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Summary. We propose a methodology to sample sequentially from a sequence of probability
distributions that are defined on a common space, each distribution being known up to a nor-
malizing constant. These probability distributions are approximated by a cloud of weighted ran-
dom samples which are propagated over time by using sequential Monte Carlo methods. This
methodology allows us to derive simple algorithms to make parallel Markov chain Monte Carlo
algorithms interact to perform global optimization and sequential Bayesian estimation and to
compute ratios of normalizing constants. We illustrate these algorithms for various integration
tasks arising in the context of Bayesian inference.
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1. Introduction

Consider a sequence of probability measures {πn}n∈T that are defined on a common measurable
space .E, E/, where T={1, . . . , p}. For ease of presentation, we shall assume that each πn.dx/

admits a density πn.x/ with respect to a σ-finite dominating measure denoted dx. We shall refer
to n as the time index; this variable is simply a counter and need not have any relationship with
‘real’ time. We also denote, by En, the support of πn, i.e. En ={x∈E :πn.x/> 0}. In this paper,
we are interested in sampling from the distributions {πn}n∈T sequentially, i.e. first sampling
from π1, then from π2 and so on.

This problem arises in numerous applications. In the context of sequential Bayesian infer-
ence, πn could be the posterior distribution of a parameter given the data collected until time
n, e.g. πn.x/=p.x|y1, . . . , yn/. In a batch set-up where a fixed set of observations y1, . . . , yp is
available, we could also consider the sequence of distributions p.x|y1, . . . , yn/ for n�p for the
following two reasons. First, for large data sets, standard simulation methods such as Markov
chain Monte Carlo (MCMC) methods require a complete ‘browsing’ of the observations; in
contrast, a sequential strategy may have reduced computational complexity. Second, by includ-
ing the observations one at a time, the posterior distributions exhibit a beneficial tempering
effect (Chopin, 2002). Alternatively, we may want to move from a tractable (easy-to-sample)
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distribution π1 to a distribution of interest, πp, through a sequence of artificial intermediate
distributions (Neal, 2001). In the context of optimization, and in a manner that is similar to
simulated annealing, we could also consider the sequence of distributions πn.x/∝π.x/φn for an
increasing schedule {φn}n∈T.

The tools that are favoured by statisticians, to sample from complex distributions, are MCMC
methods (see, for example, Robert and Casella (2004)). To sample from πn, MCMC meth-
ods consist of building an ergodic Markov kernel Kn with invariant distribution πn by using
Metropolis–Hastings (MH) steps and Gibbs moves. MCMC algorithms have been successfully
applied to many problems in statistics (e.g. mixture modelling (Richardson and Green, 1997)
and changepoint analysis (Green, 1995)). However, in general, there are two major drawbacks
with MCMC methods. It is difficult to assess when the Markov chain has reached its stationary
regime and it can easily become trapped in local modes. Moreover, MCMC methods cannot be
used in a sequential Bayesian estimation context.

In this paper, we propose a different approach to sample from {πn}n∈T that is based on
sequential Monte Carlo (SMC) methods (Del Moral, 2004; Doucet et al., 2001; Liu, 2001).
Henceforth, the resulting algorithms will be called SMC samplers. More precisely, this is a com-
plementary approach to MCMC sampling, as MCMC kernels will often be ingredients of the
methods proposed. SMC methods have been recently studied and used extensively in the context
of sequential Bayesian inference. At a given time n, the basic idea is to obtain a large collection of
N weighted random samples {W.i/

n , X.i/
n } .i = 1, . . . , N, W.i/

n > 0;ΣN
i=1W.i/

n = 1) named particles
whose empirical distribution converges asymptotically (N →∞) to πn, i.e. for any πn-integrable
function ϕ : E→R

N∑
i=1

W.i/
n ϕ.X.i/

n /→Eπn.ϕ/ almost surely

where

Eπn.ϕ/=
∫

E

ϕ.x/πn.x/dx: .1/

These particles are carried forward over time by using a combination of sequential importance
sampling (IS) and resampling ideas.

