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Markov chain Monte Carlo (MCMC) methods, while facilitating the solution of many complex prob-
lems in Bayesian inference, are not currently well adapted to the problem of marginal maximum a
posteriori (MMAP) estimation, especially when the number of parameters is large. We present here
a simple and novel MCMC strategy, called State-Augmentation for Marginal Estimation (SAME),
which leads to MMAP estimates for Bayesian models. We illustrate the simplicity and utility of
the approach for missing data interpolation in autoregressive time series and blind deconvolution of
impulsive processes.
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1. Introduction

When performing Bayesian inference, we are often faced with
models that involve high-dimensional unknown parameters.
When the marginal MAP (MMAP) estimate is required for in-
ference, that is, when some parameters are nuisance parameters,
they must be integrated out. To define notation and terminology,
consider the following Bayesian model:θ = (θ1,θ2) ∈ Θ1×Θ2

is a random parameter with prior density p(θ) associated with
the likelihood p(y |θ). The MMAP estimate θMMAP

1 of the
parameter of interest θ1 is defined as:

θMMAP
1 = arg max

Θ1

p(θ1 | y) (1)

where

p(θ1 | y) =
∫
Θ2

p(θ1,θ2 | y) dθ2 (2)

In cases where a zero-one loss function is applied, the MMAP
estimator is optimal. Approximating θMMAP

1 is a complex prob-
lem, however, since, in general, neither the maximization (1)
nor the integration (2) can be performed analytically. While
the posterior mean estimate is more popular in the statistical

literature, it does not always make good sense. For instance,
the posterior mean of the parameters of a standard mixture
are all equal unless some additional constraints are imposed
on them. In a more general setup, the marginal posterior dis-
tribution might be multimodal and the MMSE estimate is lo-
cated between the modes, possibly in a region of very low
probability.

When (2) can be performed in closed-form, a classical
method for obtaining the MMAP estimate is the Expectation-
Maximization (EM) algorithm (Dempster, Laird and Rubin
1977). The EM algorithm is a deterministic algorithm that
converges towards a stationary point of the marginal poste-
rior density and depends on initialization. It is also limited
to certain classes of models for which the expectation and
maximization steps can be performed conveniently; stochas-
tic variants of EM such as Stochastic EM (SEM) (Celeux
and Diebolt 1985) and Monte Carlo EM (MCEM) (Wei and
Tanner 1990) have been developed to partially circumvent these
limitations.1 It is worth noting that in these EM-based estima-
tion schemes, the parameter of interest is always updated deter-
ministically in the M step while, in the State Augmentation for
Marginal Estimation (SAME) algorithm described below, this
parameter is updated stochastically. This extra degree of random-
ness is a key ingredient for preventing convergence to a local
mode.
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Within a “standard” Monte Carlo framework, marginal infer-
ence can be performed by drawing random samples from the
joint posterior density p(θ1,θ2 | y) and simply discarding the
nuisance parameters: marginalisation is performed implicitly.
In principle any random sampling algorithm can be adopted
here (Ripley 1987) but, when the distributions are complex, the
most likely sampling method will be Markov chain Monte Carlo
(MCMC) (Gilks, Richardson and Spiegelhalter 1996, Robert
and Casella 1999). In many cases, it is possible to design
an efficient MCMC algorithm to sample from the joint den-
sity p(θ1,θ2 | y). However, while MCMC methods allow us to
perform approximate MMAP estimation by histogram or den-
sity estimation applied to the MCMC sample, these methods
are more suited to integration than to optimization problems.
As an alternative, simulated annealing (SA) methods might
be considered for maximizing p(θ1 | y) (Van Laarhoven and
Arts 1987). SA methods are a non-homogeneous variant of
MCMC which perform global optimization. However, classical
SA methods require evaluation of p(θ1 | y) up to a normalizing
constant and do not introduce θ2, whereas the introduction of
θ2 is useful for the design of efficient Bayesian computational
algorithms.

