � XðiÞ0

� �
; ð11Þ
where
fW 1ðx0:kÞ ¼ Pd

Xk

i¼0

W1ðx0:iÞ: ð12Þ
The same considerations lead us to the conclusion that we should replace (10) with:
~f ðxÞ ¼ 1
N

XN

i¼1

fW 2 x;XðiÞ
1:kðiÞ

� �
; ð13Þ
where
fW 2ðx0:kÞ ¼ Pd

Xk

i¼0

W2ðx0:iÞ: ð14Þ
Notice that this approach leads to a reduction in the weight associated with each path by a factor of Pd, but each sample now
contributes to k(i) (with expectation 1/Pd) trajectories rather than one. A related idea is used in the field of reinforcement
learning [7].

Another approach can be used to further reduce the variance of estimator (10). Here the first term in the Von Neumann
expansion is known deterministically: it is g(x). As such, there is no benefit in estimating it via Monte Carlo approximation: it
will reduce the variance if one instead estimates the difference f(x) � g(x) using these techniques. In order to do this, one
samples XðiÞ1 from the restriction of M to E: XðiÞ1 � Mðx0; �Þ Eð�Þ=ð1� PdÞ, and subsequent states from M as before until the chain
enters � at a time P2. This leads to a collection of samples XðiÞ

1:kðiÞ
with k(i) P 1, and allows the use of the modified estimator:
�f ðxÞ ¼ gðxÞ þ 1
N

XN

i¼1

W2 x;XðiÞ
1:kðiÞ

� �
; ð15Þ
where
W2 x;XðiÞ
1:kðiÞ

� �
¼ ð1� PdÞfW 2 x;XðiÞ

1:kðiÞ

� �
: ð16Þ
Note that both of these techniques can be employed simultaneously—and indeed, both should be used in any real implemen-
tation of these algorithms.
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2.1.3. Importance sampling on path space
To check the unbiasedness of the estimates (8) and (10), we use a slightly non-standard argument which will later prove

useful.
The first method to estimate the function f through (8) can be interpreted as an importance sampling technique using an

importance distribution p1(n,x0:n) defined on the path space F1,
U1

k¼0fkg � Ekþ1 where
p1 n; x0:nð Þ ¼ p1;np1;nðx0:nÞ; ð17Þ
with p1,n the probability that the simulated path is of length n + 1 (i.e. X0:n 2 En+1 and Xn+1 = �) and p1,n(x0:n) the probability or
probability density of a path conditional upon this path being of length n + 1. We have
p1;n ¼ Pr X0:n 2 Enþ1;Xnþ1 ¼ y
� �

¼ ð1� PdÞnPd; ð18Þ
and
p1;nðx0:nÞ ¼
lðx0Þ

Qn
k¼1Mðxk�1; xkÞ
ð1� PdÞn

: ð19Þ
Now using (6) and importance sampling, this yields
f ðx0Þ ¼
f0ðx0Þ

p1 0; x0ð Þp1 0; x0ð Þ þ
X1
n¼1

Z
En

fnðx0:nÞ
p1 n; x0:nð Þp1 n; x0:nð Þdx1:n ¼ Ep1

fk X0:kð Þ
p1 k;X0:kð Þ

� �
; ð20Þ
where the expectation is over both k and X1:k which are jointly distributed according to p1.
By sampling fkðiÞ;XðiÞ

0:kðiÞ
g (i = 1,. . .,N) according to p1, we can obtain the following approximation
f̂ ðx0Þ ¼
1
N

XN

i¼1

fkðiÞ XðiÞ
0:kðiÞ

� �
p1 kðiÞ;XðiÞ

0:kðiÞ

� � d XðiÞ0 � x0

� �
: ð21Þ
It is straightforward to check using (4), (5), (7), (17), (18) and (19) that
fkðiÞ XðiÞ
0:kðiÞ

