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Abstract—Jump Markov linear systems (JMLS) are linear MCMC methods are simulation-based algorithms that have led
systems whose parameters evolve with time according to a finite to powerful numerical methods for computation of likelihoods,
state Markov chain. In this paper, our aim is to recursively com-  qqtarior distributions, and estimates derived from them. Most

pute optimal state estimates for this class of systems. We present .
efficient simulation-based algorithms called particle filters to of the development in MCMC methods so far has focused

solve the optimal filtering problem as well as the optimal fixed-lag ©n off-line algorithms that operate on a fixed batch of data.
smoothing problem. Our algorithms combine sequential impor- The aim of this paper is to propose and analyze recursive
tance sampling, a selection scheme, and Markov chain Monte (on-line) simulation-based algorithms. These algorithms
Carlo methods. They use several variance reduction methods to combine sequential importance sampling and MCMC algo-

make the most of the statistical structure of JMLS. ith Motivated b | licati R | -
Computer simulations are carried out to evaluate the perfor- rithms. viotivated by several applications In signal processing

mance of the proposed algorithms. The problems of on-line de- outlined below, we focus on deriving recursive algorithms
convolution of impulsive processes and of tracking a maneuvering for optimal state estimation of jump Markov linear systems

target are considered. It is shown that our algorithms outperform  (JMLS)—which is a well-known NP-hard problem.
the current methods. Letr,,¢ = 1, 2, - - - denote a discrete time Markov chain with

_ Index Terms—Filtering theory, Monte Carlo methods, state es- known transition probabilities. A jump Markov linear system
timation, SWltChlng SyStemS. can be modeled as

NOMENCLATURE
n. dimension of an arbitrary vecter Trpr = A(rer)we + B(rop)very + F(rop)ue (1)
te{l,2 -} discrete time. ye =C(re)we + D(r)ee + Gre)u )
k iteration number of the various iterative
algorithms. where u;, denotes a known exogenous input, andand ¢,
Forp < ¢ Zp:q N (Zps Zpits s 2q). denote independent white Gal_Jssian noise_ sequences. A jump
o(m, ¥) 127512 exp(—(1/2)mIS Y 2m). Markov linear system can be viewed as a linear system whose
N(m, %) Gaussian distribution of mean and co- Parameters4(r.), B(r:), C(r¢), D(r), F'(r+), G(r+)) evolve
variancex.. with time according to a finite state Markov chain Neither
uo, 1] uniform distribution or{0, 1]. the continuous—s_,tate process nor the finite state process
2~ p(2) » distributed according tp(»). are observed—instead, we observe the noisy measurement
zly ~ p(z) conditional upony, z distributed ac- Proc€s%:. _ _ _ _
cording top(z). ngp Markov Imear systems are W|_dely usedin seve.ral fields
I, identity matrix of dimensions x n. of signal processing including seismic signal processing [30],
AT transpose matrix. digital communications such as interference suppression in
CDMA spread spectrum systems [26], target tracking [4], [29],
I. INTRODUCTION and de-interleaving of pulse trains [31]. They can be viewed as

a generalization of the hidden Markov model (HMM) (which

T HE FIELD of applied statistics has been revolutionizedynsists of a Markov chaim, observed in white noise) to
during the past ten years due to the development of seveg}e|ated noise.

remarkable stochastic sampling algorithms that are collectively ;,qer assumptions detailed later on, it is well known that

termedMarkov chain Monte CarlqMCMC) methods [33]. gyact computation of the conditional mean filtered or smoothed
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recursively (on-line). The aim of this paper is to preseimu- papers were overlooked and forgotten. In the beginning of the
lation-based recursivéltering algorithms for computing con- 1990s, the great increase in computational power allowed for
ditional mean estimates of the statgsandr, given the obser- the rebirth of this field. In 1993, Gordaet al.[15] proposed an
vation history, namely (z:|y1.+) andE(r:|y1 .+). Simulation- algorithm (the bootstrap filter) that introduced a selection step
based algorithms for computing fixed-lag smoothed state edtiat statistically multiplies and/or discards particles at each time.
matesE(x;|y1.++1) andE(r,|y1 ..+ 1) are also presented—theThis key step led to the first operational particle filter. Following
fixed lag L is a fixed positive integer. this seminal paper, particle filters have stimulated great interest

Due to the prohibitive computational cost required to comn the engineering and statistical literature; see [12] for a sum-
pute fixed-lag and filtered state estimatesagfandr, it is mary of the state of the art. With these filters, complex nonlinear
necessary to consider in practice suboptimal estimation algmn-Gaussian estimation problems can be solved efficiently in
rithms. A variety of algorithms has already been proposed @m on-line manner. Moreover, they are much easier to implement
the literature to solve these estimation problems [4], [18], [3@han classical numerical methods.

[37]. Most of these algorithms are based on deterministic finite The bootstrap filter is a simple algorithm that can be easily
Gaussian mixture approximations like the popular Interactirapplied to JMLS. However, in its standard form, it does not use
multiple model (IMM) or the generalized pseudo-Bayes (GPBII the salient structure of this model. We propose here simula-
algorithms [4]. These methods are computationally cheap, higin-based algorithms that make use of this structure and include
they can fail in difficult situations. efficient variance reduction techniques. Our algorithms have a

Another possible suboptimal strategy is to compute a fixemputational complexity of(N) at each time step and can
grid approximation to the filtered state density. This involves ajpe easily implemented on parallel computers. The filtering al-
proximating the continuous-valued processby a finite state gorithm is shown to be more efficient than the most recent com-
proces&; with fixed statesy, ¢2, - - -, gn (say). Thdixed grid putational methods; see [3], [6], [16], [21], and [22]. Finally, we
point valuesy, g2, - --, qn are called “particles.” The filtered show how this filtering algorithm can be combined with MCMC
state density and, hence, filtered state estimates can then be cmethods [33] to obtain an efficient fixed-lag smoothing algo-
puted easily at these grid points according to Bayes’ rule. Thithm. Given the importance of JMLS, earlier papers have al-
values of the filtered state density at these grid points are callecdy partly developed similar ideas [1], [6], [35]. We discuss
the “weights” of the particles. However, such a fixed grid apn detail these issues in Section V.
proximation suffers from the curse of dimensionality—the ap- This paper is organized as follows. Section Il presents the
proximation error depends on the state dimension of the wignal model and estimation objectives in a formal way. In Sec-
derlying jump Markov linear system. For example, for an untion Ill, an original simulation-based method is proposed to
form fixed grid, the approximation error behavegxsv—'/”), solve the optimal filtering problem. We detail the different steps
whereD denotes the state space dimension Anthe number of this method. In Section 1V, after having shown that a direct
of grid points (particles). application of the previous methods to fixed-lag smoothing is