In this article we propose a new Monte Carlo method for per-
forming MMAP estimation in general Bayesian models. The
method is related to SA in that we also simulate from a distri-
bution proportional to the marginal posterior raised to a power
γ , but the means of achieving this are quite different: we em-
ploy an augmented probability model constructed in such a way
that the marginal density of θ1 is proportional to pγ (θ1 | y). The
algorithm is conceptually very simple and straightforward to
implement in most cases, requiring only small modifications to
MCMC code written for sampling from p(θ1,θ2 | y).

The paper is organized as follows. In Section 2 the new
MCMC strategy for performing MMAP estimation is described,
which we call SAME. In Section 3, the method is applied to
MMAP estimation of missing data in autoregressive time series
and blind deconvolution of impulsive sequences. These exam-
ples demonstrate both the importance of performing MMAP es-
timation in certain problems and the effectiveness of the SAME
method.

2. MCMC strategies for MMAP estimation

Before presenting the proposed scheme, we consider how
standard MCMC approaches might be adapted for MMAP
estimation.

2.1. Standard MCMC approaches

Assume that we have generated via MCMC a set of (approxi-
mate, dependent) samples {(θ(i)

1 ,θ
(i)
2 ); i = 1, . . . , N } from the

joint posterior density p(θ1,θ2 | y). Then, if p(θ1 | y) is avail-
able up to a normalizing constant, it is possible to propose the

following estimate of θMMAP
1

θ̂
MMAP
1 = arg max

θ
(i)
1 ;i=1,...,N

p(θ1 | y)

This method is not efficient in the sense that random samples
approximately distributed from p(θ1 | y) only rarely explore the
vicinity of the mode, unless the posterior has large probability
mass around the mode; much computation is thus wasted explor-
ing areas of no interest for MMAP estimation. When p(θ1 | y)
is not available up to a normalizing constant, more sophisticated
approaches might consider kernel density estimation to find the
mode from the samples. These methods, however, are unsuitable
for high-dimensional parameters.

2.2. State augmentation for marginal estimation (SAME)

We present here an alternative simulation-based strategy that is
formally related to the SA algorithm. SA methods are a non-
homogeneous variant of MCMC used to perform global op-
timization where the invariant density at iteration i of the al-
gorithm is the density proportional to pγ (i)(θ1 | y), γ (i) being
a positive increasing sequence tending to infinity. The basic
idea is that as γ (i) goes to infinity then pγ (i)(θ1 | y) concen-
trates itself upon the set of global modes. As in SA, our it-
erative algorithm replaces the target density p(θ1 | y) by the
density p̄γ (i)(θ1 | y) ∝ pγ (i)(θ1 | y) at iteration i . In the SA
literature, it has been shown under various assumptions that
convergence to the set of global maxima is ensured for a se-
quence γ (i) growing logarithmically (Van Laarhoven and Arts
1987). However, in practice, the logarithmic function grows
too slowly to be useful; that is the density p̄γ (i)(θ1 | y) does
not concentrate quickly enough upon the global modes. Se-
quencesγ (i) with a polynomial or an exponential growth are thus
preferred.

For the sake of clarity we first assume that γ = γ (i) is fixed
and does not depend on the iteration number. In the classical
SA framework, sampling from p̄γ (θ1 | y) is realized by using
a Metropolis-Hastings or Gibbs sampler. However, such an al-
gorithm cannot be developed when one is not able to evaluate
p(θ1 | y) straightforwardly (up to a normalizing constant), and
may be hard to construct effectively even when the marginal is
available. A novel approach based on a different idea is proposed
here.

We define an artificially augmented probability model whose
marginal density is p̄γ (θ1 | y) where γ is a positive integer.

