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Particle Filters for State Estimation of Jump Markov
Linear Systems

Arnaud Doucet, Neil J. Gordon, and Vikram Krishnamurthy, Senior Member, IEEE

Abstract—Jump Markov linear systems (JMLS) are linear
systems whose parameters evolve with time according to a finite
state Markov chain. In this paper, our aim is to recursively com-
pute optimal state estimates for this class of systems. We present
efficient simulation-based algorithms called particle filters to
solve the optimal filtering problem as well as the optimal fixed-lag
smoothing problem. Our algorithms combine sequential impor-
tance sampling, a selection scheme, and Markov chain Monte
Carlo methods. They use several variance reduction methods to
make the most of the statistical structure of JMLS.

Computer simulations are carried out to evaluate the perfor-
mance of the proposed algorithms. The problems of on-line de-
convolution of impulsive processes and of tracking a maneuvering
target are considered. It is shown that our algorithms outperform
the current methods.

Index Terms—Filtering theory, Monte Carlo methods, state es-
timation, switching systems.

NOMENCLATURE

dimension of an arbitrary vector.
discrete time.
iteration number of the various iterative
algorithms.

For .
T .

Gaussian distribution of mean and co-
variance .
uniform distribution on .

distributed according to .
conditional upon , distributed ac-
cording to .
identity matrix of dimensions .

T transpose matrix.

I. INTRODUCTION

T HE FIELD of applied statistics has been revolutionized
during the past ten years due to the development of several

remarkable stochastic sampling algorithms that are collectively
termedMarkov chain Monte Carlo(MCMC) methods [33].
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MCMC methods are simulation-based algorithms that have led
to powerful numerical methods for computation of likelihoods,
posterior distributions, and estimates derived from them. Most
of the development in MCMC methods so far has focused
on off-line algorithms that operate on a fixed batch of data.
The aim of this paper is to propose and analyze recursive
(on-line) simulation-based algorithms. These algorithms
combine sequential importance sampling and MCMC algo-
rithms. Motivated by several applications in signal processing
outlined below, we focus on deriving recursive algorithms
for optimal state estimation of jump Markov linear systems
(JMLS)—which is a well-known NP-hard problem.

Let , denote a discrete time Markov chain with
known transition probabilities. A jump Markov linear system
can be modeled as

(1)

(2)

where denotes a known exogenous input, andand
denote independent white Gaussian noise sequences. A jump
Markov linear system can be viewed as a linear system whose
parameters ( , , , , , ) evolve
with time according to a finite state Markov chain. Neither
the continuous-state process nor the finite state process
are observed—instead, we observe the noisy measurement
process .

Jump Markov linear systems are widely used in several fields
of signal processing including seismic signal processing [30],
digital communications such as interference suppression in
CDMA spread spectrum systems [26], target tracking [4], [29],
and de-interleaving of pulse trains [31]. They can be viewed as
a generalization of the hidden Markov model (HMM) (which
consists of a Markov chain observed in white noise) to
correlated noise.

Under assumptions detailed later on, it is well known that
exact computation of the conditional mean filtered or smoothed
state estimates of and involves a prohibitive computational
cost exponential in the (growing) number of observations [37].
This is unlike the standard HMM for which conditional mean
state estimates can be computed with linear complexity in the
number of observations via the HMM filter. Recently, efficient
batch (off-line) deterministic and stochastic iterative algorithms
have been proposed to compute fixed-interval smoothed condi-
tional mean and maximuma posteriori(MAP) state estimates of

and ; see [10], [11], and [26]. However, in most real-world
applications, one wants to compute state estimates ofand
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recursively (on-line). The aim of this paper is to presentsimu-
lation-based recursivefiltering algorithms for computing con-
ditional mean estimates of the statesand given the obser-
vation history, namely, and . Simulation-
based algorithms for computing fixed-lag smoothed state esti-
mates and are also presented—the
fixed lag is a fixed positive integer.

Due to the prohibitive computational cost required to com-
pute fixed-lag and filtered state estimates ofand , it is
necessary to consider in practice suboptimal estimation algo-
rithms. A variety of algorithms has already been proposed in
the literature to solve these estimation problems [4], [18], [36],
[37]. Most of these algorithms are based on deterministic finite
Gaussian mixture approximations like the popular Interacting
multiple model (IMM) or the generalized pseudo-Bayes (GPB)
algorithms [4]. These methods are computationally cheap, but
they can fail in difficult situations.