In this paper, we present Monte Carlo (MC) particle filters foinefficient, we propose an original method based on the intro-
computing the conditional mean estimates. These particle filtehgction of MCMC algorithms. In Section V, a discussion of the
can be viewed asrmandomized adaptive gridpproximation. As previous work on related problems and on the algorithms devel-
will be shown later, the particles (values of the grid) evolve raped here is given. In Section VI, we demonstrate the perfor-
domly in time according to a simulation-based rule. The weightsance of the proposed algorithms via computer simulations for
of the particles are updated according to Bayes’ rule. The matgtconvolution of impulsive processes and tracking of a maneu-
striking advantage of these MC particle filters is that the converering target. In Appendix A, the backward information filter
gence rate toward zero of the approximation error is independequations are recalled. Finally, the proofs of some propositions
of the state dimension. That s, the randomization implicit in there grouped in Appendix B. Detailed proofs of propositions can
MC patrticle filter gets around the curse of dimensionality [8]. be found in [14].

Taking advantage of the increase of computational power
and the availability of parallel computers, several authors
have recently proposed such MC particle methods [3], [16],
[21], [22]. It has been shown that these methods outperforn Signal Model

the standard suboptimal methods. In this paper, we proposg ot r. denote a discrete-time, time-homogeneoustate,

improved simulation-based approximations of the optim@lsiorder Markov chain with transition probabilities,. ..
filter and smoother with novel variance reduction methods; the Pr{r nlr m) for any m,n € S Whére
= t+1 = t = s ’

filtering and fixed-lag smoothing distributions of interest are A . o i
approximated by a Gaussian mixture of a large number, sdy,~ 1> 2 -~ s}. The transition probability matrixp,,, ]

N, of components that evolve stochastically over time and dfgthus ans x s matrix, with elements satisfying,,, > 0

driven by the observations and ZZ:I Pm,n = 1, for eachm € S. Denote the initial
MC particle methods to solve optimal estimation problerigrobability distribution ag,, = Pr{r; = m}, form € 5,

were introduced in automatic control at the end of the 1966ych thap,,, > 0, Vm € S andy_; _, p. = 1. Consider the
by Handschin and Mayne [17] . Interesting developments wei@lowing JMLS given in (1) and (2), where, € R™ is the
then subsequently proposed in the 1970s [1], [35]. Most likeBystem statey, € R"~ is the observation at timg u; € R"-

because of the primitive computers available at the time, thdésea known deterministic input, "331/\/(0, I,,) € R* and

Il. PROBLEM FORMULATION
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& "331/\/( 0,1, ) € R™ are iid. Gaussian sequences, andis distribution would be given by
D@@D'(i) > 0 (Vi € ). A(-), B()), C(-), D(), F'(")
and G(-) are functions of the Markov chain state, i.e.,
(A(), B(:), C(), D(), F(), G()) < {(A(m), B(m),
C(m), D(m), F(m), G(m));m € S}, and they evolve
according to the realization of the finite state Markov chaiand, as a corollary, an estlmate af(ry, xe|y1.¢) IS
7+ . We assume thaty ~ N (%o, Fy), whereFy > 0, and pn(re, oe|y1:¢) = 1/N Ez L ( R (>)(du, dxy). From this
let zo, v, and e, be mutually independent for all. The distribution, one can easily obtain an estimatel6f,,) for
model parametersx £ {Pms Pmn, A(m), B(m), C(m), anyepy
D(m), F(m), G(m), &9, Po; m,n € S} are assumed

PN(T1:ts Xo:e|y1:t) =~ Z Bt dI‘l t, dXo:¢)

known. T (o) = / e, T)PR (e, Tolyr.e) drodcy
B. Estimation Objectives D)
Given at timet the observationg; .,, assuming that the -N Z Pile ( "t )

model parameters\ are exactly known, all Bayesian in-

ference for JMLS relies on the joint posterior distributio his estimate is unbiased and, from the strong law of large num-
p(r1.¢, Xo:¢|y1:e), Wherep(ry.e, Xo:¢|y1:¢) = p(X0:¢[y1:¢, bers (SLLN),Ix () converges almost surely (a.s.) toward
ri)p(rielyiie). Given riy, p(Xo:tlyi:e, rie) is a I(@y) asN —+00. If o2, " éva7p(”7$t|yl O (@ee(re, ) <
Gaussian distribution whose parameters can be evaluated using then a central I|m|t theorem (CLT) holds

a Kalman filter.p(ry.+|y1.+) could be computed exactly, but

this discrete distribution hag values, and thus, some approx- VN (In (o) — I (%lt)) = N (0 o2 )

imations have to be made as time increases. In this paper, we e

are interested in the following optimal estimation problems: \ynere “=” denotes convergence in distribution. The advantage
» Filtering objectives: Obtain the filtering distribution of the MC method is clear. One can easily estiméte, ;) for
p(re, 2e|y1:+) aswellastheMMSE estimatepf,(r+, z:)  any ¢y, and the rate of convergence of this estimate does not
given by I(py:) 2 Ep(ro, welys. ) (@1 (7, #)), where depend oni. Unfortunately, itis impossible to sample efficiently

Qe 1 S X R™ — R, from the “target” posterior distributiop(r; .+, Xo.+|y1.+) at
» Fixed-lag smoothing objectivesDbtain the fixed-lag any timet. Therefore, we focus on alternative methods.
distribution p(r,, z4|y1..47), whereL € N*, as well A solution to estimatep(ri.:, Xo:¢|y1::) and I(ps;)

as the MMSE estimate 0fp,.4r(r:, z¢) given by consists of using the well-known importance sampling method

Hpuess) A = | V(e (e, 7)), Where [5]. This method is based on the following remark. Let us intro-
t|t+ - T, T t|t+ ) . . . . .