Standard SMC algorithms in the literature do not apply to the problems that were described
above. This is because these algorithms deal with the case where the target distribution of inter-
est, at time n, is defined on Sn with dim.Sn−1/ < dim.Sn/, e.g. Sn = En. Conversely, we are
interested in the case where the distributions {πn}n∈T are all defined on a common space E.
Our approach has some connections with adaptive IS methods (West, 1993; Oh and Berger,
1993; Givens and Raftery, 1996), resample–move (RM) strategies (Chopin, 2002; Gilks and
Berzuini, 2001), Annealed IS (AIS) (Neal, 2001) and population Monte Carlo methods (Cappé
et al., 2004) which are detailed in Section 3. However, the generic framework that we present
here is more flexible. It allows us to define general moves and can be used in scenarios where
previously developed methodologies do not apply (see Section 5). Additionally, we can develop
new algorithms to make parallel MCMC runs interact in a simple way, to perform global opti-
mization or to solve sequential Bayesian estimation problems. It is also possible to estimate
ratios of normalizing constants as a by-product of the algorithm. As for MCMC sampling, the
performance of these algorithms is highly dependent on the target distributions {πn}n∈T and
proposal distributions that are used to explore the space.

This paper focuses on the algorithmic aspects of SMC samplers. However, it is worth noting
that our algorithms can be interpreted as interacting particle approximations of a Feynman–Kac
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flow in distribution space. Many general convergence results are available for these approxima-
tions and, consequently, for SMC samplers (Del Moral, 2004). Nevertheless, the SMC samplers
that are developed here are such that many known estimates on the asymptotic behaviour of
these general processes can be greatly improved. Several of these results can be found in Del
Moral and Doucet (2003). In this paper we provide the expressions for the asymptotic variances
that are associated with central limit theorems.

The rest of the paper is organized as follows. In Section 2, we present a generic sequential IS
(SIS) algorithm to sample from a sequence of distributions {πn}n∈T. We outline the limitations
of this approach which severely restricts the way that we can move the particles around the space.
In Section 3, we provide a method to circumvent this problem by building an artificial sequence
of joint distributions which admits fixed marginals. We provide guidelines for the design of
efficient algorithms. Some extensions and connections with previous work are outlined. The
remaining sections describe how to apply the SMC sampler methodology to two important
special cases. Section 4 presents a generic approach to convert an MCMC sampler into an SMC
sampler to sample from a fixed target distribution. This is illustrated on a Bayesian analysis of
finite mixture distributions. Finally, Section 5 presents an application of SMC samplers to a
sequential, transdimensional Bayesian inference problem. The proofs of the results in Section 3
can be found in Appendix A.

2. Sequential importance sampling

In this section, we describe a generic iterative SIS method to sample from a sequence of distri-
butions {πn}n∈T. We provide a review of the standard IS method; then we outline its limitations
and describe a sequential version of the algorithm.

2.1. Importance sampling
Let πn be a target density on E such that

πn.x/=γn.x/=Zn

where γn : E→R+ is known pointwise and the normalizing constant Zn is unknown. Let ηn.x/

be a positive density with respect to dx, referred to as the importance distribution. IS is based
on the identities

Eπn.ϕ/=Z−1
n

∫
E

ϕ.x/wn.x/ηn.x/dx, .2/

Zn =
∫

E

wn.x/ηn.x/dx, .3/

where the unnormalized importance weight function is equal to

wn.x/=γn.x/=ηn.x/: .4/

By sampling N particles {X.i/
n } from ηn and substituting the Monte Carlo approximation

ηN
n .dx/= 1

N

N∑
i=1

δ
X

.i/
n

.dx/

(with δ denoting Dirac measure) of this distribution into equations (2) and (3), we obtain an
approximation for Eπn.ϕ/ and Zn.
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In statistics applications, we are typically interested in estimating equation (1) for a large
range of test functions ϕ. In these cases, we are usually trying to select ηn ‘close’ to πn as the
variance is approximately proportional to 1 + varηn{wn.Xn/} (see Liu (2001), pages 35–36).
Unfortunately, selecting such an importance distribution is very difficult when πn is a non-
standard high dimensional distribution. As a result, despite its relative simplicity, IS is almost
never used when MCMC methods can be applied.