Another possible suboptimal strategy is to compute a fixed
grid approximation to the filtered state density. This involves ap-
proximating the continuous-valued processby a finite state
process with fixed states (say). Thefixed grid
point values are called “particles.” The filtered
state density and, hence, filtered state estimates can then be com-
puted easily at these grid points according to Bayes’ rule. The
values of the filtered state density at these grid points are called
the “weights” of the particles. However, such a fixed grid ap-
proximation suffers from the curse of dimensionality—the ap-
proximation error depends on the state dimension of the un-
derlying jump Markov linear system. For example, for an uni-
form fixed grid, the approximation error behaves as ,
where denotes the state space dimension andthe number
of grid points (particles).

In this paper, we present Monte Carlo (MC) particle filters for
computing the conditional mean estimates. These particle filters
can be viewed as arandomized adaptive gridapproximation. As
will be shown later, the particles (values of the grid) evolve ran-
domly in time according to a simulation-based rule. The weights
of the particles are updated according to Bayes’ rule. The most
striking advantage of these MC particle filters is that the conver-
gence rate toward zero of the approximation error is independent
of the state dimension. That is, the randomization implicit in the
MC particle filter gets around the curse of dimensionality [8].

Taking advantage of the increase of computational power
and the availability of parallel computers, several authors
have recently proposed such MC particle methods [3], [16],
[21], [22]. It has been shown that these methods outperform
the standard suboptimal methods. In this paper, we propose
improved simulation-based approximations of the optimal
filter and smoother with novel variance reduction methods; the
filtering and fixed-lag smoothing distributions of interest are
approximated by a Gaussian mixture of a large number, say,

, of components that evolve stochastically over time and are
driven by the observations.

MC particle methods to solve optimal estimation problems
were introduced in automatic control at the end of the 1960s
by Handschin and Mayne [17] . Interesting developments were
then subsequently proposed in the 1970s [1], [35]. Most likely
because of the primitive computers available at the time, these

papers were overlooked and forgotten. In the beginning of the
1990s, the great increase in computational power allowed for
the rebirth of this field. In 1993, Gordonet al. [15] proposed an
algorithm (the bootstrap filter) that introduced a selection step
that statistically multiplies and/or discards particles at each time.
This key step led to the first operational particle filter. Following
this seminal paper, particle filters have stimulated great interest
in the engineering and statistical literature; see [12] for a sum-
mary of the state of the art. With these filters, complex nonlinear
non-Gaussian estimation problems can be solved efficiently in
an on-line manner. Moreover, they are much easier to implement
than classical numerical methods.

The bootstrap filter is a simple algorithm that can be easily
applied to JMLS. However, in its standard form, it does not use
all the salient structure of this model. We propose here simula-
tion-based algorithms that make use of this structure and include
efficient variance reduction techniques. Our algorithms have a
computational complexity of at each time step and can
be easily implemented on parallel computers. The filtering al-
gorithm is shown to be more efficient than the most recent com-
putational methods; see [3], [6], [16], [21], and [22]. Finally, we
show how this filtering algorithm can be combined with MCMC
methods [33] to obtain an efficient fixed-lag smoothing algo-
rithm. Given the importance of JMLS, earlier papers have al-
ready partly developed similar ideas [1], [6], [35]. We discuss
in detail these issues in Section V.

This paper is organized as follows. Section II presents the
signal model and estimation objectives in a formal way. In Sec-
tion III, an original simulation-based method is proposed to
solve the optimal filtering problem. We detail the different steps
of this method. In Section IV, after having shown that a direct
application of the previous methods to fixed-lag smoothing is
inefficient, we propose an original method based on the intro-
duction of MCMC algorithms. In Section V, a discussion of the
previous work on related problems and on the algorithms devel-
oped here is given. In Section VI, we demonstrate the perfor-
mance of the proposed algorithms via computer simulations for
deconvolution of impulsive processes and tracking of a maneu-
vering target. In Appendix A, the backward information filter
equations are recalled. Finally, the proofs of some propositions
are grouped in Appendix B. Detailed proofs of propositions can
be found in [14].