Cuurr @ S x R _i ﬂ%yif‘fj, _ duce an arbitrary importance distributierir; .;, xo.+|y1.¢),

i from which it is easy to obtain samples, and such that
We restrict ourselves to the common case WEgJg, |y, ., r, . ) impli h
) dE ] can ' b p(r1:e, Xo:¢[y1:¢) > Oimpliesn(ry.¢, Xo.¢|y1:¢) > 0. Then
(‘ptlt@t’ 371)) an_ P(l‘tbn:t+L,r1:t)(<pt|t+L(7t’ 371)) can be
computed analytically. o o _ Frtey.ixosilyrie) (<pt|t(n, .’Ijt)UJ(rl:hXO:t))
Remark 1:In most filtering applications, we are inter- I(<Pt|t) = E (w(r1.0,%0:2))
ested in estimating the MMSE (conditional mean) state w0y JVEEL 203
estimates E(z:|y:1.¢) and coV{rz:|yi.:). In these cases, where the importance weight is equal to
[Ep_(myl:t,rl:t)(<pt|t_(n, x;)) can be computed analytically
using the Kalman filter for the sequence. ;.

p(rl:hXO:t|yl:t)
7I-(rl:tvx():t|yl:t)'

w(rl:t7 XO:t) =

[1l. SIMULATION -BASED OPTIMAL FILTER @)
If we have N i.i.d. random samples{(r]L pXo); 1=
This section is organized as follows. We describe the standzird , N'} distributed according ta(r1 .+, Xo:¢|y1:¢), then a

importance sampling method and then show how variance f\ﬁonte Carlo estimate af(¢, ;) is given by
duction can be achieved by integrating out the statgs using !

the Kalman filter. Then, we present a sequential version of im- o
. . . .. 1 AN (<Pt|t)
portance sampling for optimal filtering, generalizing the current Iy =
approaches in the literature. We show why it is necessary to B}\r (<Pf|f)
introduce a selection scheme, and then, we propose a generic
Monte Carlo filter. Z o (u(’), (@ )) (rg’)t, xé’)t)
A. Monte Carlo Simulation for Optimal Estimation ' @
For any ¢,;, we will assume subsequently thift(¢, )| ;w (rl ¢ X0: t)
< +4oco. If we were able to sampleV i.i.d. random sam- -
ples—called partmles{-{rjL ' x((f)t) = 1,---,N} _ Zwl \Pre (” ’ xgﬁ)

according ta(r; .+, Xo:¢|y1:¢), then an empirical estimate of
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where the normalized importance weigh“i%:)t are equal to integratex,., analytically, then the variances of the resulting
‘ ‘ estimates are lower than the ones of the “crude” estimates.
w (rgﬁ)t, x((j:)t) Proposition 1: The variances of the importance weights, the

w_@t = numerators, and the denominators satisfy for Any

N

Z w (rgj;)t, X(()j;)t) )

j=1 Varﬂ'(rl;t,xo;tl}’l;t)(w(rl:tv XO:t))

This method is equivalent to the following point mass approxi- ~ VAo (0(r1:)

mation ofp(ry .+, Xo.¢|y1:¢): =By ilyio) (Varﬂ(x():tl}ﬁ:t:rlzt)(w(rl it XO:t)))

N Varﬂ(r1:t7x0:t|}’1:t) (A}\’ (<Pt|t)>
_ _ NI —
DN (1‘1 it XO:t|YI :t) = Zz_:l wy :té(r(f:)t,xé?t) (dI‘l it dXO:t) _ Varﬂ'(rlztlyl;t) (A%r (<Pt|t))

] ) =E (. _(var vy _(Zl\r%t))

and thUSp/J\\?(Tt, -Tt|y1:t) = Ei\zl Tflgz:)t 6(1j5i)7mgi))(d7’t7 da:t). sy /Z(XOAtlylA“rlAt) N ( | )
The “perfect’ simulation case, i.ex(ri.¢, Xo:¢|y1:1) =  Var(riioxouidyiio) (B}v (<Pt|t))
p(r1.s, Xo.¢|y1:¢), would correspond ta(”), = N1 for any _var (,37 ( ))
i. In practice, we will try to select the importance distribution wrradyi) \ PV AP
as close as possible to the target distribution in a given sense. _ Erter.ilye.0 (Varw(x():tlmmrl:t) (B}v (<Pt|t))) .(3)

For N finite, I}(¢,;) is biased (ratio of estimates), but

asymptotically according to the SLLI\IL/;(%”) converges o N = . _
a.s. towardl (¢y,). Under additional assumptions, a CLT also A sufficient condition for I3, (¢;;) to satisfy a CLT is
holds. However, we first show, in the next subsection, how Y& (e, o lyr ) (Pefe(7e, 1)) < +oo and w(rie, Xo:r) <

variance of the estimatg (¢,;) can be decreased. Gy < oo for any (riy, xo.1) € S x (R™)"* [5]. This
trivially implies that I3 (¢,,) also satisfies a CLT. More
B. Variance Reduction precisely, we get the following result.

It is possible to reduce the problem of estimating Proposition 2: Under the assumptions given aboig,(¢.)

p(re, zly1..) and I(gy,) to one of sampling from andi3(y,) satisfy a CLT
p(ri.¢|y1:¢). Indeed,p(ry.¢, 2¢|y1:¢) = p(ri:e|yr:¢)p(a

V1.4, T1.4), Where p(z|y1.+, r1.+) iS @ Gaussian distribu- VN (I/l\ _7 )Nj_;ooj\/ 0. o2
tion whose parameters are given by the Kalman filter. Thus, T (peye) — I(eye) (0, o1)
given an approximation op(ry.:|y:.:), ones gets straight- VN (I?\T(tht) _ I(%It)) ,\,_ﬁm>/\/(()7 O-%)

forwardly an approximation op(r:, z;|y1.:). Moreover, if

Epalyiee o leee(re, xt))_can be eva!uated in e}clo.sed—formWhere
expression, then the following alternative Bayesian importance
sampling estimate af(¢,|;) can be proposed:

. 0’% :|E7T(I'1:f,x0:f|}’1:f) ((<Pt|t(7’ta o) — I(<Pt|t))2
72 (o) = A% () w?(Ti:t, Xo:t))
D E% ((Pﬂt) O’% :[Eﬂ'(rlztb’lzt) ((lEp(‘rtb’l:t;rlzt)(satlt(rt’ xt))
N " " —I( 1)) w?(r1:e))
;Ep(mt|y1:t7r§i?t) (<Pt|t (71 axt)) w (1‘1 :t) af - ag :Eﬂ(rlztlytt) (Var"'("O:t‘ylztvrlzﬂ
al ) ; ((<Pt|t(7’t7 o) — I(<Pt|t))w(r1:t7 XO:t)) ) .
Z w (rl :t)
=1
Given these results, we now focus on importance sampling
where methods to get an approximation pfri.,|y1..) and(yy.)
P(r1.elyese) using an importance distribution(r;.+|y1.:). Up to now, the
w(ry.y) = DLt gLt methods we have described are batch methods. We show in the
and m(r1:ely1:e) next subsection how to obtain a sequential method.
7(r14lyi.e) = /W (r1.¢, Xo0:¢|y1:¢) dX0.¢. C. Sequential Importance Sampling