� �
p1 kðiÞ;XðiÞ

0:kðiÞ

� � ¼W1 XðiÞ
0:kðiÞ

� �
;

thus establishing the unbiasedness of (8).
Similarly, the second method (that which estimates f(x) point-wise using (10)) corresponds to an importance sampling

method on the space F2,
U1

k¼0fkg � Ek. The importance distribution is given by p2(0,x1:0) , p2(0) = Pd and for n P 1
p2ðn; x1:nÞ ¼ p2;np2;nðx1:nÞ;
with
p2;n ¼ Pr X1:n 2 En;Xnþ1 ¼ yð Þ ¼ ð1� PdÞnPd; ð22Þ
and
p2;nðx1:nÞ ¼
M x; x1ð Þ

Qn
k¼2Mðxk�1; xkÞ

ð1� PdÞn
: ð23Þ
Using the importance sampling identity
f ðxÞ ¼ f0ðxÞ
p2 0ð Þp2ð0Þ þ

X1
n¼1

Z
En

fnðx; x1:nÞ
p2ðn; x1:nÞ

p2 n; x1:nð Þdx1:n ¼ Ep2

fkðx;X1::kÞ
p2ðk;X1:kÞ

� �
; ð24Þ
then sampling fkðiÞ;XðiÞ
1:kðiÞ
g (i = 1,. . .,N) according to p2, we obtain the following approximation
f̂ ðxÞ ¼ 1
N

XN

i¼1

fkðiÞ x;XðiÞ
1:kðiÞ

� �
p2 kðiÞ;XðiÞ

1:kðiÞ

� � : ð25Þ
Using (4), (5), (9), (22) and (23), we have
fn x;XðiÞ
1:kðiÞ

� �
p2 kðiÞ;XðiÞ

1:kðiÞ

� � ¼W2 x;XðiÞ
1:kðiÞ

� �
;

thus establishing the unbiasedness of (10).
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Essentially identical arguments hold for (11), (13) and (15) if one considers estimating the integral of each fn individually,
using all available samples and then takes a linear combination of these estimators.
2.1.4. Limitations of SIS
The estimates (21) and (25) will have a reasonable Monte Carlo variance if the variance of the absolute value of the

weights is small. However, this can be difficult to ensure using the standard SIS approach. First, it imposes an arbitrary geo-
metric distribution for the simulated paths length (18), (22) which might be inappropriate. Second, a product of terms
KðXðiÞk�1;X

ðiÞ
k Þ=MðXðiÞk�1;X

ðiÞ
k Þ appears in the expression of the weights if M – K 1; its variance typically increases approximately

exponentially fast with the length of the paths. Third, if we are interested in estimating the function on E using (21), the initial
distribution l appears in the denominator of (7). This distribution has to be selected very carefully to ensure that the variance of
the resulting weights will be finite. We note that in those rare instances in which one can obtain a reasonable approximation to
a time-reversal kernel associated with K one could imagine sampling the sequence backwards according to this kernel and using
a distributional approximation of g to initialise each chain.

The performance of SIS algorithms can usually be dramatically improved by introducing a resampling step [8,9]. The basic
idea is to monitor the variance of importance weights over time and, when it becomes too large, to discard those paths with
small weights and multiply those with high weights, while setting all of the weights to the same value in a principled way
which retains the expectation of the estimator.

However, even with an incorporated resampling step, SIS might still be inefficient in the integral-equation context as we
are interested in estimating a function which depends upon the beginning of each trajectory. Each time it is used, the resam-
pling step decreases the diversity in the number of paths left from time 0 to the current time index. In contrast to many other
applications in which SIS-type algorithms are employed, the present application is most interested in the initial rather than
final element of the path: due to this elimination of trajectories, resampling is an effective technique only when it is the final
location(s) that are of interest.
2.2. Importance sampling using trans-dimensional MCMC

In this paper, we propose an alternative approach in which we do not limit ourselves to simulating paths sequentially. The
importance sampling identity (20) is valid for any distribution p1 such that