II. PROBLEM FORMULATION

A. Signal Model

Let denote a discrete-time, time-homogeneous,-state,
first-order Markov chain with transition probabilities

for any , where

. The transition probability matrix
is thus an matrix, with elements satisfying
and , for each . Denote the initial

probability distribution as , for ,
such that and . Consider the
following JMLS given in (1) and (2), where is the
system state, is the observation at time,
is a known deterministic input, and
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are i.i.d. Gaussian sequences, and
T .

and are functions of the Markov chain state, i.e.,

, and they evolve
according to the realization of the finite state Markov chain

. We assume that , where , and
let and be mutually independent for all. The
model parameters ,

are assumed
known.

B. Estimation Objectives

Given at time the observations , assuming that the
model parameters are exactly known, all Bayesian in-
ference for JMLS relies on the joint posterior distribution

, where
. Given , is a

Gaussian distribution whose parameters can be evaluated using
a Kalman filter. could be computed exactly, but
this discrete distribution has values, and thus, some approx-
imations have to be made as time increases. In this paper, we
are interested in the following optimal estimation problems:

• Filtering objectives: Obtain the filtering distribution
aswellastheMMSEestimateof

given by , where
.

• Fixed-lag smoothing objectives:Obtain the fixed-lag
distribution , where , as well
as the MMSE estimate of given by

, where
.

We restrict ourselves to the common case where
and can be

computed analytically.
Remark 1: In most filtering applications, we are inter-

ested in estimating the MMSE (conditional mean) state
estimates and cov . In these cases,

can be computed analytically
using the Kalman filter for the sequence .

III. SIMULATION -BASED OPTIMAL FILTER

This section is organized as follows. We describe the standard
importance sampling method and then show how variance re-
duction can be achieved by integrating out the statesusing
the Kalman filter. Then, we present a sequential version of im-
portance sampling for optimal filtering, generalizing the current
approaches in the literature. We show why it is necessary to
introduce a selection scheme, and then, we propose a generic
Monte Carlo filter.

A. Monte Carlo Simulation for Optimal Estimation

For any , we will assume subsequently that
. If we were able to sample i.i.d. random sam-

ples—called particles—
according to , then an empirical estimate of

this distribution would be given by

and, as a corollary, an estimate of is
. From this

distribution, one can easily obtain an estimate of for
any

This estimate is unbiased and, from the strong law of large num-
bers (SLLN), converges almost surely (a.s.) toward

as . If
, then a central limit theorem (CLT) holds

where “ ” denotes convergence in distribution. The advantage
of the MC method is clear. One can easily estimate for
any , and the rate of convergence of this estimate does not
depend on. Unfortunately, it is impossible to sample efficiently
from the “target” posterior distribution at
any time . Therefore, we focus on alternative methods.

A solution to estimate and
consists of using the well-known importance sampling method
[5]. This method is based on the following remark. Let us intro-
duce an arbitrary importance distribution ,
from which it is easy to obtain samples, and such that

implies . Then

where the importance weight is equal to

If we have i.i.d. random samples
distributed according to , then a

Monte Carlo estimate of is given by
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where the normalized importance weights are equal to

This method is equivalent to the following point mass approxi-
mation of :

and thus, .
The “perfect” simulation case, i.e.,

, would correspond to for any
. In practice, we will try to select the importance distribution

as close as possible to the target distribution in a given sense.
For finite, is biased (ratio of estimates), but
asymptotically according to the SLLN, converges
a.s. toward . Under additional assumptions, a CLT also
holds. However, we first show, in the next subsection, how the
variance of the estimate can be decreased.

B. Variance Reduction

It is possible to reduce the problem of estimating
and to one of sampling from

. Indeed,
, where is a Gaussian distribu-

tion whose parameters are given by the Kalman filter. Thus,
given an approximation of , ones gets straight-
forwardly an approximation of . Moreover, if

can be evaluated in a closed-form
expression, then the following alternative Bayesian importance
sampling estimate of can be proposed:

where

and

Intuitively, to reach a given precision, will require a

reduced number of samples over as we only need
to sample from a lower dimensional distribution. This is proven
in the following propositions, where it is shown that if one can

integrate analytically, then the variances of the resulting
estimates are lower than the ones of the “crude” estimates.