One can always rewrite the importance function at tinas
Intuitively, to reach a given precisiodAQ,(%“) will require a follows:
reduced numbeN of samples ovef}:,(%“) as we only need '
to sample from a lower dimensional distribution. Thisis proven 7y |y,.,) = n(ri|y1..) H T(rk]yiie, T1ir—1)

in the following propositions, where it is shown that if one can Pl



DOUCETet al: PARTICLE FILTERS FOR STATE ESTIMATION OF JUMP MARKOV LINEAR SYSTEMS 617

wheren(rx|y1.+, r1.x—1) is the probability distribution of where ;1 (r1:¢) and Sy(ry.;—1, 7+ = m) are, re-
conditional uporny;.; andr;.;_;. Our aim is to obtain, at any spectively, the innovation and the one-step-ahead
timet, an estimate of the distributigrir,.+|y1.+) and to be able prediction covariance of the observation conditional
to propagate this estimate in time without modifying, subse-  on (ry.,—1, 7v = m). Computingp(y|y1:t—1, r1:¢—1)
quently, the past simulated trajectori{aﬁ)t;i =1,---,N}L requires the evaluation afone-step-ahead Kalman filter
This means that(ri.¢41|y1:t41) admitsa(ry.¢|y1.¢) as mar- steps. It is thus computationally intensivesiis large.
ginal distribution at timet. This is possible if we restrict our- ¢ Prior Distribution: If we use the prior distribu-
selves to importance functions of the following form: tion p(r|r:—1) as importance distribution, the im-
portance weight is proportional top(y:|y1i.¢-1,
t ri.e) = P(Uye_1(r1:e), Se(rie)). It only requires
m(rye|yie) = 7(r1ly) H m(relyik, Tre—1)-  (4) one step of a Kalman filter to be evaluated.
k=2 « Alternative Sampling Distributionlt is possible to de-

sign a variety of alternative sampling distributions. For ex-
Such an importance function allows for a recursive evaluation ample, one can use the results of a suboptimal determin-

of w(ry.;) = w(ry.+—1)w; and, thus, ofv, .+, where thencre- istic algorithm to construct an importance sampling distri-
mental weightw, is given by bution.
2) Degeneracy of the AlgorithmThe following proposition
= P(Ye|y1:e—1,T1:4)p(re|re—1) shows that for importance functions of the form (4), the vari-
T |y )T (Y1t Trie—1) ance ofw(r;.;) can only increase (stochastically) over time. The
N p(ye|y1e 1,1 )p(re|re 1) proof of this proposition is an extension of a Kong-Liu—Wong

[23, p. 285] theorem to the case of an importance function of
the form (4) and is omitted here.

Proposition 4: The unconditional variance (i.e., with the ob-
N iy @) servations ;. being interpreted as random variables) of the im-
o= Wy | A o . portance weightss(r;.;) increases over time.
_ 1) Choice of_the Importance DistributionThere are |r_1f_|n- It is thus impossible to avoid a degeneracy phenomenon.
itely many possible choices far(r,.[y.:.), the only condition  practically, after a few iterations of the algorithm, all but one of
being that its supportincludes the ongQfy. |y1. ), thatis, the  the normalized importance weights are very close to zero, and
support ofp(ry., ). A sensible selection criterion is to choose @ |arge computational burden is devoted to updating trajectories
proposal that minimizes the variance of the importance weighf#ose contribution to the final estimate is almost zero. That
attimet, givenry;;—, andy... According to this strategy, the s why it is of crucial importance to introduce a selection step
following proposition establishes the optimal importance distr e algorithm. The aim of this selection step is to discard

bution. the particlesrgf)t with low normalized importance weights

Proposition 3: p(r¢|y1:¢, r1;;—1) iS the distribution that w(rt,) and to multiply the ones with higti(r\",) to avoid the

minimizes the variance of the importance weights conditionangenermy of the algorithm and to jump into the interesting

on_lfﬁ:’—l a?qu'_ htt q iiv check that tR21€S of the space. Each time a selection step is used the
e proof is straightforward as one can easily check that i "o e reset tor 1,

conditional variance is equal to zero in this case. We show how
to implement this “optimal” distribution and then describe seyy Selection Step
eral suboptimal methods.
» Optimal Sampling DistributionThe optimal distribution
satisfies

7T(7’t|Y1:t71‘1:t—1)

Further onyi, denotes the normalized versionwof, i.e.,u“;'t(i) =

A selection procedure associates with each particlefg%ly
(# = 1,---, N), a number of “children”N; € N, such that
SN N; = N, to obtain’ new particles(”,. If N, = 0, then
fgi)t is discarded; otherwise, it ha@g “children” at timet. If we
p(re =mlr1e1, y1:1) use a selection schemageach time stgphen before the selec-
_ P(uelys:t—1, 1101, 70 = m)p(re = mlri_1) tion scheme, we have a weighted distributiga(ry.+|y1.+) =

P(yely1:e—1,T1:e-1) PRI wfi)éw (dri.,), and after the selection step, we have

and the associated importance weightis proportional

N

to N e

PN(r1e|y1e) = N z; 6r§i>,(dr1:t)'
1=

p(yt|y1:t—1a I‘1:t—1)

s 1) Some Selection Schemeafe describe here some selec-
- Z PQelY1ie—1; Trie—1y 7o = m)p(re = mfre—1) tion schemes and show how to implement ther®{idV) itera-
m=t tions.
= Z O(Gyp_1(r1er-1, e = m), Sp(rres1, 1 = m)) * Sampling Importance Resampling (SIR)/Multinomial
foopunr} Sampling ProcedureThis procedure, which was intro-

X Dry_1.m duced originally by Gordoet al.[15], is the most popular
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one. One sampled times frompx (ry1.:|y1.+) to obtain
(rgz:)t; i L.
jointly (Ny; 4 = 1, ---, N) according to a multinomial
distribution of parametersv and uNJt(Z). This algorithm
has originally been implemented i©(N log N) oper-
ations [15]. In fact, it is possible to implement exact

-, N). This is equivalent to drawing  Gjven at timet — 1, N

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 3, MARCH 2001

E. Implementation Issues

‘ € N* random samples
(rﬁ)t_l;i =1, ..., N) distributed approximately according to
p(ri:e—1|y1:¢—1), the MC filter proceeds as follows at time

\/

the SIR procedure iW(N) operations by noticing that
it is possible to sample ifO(N) operationsN i.i.d.
variables uniformly distributed iff), 1] andordered i.e.,
up < ug < --- < wuy using a classical algorithm [9]
[32, p. 96]. In this case, we had&(}V;) = Na and
var(;) = N1 — ). However, as pointed ou
in [25], it is possible and better to use selection scher
with a reduced variance.
Residual Resamplinf25]: This procedure performs a
follows. SetV; = |_Nu~1t(Z)J and then perform a SIR proce
dure to select the remaining, = N — 3" | N, samples
with the new Weightm/gi) = (u?t(i)N — N;)/N; finally,
add the results to the currenf;. In this case, we obtain
E(N;) = Nw'”, but vakN;) = Nyw'$ (1 — w'{?).