R
En fnðx0:nÞdx1:n–0) p1;n > 0 and

fn(x0:n) – 0) p1,n(x0:n) – 0. Similarly (24) is valid when
R

En fnðx; x1:nÞdx1:n – 0) p2;n > 0 and fn(x,x1:n) – 0) p2,n(x1:n) – 0.
We now show how it is possible to construct efficient importance distributions which can be sampled from using trans-
dimensional MCMC methods.
2.2.1. Optimal importance distributions
When doing importance sampling in settings in which one is interested in approximating the probability distribution it-

self, rather than the expectation of a single function with respect to that distribution, it is usual to define the optimal pro-
posal as that which minimises the variance of the importance weights. As our ‘‘target measure” is signed, we consider
minimising the variance of the absolute value of the importance weights.

In detail, we propose selecting importance distributions p1(n, x0:n) [resp. p2(n, x1:n)] which minimize the variance of the
absolute value of the importance weights in (21) [resp. (25)] in order to reduce the Monte Carlo variance of these estimates.

Let us first consider case (21). We define p1(n, x0:n) on F1 as follows. The renormalized version of the absolute value of
fn(x0:n) is given by
1 In m
p1;nðx0:nÞ ¼ c�1
1;njfnðx0:nÞj; ð26Þ
with
c1;n ¼
Z

Enþ1
jfnðx0:nÞjdx0:n:
Note that if g(x) P 0 and K(x, y) P 0 for any x, y 2 E, then assumption (2) ensures that c1,n <1. However, in the more general
case, we need to make the additional assumption that c1,n <1 for any n. We also consider
p1;n ¼ c�1
1 c1;n; ð27Þ
where
c1 ¼
X1
n¼0

c1;n: ð28Þ
It is assumed here that c1 <1; this is true if (2) holds. In this case,
any applications K is not a Markov kernel and it is impossible to select M = K.
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f ðx0Þ ¼ c1;0 sgn ðf0ðx0ÞÞp1;0ðx0Þ þ
X1
n¼1

c1;n

Z
En

sgnðfnðx0:nÞÞp1;nðx0:nÞdx1:n

¼ c1 sgnðf0ðx0ÞÞp1ð0; x0Þ þ c1

X1
n¼1

Z
En

sgnðfnðx0:nÞÞp1 n; x0:nð Þdx1:n;
where
sgn uð Þ ¼
1 if u P 0;
�1 if u < 0:

�

Given N� 1 random samples fkðiÞ;XðiÞ

0:kðiÞ
g distributed according to p1, it is possible to approximate (3) by
f̂ ðx0Þ ¼
c1

N

XN

i¼1

sgn fkðiÞ XðiÞ
0:kðiÞ

� �� �
d x0 � XðiÞ0

� �
: ð29Þ
This is clearly the optimal importance distribution as the variance of the absolute values of the importance weights is equal
to zero. However, it is usually impossible to sample from p1(n, x0:n) exactly and to compute c1 in closed-form.

We claim that these two problems can be satisfactorily solved in most cases using trans-dimensional MCMC. To sample
from p1, which is a distribution defined on a union of subspaces of different dimensions, we can use any trans-dimensional
MCMC method such as the popular Reversible Jump MCMC (RJMCMC) algorithm [10,11]. This idea involves building an
F1-valued ergodic Markov chain fkðiÞ;XðiÞ

0:kðiÞ
giP1 which admits p1 as an invariant distribution. This is a generalization of the

standard Metropolis–Hastings algorithm. As i ?1, one obtains (correlated) samples distributed according to p1. Moreover,
under the standard and realistic assumption that
c1;0 ¼
Z

E
jgðxÞjdx
is known or can be estimated numerically we can obtain the following estimate of c1 namely
ĉ1 ¼
c1;0

p̂1;0
;

where bp1;0 is the proportion of random samples such that k(i) = 0; i.e.
p̂1;0 ¼
1
N