Proposition 1: The variances of the importance weights, the
numerators, and the denominators satisfy for any

var

var

var

var

var

var

var

var

var (3)

A sufficient condition for to satisfy a CLT is
var and

for any [5]. This
trivially implies that also satisfies a CLT. More
precisely, we get the following result.

Proposition 2: Under the assumptions given above,

and satisfy a CLT

where

var

Given these results, we now focus on importance sampling
methods to get an approximation of and
using an importance distribution . Up to now, the
methods we have described are batch methods. We show in the
next subsection how to obtain a sequential method.

C. Sequential Importance Sampling

One can always rewrite the importance function at timeas
follows:
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where is the probability distribution of
conditional upon and . Our aim is to obtain, at any
time , an estimate of the distribution and to be able
to propagate this estimate in time without modifying, subse-
quently, the past simulated trajectories .
This means that admits as mar-
ginal distribution at time . This is possible if we restrict our-
selves to importance functions of the following form:

(4)

Such an importance function allows for a recursive evaluation
of and, thus, of , where theincre-
mental weight is given by

Further on, denotes the normalized version of, i.e.,
.

1) Choice of the Importance Distribution:There are infin-
itely many possible choices for , the only condition
being that its support includes the one of , that is, the
support of . A sensible selection criterion is to choose a
proposal that minimizes the variance of the importance weights
at time , given and . According to this strategy, the
following proposition establishes the optimal importance distri-
bution.

Proposition 3: is the distribution that
minimizes the variance of the importance weights conditional
on and .

The proof is straightforward as one can easily check that the
conditional variance is equal to zero in this case. We show how
to implement this “optimal” distribution and then describe sev-
eral suboptimal methods.

• Optimal Sampling Distribution:The optimal distribution
satisfies

and the associated importance weightis proportional
to

where and are, re-
spectively, the innovation and the one-step-ahead
prediction covariance of the observation conditional
on . Computing
requires the evaluation ofone-step-ahead Kalman filter
steps. It is thus computationally intensive ifis large.

• Prior Distribution: If we use the prior distribu-
tion as importance distribution, the im-
portance weight is proportional to ,

, . It only requires
one step of a Kalman filter to be evaluated.

• Alternative Sampling Distribution:It is possible to de-
sign a variety of alternative sampling distributions. For ex-
ample, one can use the results of a suboptimal determin-
istic algorithm to construct an importance sampling distri-
bution.

2) Degeneracy of the Algorithm:The following proposition
shows that for importance functions of the form (4), the vari-
ance of can only increase (stochastically) over time. The
proof of this proposition is an extension of a Kong–Liu–Wong
[23, p. 285] theorem to the case of an importance function of
the form (4) and is omitted here.

Proposition 4: The unconditional variance (i.e., with the ob-
servations being interpreted as random variables) of the im-
portance weights increases over time.

It is thus impossible to avoid a degeneracy phenomenon.
Practically, after a few iterations of the algorithm, all but one of
the normalized importance weights are very close to zero, and
a large computational burden is devoted to updating trajectories
whose contribution to the final estimate is almost zero. That
is why it is of crucial importance to introduce a selection step
in the algorithm. The aim of this selection step is to discard
the particles with low normalized importance weights

and to multiply the ones with high to avoid the
degeneracy of the algorithm and to jump into the interesting
zones of the space. Each time a selection step is used the
weights are reset to .

D. Selection Step

A selection procedure associates with each particle, say
( ), a number of “children” , such that

, to obtain new particles . If , then
is discarded; otherwise, it has “children” at time . If we

use a selection schemeat each time step, then before the selec-
tion scheme, we have a weighted distribution

, and after the selection step, we have

1) Some Selection Schemes:We describe here some selec-
tion schemes and show how to implement them in itera-
tions.

• Sampling Importance Resampling (SIR)/Multinomial
Sampling Procedure:This procedure, which was intro-
duced originally by Gordonet al.[15], is the most popular
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one. One samples times from to obtain
; . This is equivalent to drawing

jointly ; according to a multinomial
distribution of parameters and . This algorithm
has originally been implemented in oper-
ations [15]. In fact, it is possible to implement exactly
the SIR procedure in operations by noticing that
it is possible to sample in operations i.i.d.
variables uniformly distributed in andordered, i.e.,

using a classical algorithm [9],
[32, p. 96]. In this case, we have and
var . However, as pointed out
in [25], it is possible and better to use selection schemes
with a reduced variance.