Recent theoretical results obtained in [8] suggest that i
not necessary to design unbiased selection schemes, i.e., W
haveE[N;] # N,

2) On the Use of a Selection Schenigvo estimates of
I(¢y);) can be proposed beforéx(¢,;)) and after {x (¢:;))
the selection scheme at timgwhere

" Particle Filter for JMLS
Sequential Importance Sampling Step _
e Fori=1,---, N,sample i{" ~ x(ri|y1.c, r'”,_,),and set
~(1) A i ~(7
ri:)t = (rgz)tflv TE ))-
e Fori =1, ---, N, evaluate the importance weights up to a
normalizing constant
nes
o P (yzlyl; -1 f“gi)t) p (YN‘EZ)|”~'§L)1)
5 wy X 5 o . (5)
, ™ (Tz |Y1:t71'i;171)
e Fori =1, ---, N,normalize the importance weights
. =[]
=1
e can ’
Selection Step ‘
e Multiply/Discard particles (fﬁf),;i =1,---, N) with respect
to high/low normalized importance weights zﬁg’) to obtain N
particles (r{";i = 1, ---, N).

et = [ Enonpnms oot 2)
'ﬁ\/;r(rlzt|y1:t)dr1:t
IA;(<Pt|t) = /[EP(-Ttb’l:t,rlzt)((pt“(Tt’ 'Tt))

) ﬁ(rl:tb,l:t) drl:t-

Using the variance decomposition, it is straightforward to sh
that if the selection scheme used is unbiased, then

var (Ix (¢11))

= var([E (fN(¢t|t)|Ni; i=1, -, N))

)

= var(INA?(%h)) + [E(var(f;(cp”t)wi; =1,

+E (var (In(py)lNis i = 1, -+

)

2 var (E\K%h)) .

Therefore, it is better to estimal¢y, ;) using;f;r(wt) as the

Clearly, the computational complexity of this algorithm
at each iteration i€)(V). At first sight, it could appear that
one needs to keep in memory the paths of all trajectories, that
is, (fﬁ)t;i = 1,---, N). In this case, the storage require-
ments would increase linearly over time. Actually, under the
standard assumption that(r;|yi.:, r1.¢—1) only depends
onr;.,; Vvia the set of low-dimensional sufficient statistics
mt|t_1(r§ﬁ)t) and Pt|t_1(r§ﬁ)t), this is the case fop(r¢|ri_1)

d ndp(r¢|y1:+, r1:+—1); then, one only needs to keep in memory
these statistics. Therefore, the storage requirements are still
O(N) and do not increase over time.

Remark 2:In the case where we use(r|yi.¢,r1.1—1)
=p(rt|y1:¢, T1:¢—1), the importance weight, o< p(y:|y1:¢—1,
ri.:—1) does not depend an. Itis thus possible to perform the
selection step before the sequential importance sampling step.

IV. SIMULATION -BASED OPTIMAL FIXED-LAG SMOOTHER

In many applications of interest, it is possible to wait for
a fixed delay, sayL, before performing estimation of the
states at time.. Results can then be significantly improved
while keeping an on-line estimation scheme. We show in this
section that a direct application of the previous methodology
to fixed-lag smoothing is not satisfactoryiifis large and then
propose an alternative method.

selection scheme can only increase the variance of the estimate.

However, as shown in [24] in a different framework that could

KA. Some Strategies for Fixed-Lag Smoothing

adapted to our case, itis worth resampling as it usually decreases) Direct Extension: The proposed simulation-based filter

the variance of the following estimatégpy ), wherek > ¢.

can be theoretically, and straightforwardly, extended to fixed-lag
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smoothing. At time + L, we have an MC approximation ticle a Markov transition kernék (ry.+4 1. |r’1. 4 1,) Of invariant
distributionp(ri: ¢+ £[y1:++1), i.€., such that

N
- 1

PN (Ty: : = — E 6w ri.

pJ\( 1.t+L|Y1.t+L) N £ r§;>t+L( 1.t+L) /K(rlit+L|r/1:t+L)p(r/1:t+L|y1:t+L)drll:H—L

T . = p(P1:t+L|Y1:t+L)
of the distributionp(ry.++1|y1.:+1 ). Therefore, an estimate of

the marginal distribution is then the new particlesrl’,,; are still distributed ac-
cording to the posterior distribution of interest. Therefore,

if K(ri.++rzlri.,p) is a kernel that updates stochastically

() 4o 10 obtaiprﬁ)t 41 then we have a theoretically valid
way of introducing diversity amongst the samples. It is pos-

However, the trajectories have been resamgletimes, from Sible to use all the standard MCMC methods such as the
time¢ + 1 to ¢ + L. There is consequently a loss of diversitjetropolis—Hastings or the Gibbs samplers. However, contrary
in the trajectories, i.e., one typically only has few distinct trd© classical MCMC methods, it is not necessary to introduce
jectories at time + L, and the approximation of the posterio@n ergodic transition kernel. This method can only improve
distribution might then be poor; this is the so-called problem 6@Sults in the sense that it reduces the total variation norm of the
sample depletion [10]. current d|sFrlbgt|or1 of the particles with respect to the “target”
2) Sampling Usingy:.,4: One solution to this problem Posterior distribution; see [33] for example.
consists of samplingr, using an importance distribution
based on the observations up to time- 7, i.e., introducing
re ~ 7(r4|y1:441, T1.4—1). The same developments as in 1) Algorithm: Given at timet + L — 1, N € N* random
Section 1I-C apply. If one wants to minimize the variance o$ampIeS(r§ﬁ)t+L_l;i =1, ---, N) distributed approximately
importance weights sequentially, conditional en,_; and according t@(r1.+r—1|y1:¢+—1), the algorithm proceeds as
Vi.e+L, thenp(r|yi.c+1, r1.+-1) is the optimal importance follows at timet + L.
function. In doing so, the importance weights at timare

N

. 1

PN(r1:t|Y1se4L) = N E 5r§{>t(1°1:t)-
=1 '