XN

i¼1

d0 kðiÞ
� �

: ð30Þ
Now consider the case (25). The importance distribution is defined on F 02 ¼
U1

k¼1fkg � Ek with
p2ðn; x1:nÞ ¼ p2;np2;nðx1:nÞ; ð31Þ
where
p2;nðx1:nÞ ¼ c�1
2;njfnðx; x1:nÞj;

c2;n ¼
Z

En
jfnðx; x1:nÞjdx1:n

ð32Þ
and
p2;n ¼ c�1
2 c2;n; ð33Þ

c2 ¼
X1
n¼1

c2;n: ð34Þ
It is assumed that c2 <1; this is true if (2) holds. In this case,
f ðxÞ ¼ f0ðxÞ þ
X1
n¼1

c2;n

Z
En

sgn fnðx; x1:nÞð Þpnðx1:nÞdx1:n ¼ f0ðxÞ þ c2

X1
n¼1

Z
En

sgn fnðx; x1:nÞð Þpðn; x1:nÞdx1:n:
Given N� 1 random samples fðkðiÞ;XðiÞ
1:kðiÞ
ÞgN

i¼1 distributed according to p2, it is possible to approximate (3) with
f̂ ðxÞ ¼ f0ðxÞ þ
c2

N

XN

i¼1

sgn fkðiÞ x;XðiÞ
1:kðiÞ

� �� �
: ð35Þ
To sample from p2, we can use trans-dimensional MCMC. To estimate c2, we use the fact that if
c2;1 ¼
Z

E
jf1 x; x1ð Þjdx1 ¼

Z
E
jgðx1ÞK x; x1ð Þjdx1
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is known or can be estimated numerically then we can obtain the following estimate of c2
m

m

m

ĉ2 ¼
c2;1

p̂2;1
;

where bp2;1 is the proportion of random samples such that k(i) = 1; i.e.
p̂2;1 ¼
1
N

XN

i¼1

d1 kðiÞ
� �

: ð36Þ
2.2.2. A Reversible Jump Markov chain Monte Carlo algorithm
For the sake of completeness, we describe here a simple RJMCMC algorithm to sample from p1 as defined by (26)–(28). A

very similar algorithm could be proposed to sample from p2 as defined by (31)–(34). More elaborate algorithms are dis-
cussed in [11].

This algorithm is based on update, birth and death moves. Each move is selected with probability ukðiÞ ; bkðiÞ or dkðiÞ , respec-
tively, with ukðiÞ þ bkðiÞ þ dkðiÞ ¼ 1, at iteration i. We also introduce two proposal distributions on E denoted by qu(x,�) and qb(�).
We denote the uniform distribution on A by UðAÞ.

Initialization.

� Set ðkð1Þ;Xð1Þ
0:kð1Þ
Þ randomly or deterministically.

Iteration i P 2.

� Sample U � U½0; 1�.
If U 6 ukði�1Þ

Update move
� Set k(i) = k(i�1), sample J � Uðf0;1; . . . ; kðiÞgÞ and X	J � quðX

ði�1Þ
J ; �Þ.

� With probability
in 1;
p1 kðiÞ; Xði�1Þ

0:J�1;X
	
J ;X

ði�1Þ
Jþ1:kðiÞ

� �� �
qu X	J ;X

ði�1Þ
J

� �
p1 kðiÞ;Xði�1Þ

0:kðiÞ

� �
qu Xði�1Þ

J ;X	J
� �

8<:
9=; ð37Þ
set XðiÞ
0:kðiÞ
¼ ðXði�1Þ

0:J�1;X
	
J ;X

ði�1Þ
Jþ1:kðiÞ

Þ, otherwise set XðiÞ
0:kðiÞ
¼ Xði�1Þ

0:kði�1Þ .
Else If U 6 ukði�1Þ þ bkði�1Þ ,
Birth move
� Sample J � Uf0;1; . . . ; kði�1Þ þ 1g, sample X	J � qbð�Þ.
� With probability
in 1;
p1 kði�1Þ þ 1; Xði�1Þ