• Residual Resampling[25]: This procedure performs as
follows. Set and then perform a SIR proce-
dure to select the remaining samples
with the new weights ; finally,
add the results to the current . In this case, we obtain

, but var .

Recent theoretical results obtained in [8] suggest that it is
not necessary to design unbiased selection schemes, i.e., we can
have .

2) On the Use of a Selection Scheme:Two estimates of
can be proposed before ( ) and after ( )

the selection scheme at time, where

Using the variance decomposition, it is straightforward to show
that if the selection scheme used is unbiased, then

var

var

var

var var

var

Therefore, it is better to estimate using as the
selection scheme can only increase the variance of the estimate.
However, as shown in [24] in a different framework that could be
adapted to our case, it is worth resampling as it usually decreases
the variance of the following estimates , where .

E. Implementation Issues

Given at time , random samples
distributed approximately according to

, the MC filter proceeds as follows at time.

Particle Filter for JMLS
Sequential Importance Sampling Step
� For i = 1; � � � ; N , sample ~r

(i)
t � �(rtjy1: t; r

(i)
1: t�1), and set

~r
(i)
1: t

�
= (r

(i)
1: t�1; ~r

(i)
t ).

� For i = 1; � � � ; N , evaluate the importance weights up to a
normalizing constant

w
(i)
t /

p ytjy1: t�1; ~r
(i)
1: t p ~r

(i)
t j~r

(i)
t�1

� ~r
(i)
t jy1: t; ~r

(i)
1: t�1

: (5)

� For i = 1; � � � ; N , normalize the importance weights

~w
(i)
t =

N

j=1

w
(j)
t

�1

w
(i)
t : (6)

Selection Step
� Multiply/Discard particles (~r

(i)
1: t; i = 1; � � � ; N) with respect

to high/low normalized importance weights ~w
(i)
t to obtain N

particles (r
(i)
1: t; i = 1; � � � ; N).

Clearly, the computational complexity of this algorithm
at each iteration is . At first sight, it could appear that
one needs to keep in memory the paths of all trajectories, that
is, . In this case, the storage require-
ments would increase linearly over time. Actually, under the
standard assumption that only depends
on via the set of low-dimensional sufficient statistics

and , this is the case for
and ; then, one only needs to keep in memory
these statistics. Therefore, the storage requirements are still

and do not increase over time.
Remark 2: In the case where we use

, the importance weight
does not depend on. It is thus possible to perform the

selection step before the sequential importance sampling step.

IV. SIMULATION -BASED OPTIMAL FIXED-LAG SMOOTHER

In many applications of interest, it is possible to wait for
a fixed delay, say , before performing estimation of the
states at time . Results can then be significantly improved
while keeping an on-line estimation scheme. We show in this
section that a direct application of the previous methodology
to fixed-lag smoothing is not satisfactory if is large and then
propose an alternative method.

A. Some Strategies for Fixed-Lag Smoothing

1) Direct Extension:The proposed simulation-based filter
can be theoretically, and straightforwardly, extended to fixed-lag
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smoothing. At time , we have an MC approximation

of the distribution . Therefore, an estimate of
the marginal distribution is

However, the trajectories have been resampledtimes, from
time to . There is consequently a loss of diversity
in the trajectories, i.e., one typically only has few distinct tra-
jectories at time , and the approximation of the posterior
distribution might then be poor; this is the so-called problem of
sample depletion [10].