2.2. Sequential importance sampling
To obtain better importance distributions, we propose the following sequential method. At time
n = 1, we start with a target distribution π1 which is assumed to be easy to approximate effi-
ciently by using IS, i.e. η1 can be selected such that the variance of the importance weights (4) is
small. In the simplest case, η1 =π1. Then, at time n=2, we consider the new target distribution
π2. To build the associated IS distribution η2, we use the particles sampled at time n = 1, say
{X

.i/
1 }. The rationale is that, if π1 and π2 are not too different from one another, then it should

be possible to move the particles {X
.i/
1 } in the regions of high probability density of π2 in a

sensible way.
At time n−1 we have N particles {X

.i/
n−1} distributed according to ηn−1. We propose to move

these particles by using a Markov kernel Kn : E × E → [0, 1], with associated density denoted
Kn.x, x′/. The particles {X.i/

n } that are obtained this way are marginally distributed according
to

ηn.x′/=
∫

E

ηn−1.x/Kn.x, x′/dx: .5/

If ηn can be computed pointwise, then it is possible to use the standard IS estimates of πn and
Zn.

2.3. Algorithm settings
This SIS strategy is very general. There are many potential choices for {πn}n∈T leading to vari-
ous integration and optimization algorithms.

2.3.1. Sequence of distributions {πn}

(a) In the context of Bayesian inference for static parameters, where p observations .y1, . . . ,
yp/ are available, we can consider

πn.x/=p.x|y1, . . . , yn/: .6/

See Chopin (2002) for such applications.
(b) It can be of interest to consider an inhomogeneous sequence of distributions to move

‘smoothly’ from a tractable distribution π1 = µ1 to a target distribution π through a
sequence of intermediate distributions. For example, we could select a geometric path
(Gelman and Meng, 1998; Neal, 2001)

πn.x/∝π.x/φnµ1.x/1−φn .7/

with 0�φ1 < . . . <φp =1.
Alternatively, we could simply consider the case where πn =π for all n ∈ T. This has

been proposed numerous times in the literature. However, if π is a complex distribution,
it is difficult to build a sensible initial importance distribution. In particular, such algo-



Monte Carlo Samplers 415

rithms may fail when the target is multimodal with well-separated narrow modes. Indeed,
in this case, the probability of obtaining samples in all the modes of the target is very
small and an importance distribution that is based on these initial particles is likely to
be inefficient. Therefore, for difficult scenarios, it is unlikely that such approaches will be
robust.

(c) For global optimization, as in simulated annealing, we can select

πn.x/∝π.x/φn .8/

where {φn}n∈T is an increasing sequence such that φp →∞ for large p.
(d) Assume that we are interested in estimating the probability of a rare event, A∈E , under

a probability measure π (π.A/≈ 0). In most of these applications, π is typically easy to
sample from and the normalizing constant of its density is known. We can consider the
sequence of distributions

πn.x/∝π.x/ IEn.x/

where En ∈E ∀n∈T, IA.x/ is the indicator function for A∈E and E1 ⊃E2 ⊃ . . .⊃Ep−1 ⊃
Ep, E1 =E and Ep =A. An estimate of π.A/ is given by an estimate of the normalizing
constant Zp:

2.3.2. Sequence of transition kernels {Kn}
It is easily seen that the optimal proposal, in the sense of minimizing the variance of the impor-
tance weights, is Kn.x, x′/ = πn.x′/. As this choice is impossible, we must formulate sensible
alternatives.