0:J�1;X
	
J ;X

ði�1Þ
J:kði�1Þ

� �� �
dkði�1Þþ1

p1 kði�1Þ
;Xði�1Þ

0:kði�1Þ

� �
qbðX	J Þbkði�1Þ

8<:
9=; ð38Þ
set kðiÞ ¼ kði�1Þ þ 1;XðiÞ0:k ¼ ðX
ði�1Þ
0:J�1;X

	
J ;X

ði�1Þ
J:kði�1Þ Þ, otherwise set kðiÞ ¼ kði�1Þ

;XðiÞ
0:kðiÞ
¼ Xði�1Þ

0:kði�1Þ .
Else
Death move
� Sample J � Uf0;1; . . . ; kði�1Þg.
� With probability
in 1;
p1 kði�1Þ � 1; Xði�1Þ

0:J�1;X
ði�1Þ
Jþ1:kði�1Þ

� �� �
qbðX

ði�1Þ
J Þbkði�1Þ�1

p1 kði�1Þ
;Xði�1Þ

0:kði�1Þ

� �
dkði�1Þ

8<:
9=;; ð39Þ
set kðiÞ ¼ kði�1Þ � 1;XðiÞ
0:kðiÞ
¼ ðXði�1Þ

0:J�1;X
ði�1Þ
Jþ1:kði�1Þ Þ, otherwise set kðiÞ ¼ kði�1Þ

;XðiÞ
0:kðiÞ
¼ Xði�1Þ

0:kði�1Þ .

To compute (37)–(39), one needs to be able to compute ratios of the form
p1ðl; x0:lÞ
p1ðk; x0:kÞ

¼ clp1;lðx0:lÞ
ckp1;kðx0:kÞ

¼ flðx0:lÞ
fkðx0:kÞ

���� ����:

This can be performed easily as fl(x0:l) and fk(x0:k) are given by (5). It is easy to check that the invariant distribution of this
Markov chain is p1. Ergodicity must be established on a case-by-case basis.



2876 A. Doucet et al. / Applied Mathematics and Computation 216 (2010) 2869–2880
It is not our intention to suggest that this precise algorithm will work well in all circumstances. Indeed, this is certainly
not the case: it is always necessary to design MCMC algorithms which are appropriate for the target distribution and this is
no exception. However, this simple approach works adequately in the examples presented below and there is a great deal of
literature on the design of efficient MCMC algorithms which can be employed when dealing with more challenging
problems.

3. Examples

We begin by motivating the MCMC approach with a simple example in which the optimal importance distribution can be
obtained analytically but for which the straightforward SIS estimator could easily have infinite variance. This is followed
with a toy example for which the solution can be obtained analytically and a realistic example taken from the econometrics
literature.

3.1. Motivation: an application to value function estimation

Our motivating application is related to control. We consider a Markov process {Xk}kP0 on E with transition kernel P. Let
us introduce a reward function r : E! Rþ and a discount factor c 2 (0,1). When the process is in state x at time k it accu-
mulates a reward ckr(x). Thus the expected reward starting from X0 = x is given by
VðxÞ ¼ EX0¼x

X1
k¼0

ckr Xkð Þ
" #

:

The expected reward is called the value function in the optimal control literature [1]. Under standard regularity assumptions,
it can be established that the value function satisfies
VðxÞ ¼ c
Z

E
Pðx; yÞVðyÞdyþ rðxÞ;
that is a Fredholm equation of the second kind (1) with f(x) = V(x), K(x, y) = cP(x, y) and g(x) = r(x).
We present here a simple example for which all calculations can be performed analytically that emphasizes the limita-

tions of SIS in this context. We denote by Nðm;r2Þ the Gaussian distribution of mean m and variance r2 and
Nðx; m;r2Þ ¼ 1ffiffiffiffiffiffiffi
2p
p

r
exp �ðx�mÞ2

2r2

 !
:

We set Pðx; yÞ ¼Nðy;ax;r2
1Þ (with jaj < 1) and rðxÞ ¼Nðx; 0;r2

r Þ. In this case, one has
XkjðX0 ¼ xÞ �NðmkðxÞ;r2
kÞ;
with m0ðxÞ ¼ x;r2
0 ¼ 0 and for k P 1
mkðxÞ ¼ akx; r2
k ¼

Xk

i¼1

a2ði�1Þ

 !
r2

1:
It follows that
f ðxÞ ¼
X1
k¼0

ckNðmkðxÞ; 0;r2
k þ r2

r Þ:
Consider using an SIS method to solve this problem. A sensible choice for M is
Mðx; yÞ ¼ ð1� PdÞPðx; yÞ þ Pdd y� yð Þ:
If one is interested in estimating the function at a given point x0 = x, then the importance weights are given by (9); that is
W2 XðiÞ
0:kðiÞ

� �
¼

c
ð1�PdÞ

� �kðiÞ g XðiÞ
kðiÞ

� �
Pd

if kðiÞ P 1;

gðxÞ
Pd

if kðiÞ ¼ 0:

8>><>>:

The variance of the importance weights is given by
var W2 x;XðiÞ
1:kðiÞ

� �h i
¼ 1

2Pd
ffiffiffiffi
p
p

rr

X1
k¼0

c2

1� Pd

	 
k

N mkðxÞ; 0;r2
k þ r2

r =2
� �

� f 2ðxÞ: ð40Þ
This variance (40) will be finite only if c2

1�Pd
< 1. In this case, the optimal importance function p1,n can easily be computed in

closed-form as p1,n is known and p1,n(x0:n) is a Gaussian; the variance of the associated estimate is zero.
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When estimating the function f(x0), we consider the importance weights (7) given by
Fig. 1.
solution
W1 XðiÞ
0:kðiÞ

� �
¼

1
lðXðiÞ0 Þ

c
ð1�PdÞ

� �kðiÞ g XðiÞ
kðiÞ

� �
Pd

if kðiÞ P 1;

gðXðiÞ0 Þ
lðXðiÞ0 ÞPd

if kðiÞ ¼ 0:

8>>><>>>:

The variance of the importance weights is equal to
var W1 XðiÞ
0:kðiÞ

� �h i
¼ 1

2Pd
ffiffiffiffi
p
p

rr

X1
k¼1

c2

1� Pd

	 
k Z 1
lðx0Þ

N mkðx0Þ; 0;r2
k þ r2

r =2
� �

dx0

 !
�

Z
f ðx0Þdx0

	 
2

: ð41Þ
Assume we consider lðx0Þ ¼Nðx0; 0;r2Þ, then to ensure that the variance (41) is finite, it requires c2

1�Pd
< 1 and
r2 >
r2

1

1� a2 þ
r2

r

2
:

In this case, the optimal importance function p2,n admits a closed-form and the variance of the associated estimate is zero.
For more complex problems, it could be impossible to obtain necessary conditions on l to ensure the variance is finite by

analytic means.

3.2. Analytically tractable example

To verify the proposed technique, it is useful to consider a simple, analytically-tractable model. The MCMC algorithm de-
scribed above was applied to the solution of:
f ðxÞ ¼
Z 1

0

1
3

expðx� yÞf ðyÞdyþ 2
3

expðxÞ; ð42Þ
which has the solution f(x) = exp (x).
For simplicity the birth, death and update probabilities were set to 1/3 and a uniform distribution over the unit interval

was used for all proposals. Note that previously it has been mentioned that an empirical measure approximates the solution
to the Fredholm equation in a weak sense. This approach amounts to using the empirical measure associated with a sample
from a related distribution as an approximation of that distribution. In order to recover a continuous representation of the
solution it is possible to use standard density estimation techniques. There is much literature in this field: the details of such
estimation pose no great technical difficulties and are outside the scope of this paper.