2) Sampling Using : One solution to this problem
consists of sampling using an importance distribution
based on the observations up to time , i.e., introducing

. The same developments as in
Section III-C apply. If one wants to minimize the variance of
importance weights sequentially, conditional on and

, then is the optimal importance
function. In doing so, the importance weights at timeare
equal to

Sampling from and evaluating
requires steps of the Kalman

filter, each one being associated with all the possible trajectories
from time to time . This is computationally very

expensive as .
3) Using MCMC Methods:We propose here an alternative

and computationally cheaper method. This consists of simply
adding a step to the simulation-based filter, and it drastically re-
duces the problem of sample depletion. At time , the parti-
cles, say , have typically very few distinct values at
time as the trajectories have been resampled times. Sev-
eral suboptimal methods have been proposed in the literature to
introduce diversity amongst the samples. They are mainly based
on kernel density methods [12], [34]. Based on the current set of
particles, the probability distribution is estimated using a kernel
density estimate and a new set of distinct particles is sampled
from it. These methods require the choice of a specific kernel
[16] and are not suitable in our case as the distribution to es-
timate is discrete. Moreover, they introduce an additional MC
variation. We propose here a totally different approach that con-
sists of applying MCMC steps to the particles; see [33] for an
introduction to MCMC. This idea has been proposed in [27] in
a very different context.

Assume that the particles are distributed marginally
according to . Then, if we apply to each par-

ticle a Markov transition kernel of invariant
distribution , i.e., such that

then the new particles are still distributed ac-
cording to the posterior distribution of interest. Therefore,
if is a kernel that updates stochastically

to obtain , then we have a theoretically valid
way of introducing diversity amongst the samples. It is pos-
sible to use all the standard MCMC methods such as the
Metropolis–Hastings or the Gibbs samplers. However, contrary
to classical MCMC methods, it is not necessary to introduce
an ergodic transition kernel. This method can only improve
results in the sense that it reduces the total variation norm of the
current distribution of the particles with respect to the “target”
posterior distribution; see [33] for example.

B. Implementation Issues

1) Algorithm: Given at time , random
samples distributed approximately
according to , the algorithm proceeds as
follows at time .

Particle Fixed-Lag Smoother for JMLS

Sequential Importance Sampling Step
� For i = 1; � � � ; N , sample ~r

(i)
t+L � �(rt+Ljy1: t+L; r

(i)
1: t�1)

and ~r
(i)
1: t+L

�
= (r

(i)
1: t+L�1; ~r

(i)
t+L

).

� For i = 1; � � � ; N , evaluate the normalized importance
weights ~w

(i)
t+L

using (5) and (6).

Selection Step
� Multiply/Discard particles (~r

(i)
1: t+L

; i = 1; � � � ; N) with re-
spect to high/low normalized importance weights ~w

(i)
t+L

to ob-
tain N particles (r0

(i)
1: t+L

; i = 1; � � � ; N).

MCMC Step
� For i = 1; � � � ; N , apply to r

0(i)
1: t+L a Markov tran-

sition kernel K(r
(i)
1: t+Ljr

0(i)
1: t+L) of invariant distribution

p(r1: t+Ljy1: t+L) to obtain N particles (r
(i)
1: t+L; i = 1;� � � ;

N).

2) Implementation of MCMC Steps:There is an infinity of
possible choices for the MCMC transition kernel. We propose
here to use a Gibbs sampling step that updates at time the
values of the Markov chain from timeto , i.e., we sample

for according to ,
where

and

It is straightforward to check that this algorithm admits
as invariant distribution [33]. Sampling

from for can be done
by the following backward–forward procedure of complexity
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. This algorithm has been developed in a batch
framework in [9] and [11]; therefore, the proofs are omitted
here. It proceeds as follows at time for the particle .

Backward–Forward Procedure

Backward Step
For k= t+ L; � � � ; t, compute and store P 0�1

kjk+1(r
0(i)
k+1: t+L

)

and P 0�1
kjk+1(r

0(i)
k+1: t+L

)m0
kjk+1(r

0(i)
k+1:t+L

) using (8) and (9)
given in Appendix B.
Forward Step
For k = t; � � � ; t + L

� For m = 1; � � � ; s, run one step ahead the Kalman
filter with rk = m, store mkjk(r

(i)
1:k�1; rk = m) and P

kjk(r
(i)
1:k�1; rk=m), and then compute p(rk=mjy1:t+L; r

(i)
�k
)

using (7) given below.
� Sample r

(i)
k

� p(rkjy1: t+L; r
(i)
�k
), and store mkjk(r

(i)
1:k�1; r

(i)
k
) and Pkjk(r

(i)
1:k�1; r

(i)
k
).