B. Implementation Issues

equal to Particle Fixed-Lag Smoother for JMLS
Sequential Importance Sampling Step
o o p(rie|yi:e+r) . For_i: 1,---,1_\', sample fﬁjr)L ~ (T |y1: et r(f;)L_L)
' p(rl:tfl|YI:t+L71)p(7’t|YI:t+L7rl:tfl) and f.(ll:)tJrL 2 (rgi)t+L71, FEQL)-
X Pp(Yerr|yi:e4n—1, P1:t-1)- e For i = 1,---, N, evaluate the normalized importance

weights zﬁﬁfﬁ,l using (5) and (6).
Sampling from p(r|yi.+1r, r1.e—1) and evaluating Selection Step

p(yt+L|y1:t+L717 I‘1:t71) require33"+1 steps of the Kalman| * Multiply/Discard particles (i(lf)tJrL;i =1,---, N‘v)\ with re-
filter, each one being associated with all the possible trajectarig®ect to high/low normalized importance weights ;. to ob-
r..+4y, from timet to time¢ + L. This is computationally very| tain N particles (i =1, V).
expensive as” > 1. MCMC Step ,

3) Using MCMC Methods:We propose here an alternatiye ® For ¢ = 1,---,N, apply to vV, a Markov tran-
and computationally cheaper method. This consists of simplgition  kernel K(x{”,; |r'{),,,) of invariant distribution
adding a step to the simulation-based filter, and it drastically|rea(r1: - |y1:+2) to obtain N particles (x{",,:i = 1.

duces the problem of sample depletion. At titne L, the parti- | V).

cles, say’’) 1. have typically very few distinct valued” at

time¢ as the trajectories have been resampilegll times. Sev- 2y |mplementation of MCMC StepsThere is an infinity of

eral suboptimal methods have been proposed in the literaturg#sible choices for the MCMC transition kernel. We propose

introduce diversity amongst the samples. They are mainly basgge to use a Gibbs sampling step that updates atttime the

on kernel density methods [12], [34]. Based on the current set@flues of the Markov chain from timeto ¢ + L, i.e., we sample

particles, the probability distribution is estimated using a kerngl?) ¢4, 1. — ¢, .-, t + L according top(ri|yi:+1, rg),

density estimate and a new set of distinct particles is samplgfere

from it. These methods require the choice of a specific kernel

[16] and are not suitable in our case as the distribution to es- () _ /@ 504,00

. . . . ... l:t—1 1:t—1» —k

timate is discrete. Moreover, they introduce an additional MC NS @) @ 0 )

variation. We propose here a totally different approach that con- = (Pu_p Te s oo Tl Tphy -0 7 t+l) :

sists of applying MCMC steps to the patrticles; see [33] for an

introduction to MCMC. This idea has been proposed in [27] ith is straightforward to check that this algorithm admits

a very different context. ‘ p(ri:eqrlyierr) as_invariant distribution [33]. Sampling
Assume that the particlaéﬁ)t% are distributed marginally from p(ri|y1.t+L, r(_ZL) fork = t,---,t + L can be done

according ta(r’1.++1.|¥1:++1)- Then, if we apply to each par- by the following backward—forward procedure of complexity




620

O(L + 1). This algorithm has been developed in a batch
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V. DISCUSSION

framework in [9] and [11]; therefore, the proofs are omitted

here. It proceeds as follows at time- L for the particlei.

Backward—Forward Procedure
Backward Step

For k=t+ L,---,t, compute and store P/,j‘}fﬂ(r’ﬁjzht“l)
and P’ (0 )m kg (P4 ,) using (8) and (9)
given in Appendix B.
Forward Step

For k=t,---,t+ L

e For m = 1,---,s, run one step ahead the Kalman
filter with ». = m, store mk|k(r$fi?_1,rk = m) and P
M(rgflﬂ,r,@:m), and then compute p(rk:m,|y1;t+L,r%)
using (7) given below.

e Sample 7';;) ~ p(relyiiesr, I‘@.), and store my(r
Vi i) and Pl ).

The quantitiesD’,jl}cH(r’gﬁrl:t%) andP’,:l}cH(r’fj}rl:HL

Numerous methods have been proposed earlier in the litera-
ture to address the problems posed in this paper. In this section,
we discuss these approaches and compare them with ours. To
obtain MMSE filtered estimates, most algorithms are based
on deterministic finite Gaussian mixtures approximations with
a few components such as the popular IMM algorithm [4],
[29] or the detection/estimation algorithm (DEA) [37]; see, for
example, [18] and [20] for related methods. These algorithms
are computationally cheaper than the ones we present here, but,
for example, the IMM can fail in difficult situations such as
when the likelihood at time is multimodal, and the posterior
distribution at timet — 1 is vague. Taking advantage of the
increasing computational power available and of the intrinsic
parallelizability of particle filters, several recent papers have
proposed to use the bootstrap filter to perform optimal filtering
of JMLS; see [3], [21], and [22] and an improved version of
it based on kernel density estimation [16]. It has been shown
by Monte Carlo simulations that these methods outperform the

m’k|k+1(r’§2_1:t +r) are given by the backward informa-classical suboptimal methods. However, the bootstrap filter
tion filter recursion given in Appendix B, and for anyconsists of sampling, at timg the stategz, ;) according

k=t -, t+ L, we have

p(raly1:tar, Tok)
X prk,lrkprkrk+1N(gk“x‘fl(rl:k)a Sk(rl:k))

X ﬁk|k(1‘1:k)Q£|k(I‘1:k)

~ —1/2
Plai+1(rk+l:t+L)Qk|k(rl: k) + In,

X €xp (—% |:m'£|k(r1:k)Pla}C_H(rk-i—l:t+L)mk|k(r1:k)
- 2m£|k(r1:k)P/;:|];L€+1(I‘k+1:t+L)m/k|k+1(I‘k+1:t+L)
- (m;c|k+1(rk+1:t+L) - mk|k(r1:k))T

X P/;|}€+1(rk-i—l:t+L)Rk|k(r1:t+L)P/;:|}€+1(rk+l:t+L)

x (m;c|k+1(rk+l:t+L) - mklk(rlzk))D 7

where Py (ri:x) = Qk|k(1‘1:k) ﬁklk(rlzk)Q£|k(r1:k)1l

ﬁk|k(r1:k) being an; x ng, 1 < ni < n, diagonal matrix

with the nonzero eigenvalues 6%, (r1.x) as elements and

Ryp(rietr) = Quu(recr)
X [ Mgh (i) + Qhatrin)
. -1
XP/;:|:;L€+1(rk+l:t+L)Qk|k(r1: k):|