2.3.2.1. Independent proposals. It is possible to select Kn.x, x′/ = Kn.x′/ where Kn.·/ is a
standard distribution (e.g. Gaussian or multinomial) whose parameters can be determined by
using some statistics based on ηN

n−1. This approach is standard in the literature, e.g. West (1993).
However, independent proposals appear overly restrictive and it seems sensible to design local
moves in high dimensional spaces.

2.3.2.2. Local random-walk moves. A standard alternative consists of using for Kn.x, x′/ a
random-walk kernel. This idea has appeared several times in the literature where Kn.x, x′/ is
selected as a standard smoothing kernel (e.g. Gaussian or Epanechikov), e.g. Givens and Raftery
(1996). However, this approach is problematic. Firstly, the choice of the kernel bandwidth is
difficult. Standard rules to determine kernel bandwidths may indeed not be appropriate here,
because we are not trying to obtain a kernel density estimate ηN

n−1Kn.x′/ of ηn−1.x′/ but to
design an importance distribution to approximate πn.x′/. Secondly, no information about πn is
typically used to build Kn.x, x′/.

Two alternative classes of local moves exploiting the structure of πn are now proposed.

2.3.2.3. Markov chain Monte Carlo moves. It is natural to set Kn as an MCMC kernel of
invariant distribution πn. In particular, this approach is justified if either Kn is fast mixing and/or
πn is slowly evolving so that we can expect ηn to be reasonably close to the target distribution.
In this case, the resulting algorithm is an IS technique which would allow us to correct for the
fact that the N inhomogeneous Markov chains {X.i/

n } are such that ηn 	=πn. This is an attractive
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strategy: we can use the vast literature on the design of efficient MCMC algorithms to build
‘good’ importance distributions.

2.3.2.4. Approximate Gibbs moves. When it is impossible to sample from the full conditional
distributions that are required by a Gibbs kernel of invariant distribution πn, an approxima-
tion to these distributions can be used to build Kn. This strategy is very popular in the SMC
literature for optimal filtering where the so-called optimal proposal (Doucet et al. (2000), page
199, and Liu (2001), page 47) corresponds to a Gibbs step but can rarely be implemented and
is approximated.

2.4. Limitations of sequential importance sampling
For any probability density ν, we use the notation

νKi:j.xj/�
∫

ν.xi−1/
j∏

k=i

Kk.xk−1, xk/dxi−1:j−1

where xi:j, i� j, and Xi:j respectively denote .xi, . . . , xj/ and .Xi, . . . , Xj/.
The algorithm that was discussed above suffers from a major drawback. In most cases, it is

impossible to compute the importance distribution ηn.xn/ that is given by

ηn.xn/=η1K2:n.xn/ .9/

and hence impossible to compute the importance weights. An important exception is when we
use independent proposal distributions and, in our opinion, this explains why this approach is
often used in the literature. However, whenever local moves are used, ηn does not admit a closed
form expression in most cases.

A potential solution is to attempt to approximate ηn pointwise by

ηN
n−1Kn.xn/= 1

N

N∑
i=1

Kn.X
.i/
n−1, xn/:

This approximation has been used in the literature for local random-walk moves. However, this
approach suffers from two major problems. First, the computational complexity of the result-
ing algorithm would be in O.N2/, which is prohibitive. Second, it is impossible to compute
Kn.xn−1, xn/ pointwise in important scenarios. For example, consider the case where E = R,
Kn is an MH kernel and dx is Lebesgue measure: we cannot, typically, compute the rejection
probability of the MH kernel analytically.

3. Sequential Monte Carlo samplers

In this section, we show how it is possible to use any local move—including MCMC moves—
in the SIS framework while circumventing the calculation of distribution (9). The algorithm
preserves complexity of O.N/ and provides asymptotically consistent estimates.