Fig. 1 illustrates that even a simple histogram provides a reasonable representation of the solution. The large number of
samples (250,000) used to generate this histogram were required only to produce a reasonably high-resolution depiction of
the function of interest using a crude density-estimation technique: many fewer samples would suffice if a more sophisti-
cated density estimation strategy was employed, or integrals with respect to the associated measure were the objects of
interest.
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Histogram of 250,000 samples scaled by the estimated normalising constant (estimate 1), smooth estimate of the same (estimate 2) and the analytic
for the toy example.
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The figure also illustrates one particularly appealing approach, and the one which we would recommend. The Fredholm
equation itself provides a natural device for obtaining smooth approximations to the solution of Fredholm equations (with
smooth kernels and potentials) from a sample approximation: such an estimate can be obtained by approximating the right
hand side of (1) using the sample approximation to the integral on the right hand side. That is, rather than using (21) directly,
we use it to approximate the right hand side of the Fredholm equation, obtaining the estimator:
Table 1
Perform

x

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

^̂
f ðx0Þ ¼

Z
Kðx0; yÞ

1
N

XN

i¼1

fkðiÞ XðiÞ
0:kðiÞ

� �
p1 kðiÞ;XðiÞ

1:kðiÞ

� � d
XðiÞ0
ðyÞ

24 35dyþ gðx0Þ ð43Þ

¼ 1
N

XN

i¼1

fkðiÞ XðiÞ
0:kðiÞ

� �
p1 kðiÞ;XðiÞ

1:kðiÞ

� �K x0;X
ðiÞ
0

� �
þ gðx0Þ; ð44Þ
which, of course, takes a particularly simple form when the optimal p1 is chosen. It is clear that this produces a smooth curve
in good agreement with the analytic solution (indeed, we cannot distinguish this estimate from the truth).

Table 1 shows the performance of the second MCMC estimator when used for estimating f point-wise. Figures obtained
are consistent with an estimator variance proportional to the square of the value being estimated and the reciprocal of the
number of samples used.

3.3. An asset-pricing problem

The rational expectation pricing model (see, for example, [12]) requires that the price of an asset in some state s 2 E,V(s)
must satisfy
VðsÞ ¼ pðsÞ þ b
Z

E
VðtÞpðtjsÞdt: ð45Þ
In this equation p(s) denotes the return on investment (or the perceived utility of that return), b is a suitable discount factor
and p(tjs) is a Markov kernel which models the evolution of the asset’s state. E is generally taken to be some compact subset
of Rn.

For simplicity, we consider E = [0,1], although there is no difficulty in using the proposed method in the multivariate case,
and employ the risk-seeking utility function p(s) = exp (s2) � 1. As suggested by [12], we take p(tjs) a truncated normal dis-
tribution, which leads to the following Fredholm equation:
VðsÞ ¼ bffiffiffiffiffiffiffiffiffi
2pk
p

Z 1

0

exp � 1
2k ðt � ½asþ b�Þ2

� �
U 1�½asþb�ffiffi

k
p

� �
�U � asþbffiffi

k
p

� � VðtÞdt þ ðexpðs2Þ � 1Þ; ð46Þ
with U denoting the standard normal distribution function (which has associated density / ).Thus the potential is g(s) = exp
(s2) � 1 and the kernel may be written in the form
Kðs; tÞ ¼
b/ t�½asþb�ffiffi

k
p

� �
U 1�½asþb�ffiffi

k
p

� �
�U � asþbffiffi

k
p

� � :

For the purposes of this paper we will use the following parameter values: a = 0.05, b = 0.9, b = 0.85 and k = 100. Note that
using such a large value for k has the effect of making the distribution of Xt almost independent of Xt�1. This has been done to
ance of MCMC point-wise-estimation. Figures are obtained from 100 independent instances of the algorithm.