If samples θ
(i)
1 can be drawn from this concentrated distribu-

tion, then as γ becomes large the samples will be concentrated
around the global modes of p(θ1 | y). This can be achieved
by means of artificial replications of the nuisance parame-
ters in the model. We thus augment the model by replacing
θ2 with γ artificial replications, denoted by θ2(1), . . . ,θ2(γ ).
Each of these replications is now treated as a distinct ran-
dom variable in its own right and the following joint density is
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defined

qγ (θ1,θ2(1), . . . ,θ2(γ ) | y) ∝
γ∏

k=1

p(θ1,θ2(k) | y) (3)

The marginal density for θ1 in (3) is obtained by integration over
all the replications of θ2

qγ (θ1 | y)

=
∫

· · ·
∫

qγ (θ1,θ2(1), . . . ,θ2(γ ) | y) dθ2(1) · · · dθ2(γ )

∝
∫

· · ·
∫ γ∏

k=1

p(θ1,θ2(k) | y) dθ2(1) · · · dθ2(γ )

= p̄γ (θ1 | y)

So, if we build a MCMC algorithm in the augmented space,
with invariant density qγ (θ1,θ2(1), . . . ,θ2(γ ) | y), then the sim-

ulated sequence {θ(i)
1 ; i ∈ N} will be drawn from the marginal

posterior of interest, p̄γ (θ1 | y): this is the general SAME strat-
egy.

An important point here is that when a MCMC sam-
pler is available for the density p(θ1,θ2 | y) then it is usu-
ally easy to construct a MCMC sampler to sample from
qγ (θ1,θ2(1), . . . ,θ2(γ ) | y), as the replications of the missing
data set are statistically independent conditional upon θ1, i.e.

qγ (θ2(1), . . . ,θ2(γ ) | y,θ1) =
γ∏

k=1

p(θ2(k) | y,θ1) (4)

and for θ1 the full conditional density satisfies

qγ (θ1 | y,θ2(1), . . . ,θ2(γ )) ∝
γ∏

k=1

p(θ1 | y,θ2(k)) (5)

According to (4), the sampling step for θ2(k) is identical to its
counterpart in a standard data augmentation sampler with target
density p(θ1,θ2(k) | y) while the sampling step for θ1 involves
a draw from qγ (θ1 | y,θ

(i)
2 (1), . . . ,θ(i)

2 (γ )). If p(θ1 | y,θ2) is a
member of the regular exponential family, then sampling from
qγ (θ1 | y,θ

(i)
2 (1), . . . ,θ(i)

2 (γ )) is straightforward as the product
of conditionals in (5) is also a member of this exponential family.
In more general settings, (5) can be simulated via a slice sampler,
a random walk or a Langevin diffusion Metropolis–Hastings
sampler, since this density is available in closed-form (Robert
and Casella 1999).

We have assumed a fixed γ (i) = γ so far. In practice, if we
run our algorithm with a high value of γ , then the simulated se-
quenceθ(i)

1 will most likely get stuck in a local maximum located

close to θ
(0)
1 as the marginal density p̄γ (θ1 | y) is more concen-

trated around its (local and global) maxima than p(θ1 | y). It is
thus beneficial to use an increasing sequence γ (i) in a fashion
similar to standard SA such that limi→+∞ γ (i) = +∞. Con-
trary to standard SA, however, γ (i) has to be a sequence of
strictly positive integers in the SAME algorithm. Typically, we
start at iteration i = 1 with the most diffuse possible (marginal)

invariant density p(θ1 | y), that is we set γ (1) = 1, in order to
facilitate the exploration of the state-space. At this point, we
have a MCMC transition kernel with (marginal) invariant den-
sity p(θ1 | y); we then progressively increase γ (i) so that, at
iteration i , we have p̄γ (i)(θ1 | y) as (marginal) invariant density.
As mentioned before, proper sequences for regular SA schemes
have a logarithmic growth rate but sequences with faster growth
rate have to be used in practice (Van Laarhoven and Arts 1987).

Example. If a data augmentation algorithm can be applied
to sample from p(θ1,θ2 | y) by sampling iteratively and
successively from p(θ1 | y,θ2) and p(θ2 | y,θ1), then a non-
homogeneous SAME version of this algorithm to maximize
p(θ1 | y) proceeds as follows:

Non-homogeneous SAME method

1. i = 0. Initialize θ
(0)
1 .