X sz(rl:k)-

The computational complexity of the resulting MC fixed-la
smoother algorithm at each iteration ¢¥(L + 1)V), and
one needs to keep in memory the paths of all traject
, N) as well as(mk|k(r§”:)k), Py

ries (rgf)HL;z’ =1,
() )si=1,--- N)fork=t, -, t+ L.

to p(at|re, 2e—1)p(re|re—1). v+ anda, are simulated indepen-
dently of y; therefore, this strategy is sensitive to outliers,
and the distribution of the importance weights can be highly
skewed. In our scheme, the continuous stateare integrated
out, which leads to estimates with a reduced variance, and
the importance distribution can be chosen on a case-by-case
basis. In the bootstrap filter, the particles are selected using the
SIR algorithm. We showed that it is possible to use a quicker
selection scheme having a reduced variance. Some previous
works have, however, already introduced some of these ideas.
The closest filtering algorithm to the one presented in this
paper is the random sampling algorithm (RSA) of Akashi and
Kumamoto [1], [37]. This algorithm corresponds to the sequen-
tial importance sampling method usipgr;|yi.¢, r1.+—1) as
importance distribution. This distribution was introduced fol-
lowing a different criterion. Similar work was developed later
in [6] and [35]. However, these authors neither presented the
general sequential importance sampling framework allowing
the use of general importance distributions nor discussed the
improvements brought by variance reduction. Moreover, the
key selection step is omitted in these papers, and thus, after
a few time steps, the algorithm collapses. It is worth noticing
that Tugnait [37] compared, via Monte Carlo simulations, the
RSA algorithm and some computationally cheaper alternative
algorithms like the DEA. It appeared that the results of the
RSA algorithm were less precise than those of the alternative
methods. Nevertheless, in this early work, only a small number
N of particles and no selection scheme were used. In our Monte
Carlo simulations, the obtained results are totally different.

9 Finally, we are not aware of any paper combining particle

gl_ters and MCMC for JMLS. In a batch framework, some al-
gorithms have been proposed to estimate,|y1.r, r—x) for
k =1,---,T to maximizep(r,.7|y:.7) using a coordinate

ascent method. However, the popular single most likely replace-

1Q4 1 (r1. 1) andIly x(rs. ) are straightforwardly obtained using the sin-ment (SMLR) algorithm [30] has a CompleXi@(TQ)' whereas

gular value decomposition @ (ryi.« ).

our method applied to this case has a complesity).
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Fig. 1. Top: simulated signal; (solid line) and observations (dotted line). 0 A f
Bottom: simulated sequencg. 0 50 100 150 200 250

Fig. 2. Top: estimated probabilitiggr, = 1|y...) (Particle filter). Middle:
VI. SIMULATIONS estimated probabilitieg(r, = 1|y1..+1) (fort = 1, .-, 235) (Particle
fixed-lag smoother). Bottom: estimated probabilitigs, = 1|y+. ) (Gibbs

Computer simulations were carried out to evaluate ti§@mpler).
performance of our algorithms. Section VI-A considers the

problem of estimating a sparse signal based on a set of nogyTracking of a Maneuvering Target

data. Section VI-B considers the problem of tracking a maneu- ) _ _
vering target. We address the problem of tracking a maneuvering target in

noise. The difficulty in this problem arises from the uncertainty
in the maneuvering command driving the target. The state of the
target attime is denoted as; 2 (I, s Sa,ts ly t, Sy t)T, Where

In several problems related to seismic signal processing and, (1, ;) ands,, ; (s, ) represent the position and velocity of
nuclear science [7], [30], the signal of interest can be moghe target in the: (resp. in they) direction. It evolves according
eled as the output of a linear filter excited by a BG process a JMLS model of parameters [4]
and observed in white Gaussian noise. The input sequence is
vl "EIAN(0, 02) + (1 — Ao, 0 < A < 1, and the observa-
tion noise ise] "' A(0, 02). v} ande, are mutually indepen-
dent sequences. The linear filter is modeled by an AR(2) model. A=
Thus, we haveS = {1, 2}, and the signal admits the following

state-space model: Cc=1I
- )

A. Detection of Bernoulli-Gaussian Processes

0
0
7| B=01L

oo o

1

C=(1 0) and D = +/3diag20, 1, 20, 1). The switching term is
F(ry)us, wherer, is a three-state Markov chain corresponding
G to the three possible maneuver commands:
« straight;
* left turn;

In the following simulations, we set the parameters:io= * right turn.

1.51, az = —0.55, 0, = 0.50, ando,, = 0.25.7 = 250 It has the following transition probabilitieg,, , = 0.9
observations are generated and are depicted in Fig. 1. In Figa@dp,,, , = 0.05 for m # n. We have for any F(1)u, =

we present the results obtained using the particle filtering alg@, 0, 0, 0)*, F(2)w, = (-1.225, —0.35, 1.225, 0.35)",
rithms with V' = 500 particles. We sample from the optimal disand F(3)u, = (1.225, 0.35, —1.225, —0.35)". We sample
tribution p(r|y1.¢, r1.:—1) and perform fixed-lag smoothing according to the optimal distribution. In Fig. 3, we dis-
with L = 15. The results are compared with an off-line iterativplay a realization of the signal and the MMSE estimate
Gibbs sampling method to compuiér|y1.7) [11]. Fixed-lag (E(l, ¢|y1:¢), E(ly +|y1:+)) computed usingV = 500 parti-
smoothing significantly improves the detection of occurrencetes.

with respect to filtering. Moreover, as shown in Fig. 2, the per- We also perform}/ = 100 different measurement realiza-
formance of the fixed-lag smoothing and batch methods appetosis and compare our results with the IMM algorithm [29] and
to be very similar. Our studies show that the results obtain#te standard bootstrap filter [15]. The performance measure is
using a higher number of particles are indistinguishable. the root mean square (RMS) position error computed as follows
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200

i ' ' ' form not only the standard suboptimal methods but recent
* simulation-based methods as well.

Throughout this paper, the model parameteese assumed
known. It is, however, possible to perform batch and on-line
maximum likelihood estimation of these parameters combining
the particle filtering methods developed here and standard ex-
pectation-maximization or gradient-type algorithms; see [19]
for details.