The quantities and

are given by the backward informa-
tion filter recursion given in Appendix B, and for any

, we have

T

T

T

T

(7)

where T ,1

being a , diagonal matrix
with the nonzero eigenvalues of as elements and

T

T

The computational complexity of the resulting MC fixed-lag
smoother algorithm at each iteration is , and
one needs to keep in memory the paths of all trajecto-
ries as well as

for .

1
~Q (r ) and ~� (r ) are straightforwardly obtained using the sin-

gular value decomposition ofP (r ).

V. DISCUSSION

Numerous methods have been proposed earlier in the litera-
ture to address the problems posed in this paper. In this section,
we discuss these approaches and compare them with ours. To
obtain MMSE filtered estimates, most algorithms are based
on deterministic finite Gaussian mixtures approximations with
a few components such as the popular IMM algorithm [4],
[29] or the detection/estimation algorithm (DEA) [37]; see, for
example, [18] and [20] for related methods. These algorithms
are computationally cheaper than the ones we present here, but,
for example, the IMM can fail in difficult situations such as
when the likelihood at time is multimodal, and the posterior
distribution at time is vague. Taking advantage of the
increasing computational power available and of the intrinsic
parallelizability of particle filters, several recent papers have
proposed to use the bootstrap filter to perform optimal filtering
of JMLS; see [3], [21], and [22] and an improved version of
it based on kernel density estimation [16]. It has been shown
by Monte Carlo simulations that these methods outperform the
classical suboptimal methods. However, the bootstrap filter
consists of sampling, at time, the states according
to . and are simulated indepen-
dently of ; therefore, this strategy is sensitive to outliers,
and the distribution of the importance weights can be highly
skewed. In our scheme, the continuous statesare integrated
out, which leads to estimates with a reduced variance, and
the importance distribution can be chosen on a case-by-case
basis. In the bootstrap filter, the particles are selected using the
SIR algorithm. We showed that it is possible to use a quicker
selection scheme having a reduced variance. Some previous
works have, however, already introduced some of these ideas.
The closest filtering algorithm to the one presented in this
paper is the random sampling algorithm (RSA) of Akashi and
Kumamoto [1], [37]. This algorithm corresponds to the sequen-
tial importance sampling method using as
importance distribution. This distribution was introduced fol-
lowing a different criterion. Similar work was developed later
in [6] and [35]. However, these authors neither presented the
general sequential importance sampling framework allowing
the use of general importance distributions nor discussed the
improvements brought by variance reduction. Moreover, the
key selection step is omitted in these papers, and thus, after
a few time steps, the algorithm collapses. It is worth noticing
that Tugnait [37] compared, via Monte Carlo simulations, the
RSA algorithm and some computationally cheaper alternative
algorithms like the DEA. It appeared that the results of the
RSA algorithm were less precise than those of the alternative
methods. Nevertheless, in this early work, only a small number

of particles and no selection scheme were used. In our Monte
Carlo simulations, the obtained results are totally different.

Finally, we are not aware of any paper combining particle
filters and MCMC for JMLS. In a batch framework, some al-
gorithms have been proposed to estimate for

to maximize using a coordinate
ascent method. However, the popular single most likely replace-
ment (SMLR) algorithm [30] has a complexity , whereas
our method applied to this case has a complexity .
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Fig. 1. Top: simulated signalx (solid line) and observationsy (dotted line).
Bottom: simulated sequencev .

VI. SIMULATIONS

Computer simulations were carried out to evaluate the
performance of our algorithms. Section VI-A considers the
problem of estimating a sparse signal based on a set of noisy
data. Section VI-B considers the problem of tracking a maneu-
vering target.

A. Detection of Bernoulli–Gaussian Processes

In several problems related to seismic signal processing and
nuclear science [7], [30], the signal of interest can be mod-
eled as the output of a linear filter excited by a BG process
and observed in white Gaussian noise. The input sequence is

, , and the observa-

tion noise is . and are mutually indepen-
dent sequences. The linear filter is modeled by an AR(2) model.
Thus, we have , and the signal admits the following
state-space model:

T T

In the following simulations, we set the parameters to
, , , and .

observations are generated and are depicted in Fig. 1. In Fig. 2,
we present the results obtained using the particle filtering algo-
rithms with particles. We sample from the optimal dis-
tribution and perform fixed-lag smoothing
with . The results are compared with an off-line iterative
Gibbs sampling method to compute [11]. Fixed-lag
smoothing significantly improves the detection of occurrences
with respect to filtering. Moreover, as shown in Fig. 2, the per-
formance of the fixed-lag smoothing and batch methods appears
to be very similar. Our studies show that the results obtained
using a higher number of particles are indistinguishable.