3.1. Methodology and algorithm
As noted above, the importance weight can be computed exactly at time 1. At time n > 1, it is
typically impossible to compute ηn.xn/ pointwise as it requires an integration with respect to
x1:n−1. Instead, we propose an auxiliary variable technique and introduce artificial backward
(in time) Markov kernels Ln−1 : E × E → [0, 1] with density Ln−1.xn, xn−1/. We then perform
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IS between the joint importance distribution ηn.x1:n/ and the artificial joint target distribution
defined by

π̃n.x1:n/= γ̃n.x1:n/=Zn

where

γ̃n.x1:n/=γn.xn/
n−1∏
k=1

Lk.xk+1, xk/:

As π̃n.x1:n/ admits πn.xn/ as a marginal by construction, IS provides an estimate of this distribu-
tion and its normalizing constant. By proceeding thus, we have defined a sequence of probability
distributions {π̃n} whose dimension is increasing over time; i.e. π̃n is defined on En. We are then
back to the ‘standard’ SMC framework that was described, for example, in Del Moral (2004),
Doucet et al. (2001) and Liu (2001). We now describe a generic SMC algorithm to sample
from this sequence of distributions based on SIS resampling methodology.

At time n−1, assume that a set of weighted particles {W
.i/
n−1, X

.i/
1:n−1} .i=1, . . . , N/ approxi-

mating π̃n−1 is available,

π̃N
n−1.dx1:n−1/=

N∑
i=1

W
.i/
n−1δX

.i/
1:n−1

.dx1:n−1/, .10/

W
.i/
n−1 =wn−1.X

.i/
1:n−1/

/
N∑

j=1
wn−1.X

.j/
1:n−1/:

At time n, we extend the path of each particle with a Markov kernel Kn.xn−1, xn/. IS is then
used to correct for the discrepancy between the sampling distribution ηn.x1:n/ and π̃n.x1:n/. In
this case the new expression for the unnormalized importance weights is given by

wn.x1:n/= γ̃n.x1:n/=ηn.x1:n/ .11/

=wn−1.x1:n−1/ w̃n.xn−1, xn/

where the so-called (unnormalized) incremental weight w̃n.xn−1, xn/ is equal to

w̃n.xn−1, xn/= γn.xn/Ln−1.xn, xn−1/

γn−1.xn−1/Kn.xn−1, xn/
: .12/

As the discrepancy between ηn and π̃n tends to increase with n, the variance of the unnormal-
ized importance weights tends to increase, resulting in a potential degeneracy of the particle
approximation. This degeneracy is routinely measured by using the effective sample size (ESS)
criterion {ΣN

i=1.W.i/
n /2}−1 (Liu and Chen, 1998). The ESS takes values between 1 and N. If the

degeneracy is too high, i.e. the ESS is below a prespecified threshold, say N=2, then each par-
ticle X

.i/
1:n is copied N.i/

n times under the constraint ΣN
i=1N.i/

n =N, the expectation of N.i/
n being

equal to NW.i/
n such that particles with high weights are copied multiple times whereas particles

with low weights are discarded. Finally, all resampled particles are assigned equal weights. The
simplest way to perform resampling consists of sampling the N new particles from the weighted
distribution π̃N

n ; the resulting {N.i/
n } are distributed according to a multinomial distribution of

parameters {W.i/
n }. Stratified resampling (Kitagawa, 1996) and residual resampling can also be

used and all of these reduce the variance of N.i/
n relatively to that of the multinomial scheme.

A summary of the algorithm is described in the next subsection. The complexity of this
algorithm is in O.N/ and it can be parallelized easily.
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3.1.1. Algorithm: sequential Monte Carlo sampler

Step 1: initialization—
set n=1;
for i=1, . . . , N draw X

.i/
1 ∼η1;

evaluate {w1.X
.i/
1 /} by using equation (4) and normalize these weights to obtain {W

.i/
1 }.

Iterate steps 2 and 3.
Step 2: resampling—

if ESS <T (for some threshold T ), resample the particles and set W.i/
n =1=N.