2. Iteration i, i ≥ 1

• For k = 1, . . . , γ (i), sample θ
(i)
2 (k) ∼ p(θ2 | y,θ

(i−1)
1 ).

• Sample θ
(i)
1 ∼ qγ (i)(θ1 | y,θ

(i)
2 (1), . . . ,θ(i)

2 (γ (i))).

This algorithm is run until the sequence of the θ(i)
1 ’s stabilises,

that is, for N iterations, producing an approximation of θMMAP
1

as θ̂MMAP
1 = θ

(N )
1 .

3. Applications

A sequence γ (i) going to infinity is theoretically required for
p̄γ (i)(θ1 | y) to concentrate itself on the set of global maxima.
In practice, as for classical SA algorithms, this cannot be im-
plemented. In all the applications we addressed, a maximum
value of γ (i) around 100 is apparently sufficient to observe con-
vergence of the SAME procedure. Thus, in all the examples
addressed here, we implemented, as is usually done for classical
SA algorithms in practice (Van Laarhoven and Arts 1987), N
iterations of the SAME algorithm with a sequence growing lin-
early, i.e. γ (i) = [a + ib], satisfying γ (0) = 1 and γ (N ) = 100.
Other polynomial and exponential growing sequences have been
implemented but the SAME procedure appeared fairly robust
to the selected sequence. A rigorous convergence assessment
procedure for a non-homogeneous Markov chain such as the
SAME algorithm is unfortunately not available currently, given
the difficulties that beset convergence assessment even of ho-
mogeneous chains (Robert 1998). Practical guidelines include
graphical monitoring of the stability of the simulated MMAP es-
timates as well as multiple pilot runs from overdispersed random
starting points.

3.1. Missing data estimation in autoregressive time series

3.1.1. Signal model and estimation objectives

We first consider a problem which applies in the replacement
of missing data packets in speech signals and the restoration of
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audio time series (Godsill and Rayner 1998). The data sequence
xt is assumed to be drawn from an autoregressive (AR) process
with coefficients a = [a0, . . . , aL−1]T and the state vector at
time sampling instant t is denoted by xt = [xt , . . . , xt−L+1]T.
The prior distribution for the initial state xL is diffuse. The model
is written as

xt = aTxt−1 + et

where et is assumed to be a white Gaussian excitation sequence
with variance σ 2. The signal xt is assumed unobserved (missing)
at sampling points I = {i1, . . . , il} ⊂ {1, . . . , T }, but fully
observed elsewhere in the interval {1, . . . , T }. The observed
data is x−I

�= {xt ; t ∈ {1, . . . , T }−I}, the missing data is xI
�=

{xt ; t ∈ I} and the nuisance parameters (a, σ 2) are unknown. We
assign the conjugate normal-inverted gamma prior distribution
to a and σ 2:

a | σ 2 ∼ N (0, σ 2�0) and σ 2 ∼ IG
(

η0

2
,
ν0

2

)

with �0 a regular matrix. Given the set of observations x−I , our
aim is to estimate θ1 = xI in a MMAP sense, i.e. obtaining
θMMAP

1 = arg maxp(θ1 | x−I ). This is a model which allows an
exact EM implementation for direct comparison with SAME.

3.1.2. MMAP parameter estimation

To maximize p(θ1 | x−I ), we introduce the parameters θ2 =
(a, σ 2) as nuisance parameters and then use the SAME strat-
egy. To implement this algorithm, we must sample from
p(a, σ 2 | x−I , xI ) and qγ (i)(θ1 | x−I ,θ2(1), . . . ,θ2(γ (i))). One
obtains by conjugacy calculations (Bernardo and Smith 1994,
Appendix A.2; Godsill and Rayner 1998, Sections 12.4 and 12.5)

a | σ 2 ∼ N
(
ma, σ

2�a
)

and

σ 2 ∼ IG
(
(η0 + T − L)/2,

(
ν0 + xT

1:T x1:T − mT
a �−1

a ma
)/

2
)