~300[

APPENDIX A
KALMAN FILTER AND BACKWARD INFORMATION FILTER

-400}

Conditional onry.;, the system (1) and (2) is linear
% 00 a0 200 o0 50 Gaussian until¢; it is thus possible to compute, using the
Kalman filter, the one-step-ahead prediction and covariance

Fig. 3. Simulated path of the targét., .. I, .) (solid line), observations

A
(dots), and MMSE estimate (dashed line). of x; (mt|t—1(r1:t) = E(#¢|y1:4-1, Tr1:¢), and Pt|t—1(r1:t)
A " . .
= cov(z¢|y1:+1, T1:1)), the filtered estimate and covariance
i A
TABLE | of z (Tnt|t(rl:t>élE($t|y1:ta r1.¢), andPy(r.e) = cov(ze|yi: e
RMS FORIMM, B OOTSTRAPFILTER, AND MC FILTER ri.:)), the innovation at time, and the covariance of this inno-

vation @j¢—1(ri:¢) = y — E(w|y1:t—1,T1:), andSi(r1:)

A
=cov(ye|y1:t—1,T1:¢))-
The backward information filter proceeds as follows from

Algorithm/N 50 100 250 500 1000 2500 5000

IMM Filter 24.69 - - - - - -

timet + L to ¢
Bootstrap Filter | 26.22 24.76 24.02 23.88 23.45 23.11 2279
MC Filter 2295 22.74 22.60 2264 2262 2263 22.62 P/;-:L|t+L(Tt+L)
= CM(re4 L) (D (114 L) D" (re4e1) T Cre1r)
from the MMSE estimates with respect to the true simulated tra- P/;-:L|t+L(Tt+L)m;+LIt+L (resr)
jectories = O (s ) (D) D (i)™
X (Y41 — G(re+p)us+ L) (8)

M T
1 iy
(RMS) =T Z Z ((Is,e — BB (m))?
m=1 t=1 andfork =t+L—1,---,¢
+ (Ly,e = [ SE(m)?)
Aj1(Tryiie+r)
wherel’M5E(;m) is the MMSE target position estimate in the T 1 -1
x direction at timet of the mth Monte Carlo simulation. We = [I"v + B ()P k+1|k+1(rk+1¢tH)B(TkH)}
present in Table | the performance of the IMM filter, the boos- p/—1 (Chg1:4L)
. . . . B4\t R+Ll:t4+L
trap filter, and our MC filter for various number of particles;

_ AT/ /—1
note that the IMM filter is an algorithm with a computational = A )P g (Chti )
complexity independent aV. The MC filter is more precise X (In, — B(r+1)Apt1(Trt1:e41)
_than the other methods. Its performance stabilizes quickly as X BT(7’k+1)P/;:i1|k+1(rk+l:t+L))A(7’k+l)
increases.

P/]:|]];+1(rk+1iH—L)m;v|k+1(rk+1it+L)
= AT(Tk-I-l)(Inr - Pl}:_|l_1|k+1 (rk—l—l:t—I—L)
VIlI. CONCLUSION Dad B(7’k+1)Ak+1(I‘k+1:t+L)BT(7’k+1))

i ) ) ) x Pt 1

In this paper, we presented on-line simulation-based algo- ’j+1|’“+1(rk+1't+h)

rithms to perform optimal filtering and fixed-lag smoothing of x (mk+1|k+1(rk+l:t+L) = F(riq1)un+1)
JMLS. These Monte Carlo algorithms are based on several ef’ ! (v, 1)

. . . . i |k :t4-L

ficient variance reduction methods. Although these algorithms pr-1

are computationally intensive, they can be straightforwardly k|k+1(r’“+“+’*)

implemented on parallel computers allowing for real-time + O () (D(r) D (1)) 1 C(r1)
applications. Two appl|cat|or_15 were pres_ented to |Ilustr<'_;1te thepla}g(rk:t+h)m;g|k(rk:t+h)

performance of these algorithms for online deconvolution of pr-1 ,

Bernoulli-Gaussian processes and tracking of a maneuvering — Rl (Tt Lo e D)0 gy (Phep s e

target. We showed in simulations that these methods outper-  + C™(r)(D(r) D™ (1)) ™  (yr — G(ra)uz)- 9)
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I I I

A}v(%u) . I(<Pt|t)2var7r(B}v(<Pt|t)) + varW(A}\,(%h)) - 2-[(<Pt|t)cov77(A}\T(<Pt|t)v B}v(‘ﬁﬂt))

e

var, | =X = . + O(N—%/%)
B}v(%u) N
_ Varﬂ((gaﬂt(Ttv ‘T) - I(§0t|t))w(rl:t7 xO:t)) + O(N,3/2)
N
APPENDIX B REFERENCES
PROOFS OFPROPOSITIONS [1] H. Akashiand H. Kumamoto, “Random sampling approach to state es-

Proof of Proposition 1: By the variance decomposition,
one has 2]

Varﬂ'(rlzt,XO:t|Y1:t)(w(r12t7 X02t)) (3]
= Varﬂ'(rl ey t)([Eﬂ'(xo t|y1:t7r1:t)(w(rl:t7 X02t)))

+ Enrs v 0 (VA oy, (0L Xo0it)): [‘”
5
However o)
(6]
[Ew(XO;tlylzt,rlzt)(w(rl:ta X0:1))
— / p(rl:taxo:tb’l:t) [7]
W(rlzta xO:t|y1:t)
X 71'(XO:t|y1:ta rl:t)de:t = w(rlzt)- [8]
We obtain similar results foﬂ’g(%h), ;4/%;(%”), E\}\;(%It)!
and B3 (¢y:), and (3) follows. - - o
Proof of Proposition 2:As A} (@) and By () are (10]
sums of NV i.i.d. random variables, we obtain, using the delta
method
— [11]
AL
var, ,A(%lt)
By (o) [12]
_ [Ew(A}v(wm))Qvar (Bi(¢11)) [13]
Ex(BL (puye)* 4
L Vel (pne))
Ex(BY (0)? [15]
_ 9 [Eﬂ'(AN(‘Ptlt))covﬂ'(A}\T((PtH)a By (¢111)) 6
E~(By(pu))?
+ O(N—3/2) [17]

Wh?f[‘Ew(A}\;(%lt)) = NE,(@e(re, 7)) = NI(py,), and  [18]
E~(By(@se)) = N. Thus, as itis shown in the equation at the

top of the page, one obtaifts. ((¢u(re, 1) — I(@ep))w(ry:y,  [29]
Xo:+)) = 0; therefore

e 20

B (@) [21]

o [Eﬂ'((gaﬂt(Tta xt) - I(‘Pt|t))2w2(r1: t, X0: f)) [22]
o N

+ O(N_g/Q). [23]

The expression of? follows, similarly we obtains2. Finally, [24]
one obtaing? — &3 using the variance decomposition.
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