Step 3: sampling—
set n=n+1; if n=p+1 stop;
for i=1, . . . , N draw X.i/

n ∼Kn.X
.i/
n−1, ·/;

evaluate {w̃n.X
.i/
n−1:n/} by using equation (12) and normalize the weights

W.i/
n =W

.i/
n−1 w̃n.X

.i/
n−1:n/

/ N∑
j=1

W
.j/
n−1 w̃n.X

.j/
n−1:n/:

Remark 1. If the weights {W.i/
n } are independent of {X.i/

n }, then the particles {X.i/
n } should

be sampled after the weights {W.i/
n } have been computed and after the particle approximation

{W.i/
n , X

.i/
n−1} of πn.xn−1/ has possibly been resampled. This scenario appears when {Ln} is given

by equation (30) in Section 3.3.2.3.

Remark 2. It is also possible to derive an auxiliary version of algorithm 1 in the spirit of Pitt
and Shephard (1999).

3.2. Notes on algorithm
3.2.1. Estimates of target distributions and normalizing constants
At time n, we obtain after the sampling step a particle approximation {W.i/

n , X
.i/
1:n} of π̃n.x1:n/.

As the target πn.xn/ is a marginal of π̃n.x1:n/ by construction, an approximation of it is given
by

πN
n .dx/=

N∑
i=1

W.i/
n δ

X
.i/
n

.dx/: .13/

The particle approximation {W
.i/
n−1, X

.i/
n−1:n} of πn−1.xn−1/Kn.xn−1, xn/ that is obtained after

the sampling step also allows us to approximate

Zn

Zn−1
=

∫
γn.xn/dxn∫

γn−1.xn−1/ dxn−1

by

Ẑn

Zn−1
=

N∑
i=1

W
.i/
n−1w̃n.X

.i/
n−1:n/: .14/

To estimate Zn=Z1, we can use the product of estimates of the form (14) from time k = 2 to
k =n. However, if we do not resample at each iteration, a simpler alternative is given by
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Ẑn

Z1
=

rn−1+1∏
j=1

Ẑkj

Zkj−1

,

with

Ẑkj

Zkj−1

=
N∑

i=1
W

.i/
kj−1

kj∏
m=kj−1+1

w̃m.X
.i/
m−1:m/ .15/

where k0 =1, kj is the jth time index at which we resample for j> 1. The number of resampling
steps between 1 and n−1 is denoted rn−1 and we set krn−1+1 =n.

There is a potential alternative estimate for ratios of normalizing constants that is based on
path sampling (Gelman and Meng, 1998). Indeed, consider a continuous path of distributions

πθ.t/ =γθ.t/=Zθ.t/

where t ∈ [0, 1], θ.0/ = 0 and θ.1/ = 1. Then, under regularity assumptions, we have the path
sampling identity

log
(Z1

Z0

)
=

∫ 1

0

dθ.t/

dt

∫
d[log{γθ.t/.x/}]

dt
πθ.t/.dx/dt:

In the SMC samplers context, if we consider a sequence of p + 1 intermediate distributions
denoted here πθ.k=P/, k=0, . . . , p, to move from π0 to π1 then the above equation can be approxi-
mated by using a trapezoidal integration scheme and substituting π̂N

θ.k=P/.dx/ for πθ.k=P/.dx/.
Some applications of this identity in an SMC framework are detailed in Johansen et al. (2005)
and Rousset and Stoltz (2005).

3.2.2. Mixture of Markov kernels
The algorithm that is described in this section must be interpreted as the basic element of more
complex algorithms. It is to SMC sampling what the MH algorithm is to MCMC sampling. For
complex MCMC problems, one typically uses a combination of MH steps where the J compo-
nents of x say .x1, . . . , xJ / are updated in subblocks. Similarly, to sample from high dimensional
distributions, a practical SMC sampler can update the components of x via subblocks and a
mixture of transition kernels can be used at each time n.