where x1:T = (x1, . . . , xT )T and

�−1
a = �−1

0 +
T∑

t=L+1

xt−1xT
t−1 and ma = �a

T∑
t=L+1

xt−1xt

The required simulations from qγ (i)(xI | x−I ,θ2(1), . . . ,
θ2(γ (i))) are readily obtained from the basic model as follows

xI | x−I ,θ2(1), . . . ,θ2(γ (i)) ∼ N (mx(i), �x(i))

where

�−1
x (i) =

γ (i)∑
k=1

A(k)T
IA(k)I

σ (k)2
and

mx(i) = −�x(i)
γ (i)∑
k=1

A(k)T
IA(k)−I

σ (k)2
x−I

and the indices within parentheses ‘(k)’ refer to the kth aug-
mented parameter. Here A is the matrix formed from the
AR coefficients such that eL+1:T = (e1, . . . , eT )T = A x1:T , and

[AI , A−I ] forms a columnwise partition of A with columns
selected according to I.

3.1.3. Simulations

In this example we compare the performance of three possible
methods for estimating the MMAP solution to a high dimen-
sional problem: EM, standard MCMC and the SAME algorithm.
We have chosen a model in which it is possible to perform EM
exactly and also to evaluate exactly the posterior probability
for the desired parameters. In this way it is possible to make
an objective comparison between the three methods in terms
of the highest marginal posterior probability value achieved by
each. Note that the dataset has been carefully chosen in order to
highlight the differences between the SAME algorithm and its
competitors for MMAP estimation. We do not here claim that
MMAP estimation is always the correct procedure for data of
this type, since it could potentially lead to problems of overfitting
and neglecting solutions which represent the overall probabil-
ity mass better. However, it is worth noting that the posterior
distribution turns out to be strongly multi-modal in this case,
and so extreme caution would have to be used in choosing other
estimators such as the posterior mean.

For this model we tested the new method in a challenging
situation where 50% of the data are missing in the middle of a
short block of length T = 40, extracted from a digitised audio
signal (Godsill and Rayner 1998). The AR model order is fixed
at L = 9. The following prior parameters have been adopted:
�0 = 100 IL , η0 = ν0 = 0.01. N = 200 iterations of the SAME
algorithm were run.

We compared, via numerical simulations, the SAME algo-
rithm with EM and the homogeneous MCMC sampler, i.e.
γ (i) = 1 for all i . To perform a fair comparison with the SAME
algorithm in terms of computational complexity, the EM and
MCMC algorithms were run for N0 = ∑N

i=1 γ (i) iterations2.
In all cases, the algorithms were initialized with the same ran-
dom parameter estimate θ(0) and we took as final estimate of
θMMAP

1 the parameter θ(N )
1 for the SAME, θ(N0)

1 for the EM and

arg maxi=1,...,N0
p(θ(i)

1 | x−I ) for the MCMC sampler. Figure 1
shows the posterior density values against iteration number 1
to N for the three algorithms. Table 1 displays the maximum
posterior density values achieved by each method.

It is clear from this that the three methods give very differ-
ent results and that the SAME algorithm finds a more prob-
able solution than the other techniques. It is also clear from
the probability plots that the Gibbs sampler would be quite in-
appropriate for performing MMAP estimation since it virtually
never achieves probabilities close to the maximum. EM has con-
verged to a stationary point of the posterior distribution with

Table 1. Performances of the EM, MCMC and SAME algorithms for
missing data interpolation

Algorithm EM MCMC SAME
Maximum posterior density value −210.34 −203.85 −198.93
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Fig. 1. Log-posterior density values log(p(xI | x−I )) against iteration number for the three algorithms

a significantly lower posterior density value than the SAME
algorithm.

In 100 simulations carried out from randomly chosen initiali-
sations with the same dataset, two principal modes of the distri-
bution are identified by EM and SAME, see Fig. 2. EM is very
prone to converge to the lower probability mode, while SAME
is much more likely to reach the higher probability solution:
the average improvement in log-probability over 100 iterations

Fig. 2. Principal modes estimated by EM and SAME, shown dotted/dashed. Marginal probability density values log(p(xI | x−I )) are indicated by
‘p =’. Observed data x−I are shown as solid lines

from using SAME was 4.33; SAME reached the same or a higher
probability mode than EM in 93 out of 100 trials.