N = 100 N = 1000 N = 10,000

f(x) Mean Variance Mean Variance Mean Var./10�4

1 1.0516 0.1207 1.0026 0.0006 1.0002 0.4
1.1052 1.1081 0.0060 1.1047 0.0005 1.1038 0.4
1.2214 1.2259 0.0103 1.2199 0.0006 1.2214 0.7
1.3499 1.3864 0.0281 1.3483 0.0008 1.3508 0.9
1.4918 1.5232 0.0193 1.4893 0.0009 1.4909 1.0
1.6487 1.6706 0.0430 1.6418 0.0009 1.6488 1.0
1.8221 1.8277 0.0376 1.8164 0.0019 1.8206 1.2
2.0138 2.0340 0.0259 2.0178 0.0018 2.0148 2.2
2.2255 2.2482 0.0471 2.2354 0.0021 2.2245 2.0
2.4596 2.5316 0.1117 2.4634 0.0034 2.4623 2.7
2.7183 2.7693 0.0964 2.7232 0.0037 2.7192 3.4
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Fig. 2. Histogram and our smooth estimate of V obtained with 100,000.
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demonstrate that even in such a simple scenario, it can be impossible for the SIS algorithm to use a good approximation of
the optimal importance distribution. Details are provided below.

Within the literature, it is common to compare residuals to assess the performance of an algorithm which provides
numerical solutions to Fredholm equations for which no analytic solution is available. Fig. 2 shows a histogram estimate
of V obtained using (35) as well as an estimate obtained by approximating the right hand side of (45) using the same sample
to approximate the integral (i.e. the approach proposed in the previous section). This shows two things: the agreement is
good, suggesting that a valid solution to the equation has indeed been found and a smooth estimate is obtained by the sec-
ond technique.

Fig. 3 illustrates the distribution of path lengths for samples with values of X0 close to 0 and 1. Notice that even in this
situation, the distribution is very different for the two regimes. As the length of chains has a distribution independent of their
starting points in the SIS case, it would not be possible for such an algorithm to approximate both of these regimes well. It is
the non-uniform potential, g, which is responsible for this phenomenon: if the initial sample lies somewhere with a large
value of g, then there is little advantage in extending the chain; if the initial value has a very small value of g associated with
it then there is a large expected gain. The near-independence of consecutive samples ensures that the distribution of chain
length conditional upon the length exceeding 1 is approximately the same for the two regimes, but this would not be true for
a more general model.

It would be straightforward to employ the algorithms developed here for more challenging models, although some effort
may be required to design good MCMC moves in the case of complex models.
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Fig. 3. Distribution of path lengths for two ranges of X0.



2880 A. Doucet et al. / Applied Mathematics and Computation 216 (2010) 2869–2880
4. Discussion

We have demonstrated that it is possible to solve Fredholm (and by extension, Volterra and other related) equations of
the second kind by using trans-dimensional MCMC and an appropriately defined distribution. It is clear that other methods
for sampling from such distributions could also be used. The principal rôle of this paper has been to introduce a novel ap-
proach and to provide a ‘‘proof of concept”.

The proposed method is qualitatively different to the Monte Carlo methods which have previously been developed for the
solution of integral equations. Existing techniques almost all depend upon SIS techniques or closely-related importance sam-
pling strategies. The approach proposed here operates by explicitly defining a distribution over a trans-dimensional space
and obtaining samples from that distribution using MCMC (other sampling strategies could also be adopted within the same
framework). The one existing approach which appears to be related to the method developed here is described by [13]. This
is a specialised technique used to solve a particular problem which arises in ray tracing. It is not clear how the method devel-
oped in this context relates to the solution of more general integral equations.

As discussed previously, SIS-based approaches to the solution of integral equations have certain limitations, which the
proposed approach avoids. The examples presented above are simple ones, with regular transition kernels in low-dimen-
sional spaces. This choice was made to allow the paper to focus upon methodological developments, but should not be taken
as an indication that these are the most sophisticated problems which could be addressed by the above method. Indeed, it is
well known that MCMC methods are able to provide samples from extremely complex distributions on spaces of high dimen-
sion, albeit at the cost of some design effort and computational time. It is our belief that the proposed technique extends the
range of integral equations which can be addressed using Monte Carlo techniques.
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