Fig. 2. Top: estimated probabilitiesp(r = 1jy ) (Particle filter). Middle:
estimated probabilitiesp(r = 1jy ) (for t = 1; � � � ; 235) (Particle
fixed-lag smoother). Bottom: estimated probabilitiesp(r = 1jy ) (Gibbs
sampler).

B. Tracking of a Maneuvering Target

We address the problem of tracking a maneuvering target in
noise. The difficulty in this problem arises from the uncertainty
in the maneuvering command driving the target. The state of the
target at time is denoted as T, where

( ) and ( ) represent the position and velocity of
the target in the (resp. in the ) direction. It evolves according
to a JMLS model of parameters [4]

and diag . The switching term is
, where is a three-state Markov chain corresponding

to the three possible maneuver commands:

• straight;
• left turn;
• right turn.

It has the following transition probabilities:
and for . We have for any

T, T,
and T. We sample
according to the optimal distribution. In Fig. 3, we dis-
play a realization of the signal and the MMSE estimate

computed using parti-
cles.

We also perform different measurement realiza-
tions and compare our results with the IMM algorithm [29] and
the standard bootstrap filter [15]. The performance measure is
the root mean square (RMS) position error computed as follows
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Fig. 3. Simulated path of the target(l ; l ) (solid line), observations
(dots), and MMSE estimate (dashed line).

TABLE I
RMS FOR IMM, B OOTSTRAPFILTER, AND MC FILTER

from the MMSE estimates with respect to the true simulated tra-
jectories

(RMS)

where is the MMSE target position estimate in the
direction at time of the th Monte Carlo simulation. We

present in Table I the performance of the IMM filter, the boos-
trap filter, and our MC filter for various number of particles;
note that the IMM filter is an algorithm with a computational
complexity independent of . The MC filter is more precise
than the other methods. Its performance stabilizes quickly as
increases.

VII. CONCLUSION

In this paper, we presented on-line simulation-based algo-
rithms to perform optimal filtering and fixed-lag smoothing of
JMLS. These Monte Carlo algorithms are based on several ef-
ficient variance reduction methods. Although these algorithms
are computationally intensive, they can be straightforwardly
implemented on parallel computers allowing for real-time
applications. Two applications were presented to illustrate the
performance of these algorithms for online deconvolution of
Bernoulli–Gaussian processes and tracking of a maneuvering
target. We showed in simulations that these methods outper-

form not only the standard suboptimal methods but recent
simulation-based methods as well.

Throughout this paper, the model parametersare assumed
known. It is, however, possible to perform batch and on-line
maximum likelihood estimation of these parameters combining
the particle filtering methods developed here and standard ex-
pectation-maximization or gradient-type algorithms; see [19]
for details.

APPENDIX A
KALMAN FILTER AND BACKWARD INFORMATION FILTER

Conditional on , the system (1) and (2) is linear
Gaussian until ; it is thus possible to compute, using the
Kalman filter, the one-step-ahead prediction and covariance
of ( , , and

, ), the filtered estimate and covariance

of ( , , and ,
), the innovation at time, and the covariance of this inno-

vation ( , , and

, ).
The backward information filter proceeds as follows from

time to :

T T

T T

(8)

and for

T

T

T

T

T

T T

T T (9)
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var
var var cov

var

APPENDIX B
PROOFS OFPROPOSITIONS

Proof of Proposition 1: By the variance decomposition,
one has

var

var

var

However

We obtain similar results for , , ,

and , and (3) follows.

Proof of Proposition 2: As and are
sums of i.i.d. random variables, we obtain, using the delta
method

var

var

var

cov

where , and

. Thus, as it is shown in the equation at the
top of the page, one obtains ,

; therefore

var

The expression of follows, similarly we obtain . Finally,
one obtains using the variance decomposition.
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