3.2. Blind deconvolution of impulsive processes

3.2.1. Signal model and estimation objectives

The observed signal yt is modelled as the convolution of a
sequence vt with a MA model h̃ = [1, h1, . . . , hL ]T = [1, hT]T
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observed in white Gaussian noise. If we denote ṽt = [vt ,

vt−1, . . . , vt−L ]T = [vt , vT
t−1]T, then

yt = h̃Tṽt + wt

where wt
i.i.d.∼ N (0, σ 2

w). In this model vt is a Bernoulli–Gauss
sequence, i.e. vt is an i.i.d. sequence such that

vt ∼ λN
(
0, σ 2

v

) + (1 − λ) δ0, 0 ≤ λ ≤ 1

where δ0 denotes the delta-Dirac measure at 0. The sequence
vt and the parameters θ1 = (h, σ 2

w, σ 2
v , λ) are unknown. It is

convenient from an algorithmic point of view to introduce the
latent Bernoulli process rt ∈ {0, 1} such that Pr (rt = 1) = λ

and

vt | rt = 1 ∼ N
(
0, σ 2

v

)
, vt | rt = 0 ∼ δ0

This statistical model finds application in seismic signal process-
ing (Cheng, Chen and Li 1996). We assign a prior distribution
to the unknown parameters θ1 such that

p(θ1) = p
(
h, σ 2

w, σ 2
v , λ

) = p
(
h

∣∣ σ 2
w

)
p
(
σ 2

w

)
p
(
σ 2

v

)
p(λ)

For the MA model and noise variance, a normal-inverse gamma
prior distribution is selected, i.e.

h
∣∣ σ 2

w ∼ N
(
0, σ 2

w�0
)

and σ 2
w ∼ IG

(
ηw

2
,
νw

2

)

with �0 a regular matrix, and

σ 2
v ∼ IG

(
ηv

2
,
νv

2

)
and λ ∼ U [0, 1]

Given the set of observations y1:T
�= {y1, . . . , yT }, our aim

is to estimate θ1 in a MMAP sense, i.e. obtaining θMMAP
1 =

arg maxp(θ1 | y1:T ). A simpler version of this problem has been
addressed using several stochastic versions of the EM in Cappé
et al. (1999). A homogeneous MCMC sampler to estimate the
posterior distribution for a similar problem was proposed in
Cheng, Chen and Li (1996).

3.2.2. MMAP parameter estimation

To maximize p(θ1 | y1:T ), we introduce the unobserved se-
quences r1:T

�= {r1, . . . , rT } and v1:T
�= {v1, . . . , vT } as nui-

sance parameters, i.e. θ2 = (r1:T , v1:T ) and then use the
SAME strategy. To implement this algorithm, we choose a
strategy in which we sample from the reduced conditional
p(rt | y1:T ,θ1, r−t ) where r−t

�= (r1, . . . , rt−1, rt+1, . . . rT )T for
any t = 1, . . . , T, p(v1:T | y1:T ,θ1, r1:T ) and

qγ (i)(θ1 | y1:T , r1:T (1), v1:T (1), . . . , r1:T (γ (i)), v1:T (γ (i))). (6)

Sampling from p(rt | y1:T ,θ1, r−t ) is realized using the algo-
rithm described in Cappé et al. (1999) whose computational
complexity is O(T ). Sampling from p(v1:T | y1:T ,θ1, r1:T ) is
implemented using the simulation smoother of DeJong and
Shephard (1995). To sample from (6), one obtains by standard

conjugacy calculations (Bernardo and Smith 1994, Appendix
A.2) (Cheng, Chen and Li 1996)

h
∣∣ σ 2

w ∼ N
(
m (i), σ 2

w�(i)
)

σ 2
w ∼ IG(γ (i)(ηw + T )/2 + (γ (i) − 1)(L/2 + 1),

(γ (i)νw + ε(i) − m (i)T�−1(i)m (i))/2)

where

�−1(i) = γ (i)�−1
0 +

γ (i)∑
k=1

T∑
t=1

vt−1(k)vT
t−1(k)

m (i) = �(i)
γ (i)∑
k=1

T∑
t=1

vt−1(k) (yt − vt (k))

εi =
γ (i)∑
k=1

(y1:T − v1:T (k))T(y1:T − v1:T (k))

and

γ ∼ B
(

γ (i) +
γ (i)∑
k=1

T∑
t=1

rt (k), γ (i)(1 + T ) −
γ (i)∑
k=1

T∑
t=1

rt (k)

)

σ 2
v ∼ IG

{(
γ (i)(ηv + 2) +

γ (i)∑
j=1

T∑
t=1

rt ( j)

)/
2 − 1,

(
γ (i)νv +

γ (i)∑
k=1

v1:T (k)vT
1:T (k)

)/
2

}

3.2.3. Simulations

The following signal has been simulated using the parameters:
T = 500, L = 3, and θ1 as given in Table 2. The observations
are displayed in Fig. 3.

The following prior parameters have been adopted: �0 =
100 IL , ηv = ηw = νw = νw = 0.01. In this case, the EM algo-
rithm cannot be applied as the E-step does not admit a closed-
form expression. The SAME algorithm was run for N = 200 it-
erations. The algorithm was initialized with the following param-
eters h(0) = [0, 0, 0]T, λ = .05 and σ 2

w = σ 2
v = 1. Figures 3 and 4

show the simulated parameters against iteration number. We
observe convergence of the algorithm after a short transient

Table 2. True values and estimated MMAP values for blind
deconvolution of impulsive processes

MMAP Estimates MMAP Estimates
Parameter True value T = 500 T = 1000

h1 −1.50 −1.87 −1.42
h2 0.50 0.68 0.50
h3 −0.20 −0.33 −0.20
λ 0.15 0.14 0.17
σ 2

w 0.10 0.10 0.10
σ 2

v 0.50 0.34 0.41



Marginal maximum a posteriori estimation 83

Fig. 3. Observations yt

Fig. 4. Parameters values against iteration number. True values are
displayed in dotted line. Top: filter h. Bottom: occurrence rate λ

regime. Table 2 gives the estimated parameters θ̂MMAP
1 for

T = 500. The results for T = 1000 are also presented.
The algorithm estimates very well the observation noise σ 2

w

and the occurrence rate λ. Given the level of observation noise
and the low occurrence rate of the Bernoulli process, it appears
very difficult to estimate σ 2

v and h very accurately for T = 500,
better results are naturally obtained for T = 1000 (see Fig. 5).

We performed tests from 100 randomly chosen starting points
with the same dataset. The SAME method attained an average
log-posterior probability of −345.9 as compared with −343.2

Fig. 5. Parameters values against iteration number. True values are
displayed in dotted line. Top: standard deviation σw . Bottom: standard
deviation σv

for MCEM (Cappé et al. 1999, Wei and Tanner 1990). The
standard deviation of these values is 0.1 for SAME and 1.2 for
MCEM. Moreover SAME reached the same or a higher proba-
bility mode than MCEM in all cases.

4. Conclusion

In this article, we have presented an original simulation-based
strategy to maximize marginal posterior distributions. This
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method is closely linked to SA. However, contrary to classical
SA algorithms, it is based on the introduction of an artificial aug-
mented probability model and allows us to handle models that
cannot be addressed by standard SA methods. Once a MCMC
algorithm is available to sample from a posterior distribution, the
proposed algorithms are very simple to implement in all cases
we have considered. Computer simulations demonstrate the ef-
fectiveness of our method compared with EM in a multimodal
interpolation problem and with MCEM in a blind deconvolution
problem.

Notes

1. EM and stochastic variants are adapted to the Bayesian setting by inclusion
of a prior penalization term in the M step.

2. In fact this comparison is favourable for MCMC, since the SAME method
requires many fewer draws from θ1.
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