Let us assume that Kn.xn−1, xn/ is of the form

Kn.xn−1, xn/=
M∑

m=1
αn,m.xn−1/Kn,m.xn−1, xn/ .16/

where αn,m.xn−1/� 0, ΣM
m=1αn,m.xn−1/= 1 and {Kn,m} is a collection of transition kernels. In

this case, the incremental weights can be computed by the standard formula (12). However, this
could be too expensive if M is large. An alternative, valid, approach consists of considering a
backward Markov kernel of the form

Ln−1.xn, xn−1/=
M∑

m=1
βn−1,m.xn/Ln−1,m.xn, xn−1/ .17/

where βn−1,m.xn/ � 0, ΣM
m=1βn−1,m.xn/ = 1 and {Ln−1,m} is a collection of backward transi-

tion kernels. We now introduce, explicitly, a discrete latent variable Mn taking values in M=
{1, . . . , M} such that P.Mn =m/=αn,m.xn−1/ and perform IS on the extended space E×E×M.
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This yields an incremental importance weight that is equal to

w̃n.xn−1, xn, mn/= γn.xn/βn−1,mn.xn/Ln−1,mn.xn, xn−1/

γn−1.xn−1/αn,mn.xn−1/Kn,mn.xn−1, xn/
: .18/

The variance of equation (18) will always be superior or equal to the variance of equation (12).

3.3. Algorithm settings
3.3.1. Optimal backward kernels
In standard applications of SMC methods, only the proposal kernels {Kn} have to be selected as
the joint distributions {π̃n} are given by the problem at hand. In the framework that is considered
here, {Ln} is arbitrary. However, in practice, {Ln} should be optimized with respect to {Kn}
to obtain good performance. Recall that {Ln} has been introduced because it was impossible
to compute the marginal importance distribution {ηn} pointwise.

The marginal distribution of the particles {X.i/
n } at time n is given by

ηn.xn/=η1 K2:n.xn/ .19/

if the particles have not been resampled before time n and approximately

ηn.xn/=πl Kl+1:n.xn/ .20/

if the last time that the particles were resampled was l. To simplify the discussion, we consider
here the case (19). The more general case (20) can be handled similarly.

The introduction of the auxiliary kernels {Ln} means that we need not compute ηn.xn/. This
comes at the price of extending the integration domain from E to En and increasing the variance
(if it exists) of the importance weights. The following proposition establishes the expression of
the sequence of optimal backward Markov kernels.

Proposition 1. The sequence of kernels {L
opt
k } .k = 1, . . . , n) minimizing the variance of the

unnormalized importance weight wn.x1:n/ is given for any k and n by

L
opt
k−1.xk, xk−1/= ηk−1.xk−1/Kk.xk−1, xk/

ηk.xk/
.21/

and in this case

wn.x1:n/=γn.xn/=ηn.xn/:

Remark 3. This proposition is intuitive and simply states that the optimal backward Markov
kernels take us back to the case where we perform IS on E instead of on En. The result can
also be intuitively understood through the following forward–backward formula for Markov
processes:

η1.x1/
n∏

k=2
Kk.xk−1, xk/=ηn.xn/

n∏
k=2

L
opt
k−1.xk, xk−1/: .22/

In the context of a mixture of kernels (16), we can use proposition 1 to establish that the
optimal backward kernel is of the form (17) with

β
opt
n−1,m.xn/∝

∫
αn,m.xn−1/ηn−1.xn−1/Kn.xn−1, xn/dxn−1, .23/

L
opt
n−1,m.xn, xn−1/= αn,m.xn−1/ηn−1.xn−1/Kn.xn−1, xn/∫

αn,m.xn−1/ηn−1.xn−1/Kn.xn−1, xn/dxn−1

: .24/
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3.3.2. Suboptimal backward kernels
It is typically impossible, in practice, to use the optimal kernels as they themselves rely on mar-
ginal distributions which do not admit any closed form expression. However, this suggests that
we should select {Lk} to approximate equation (21). The key point is that, even if {Lk} is differ-
ent from expression (21), the algorithm will still provide asymptotically consistent estimates.
Some approximations are now discussed.

3.3.2.1. Substituting πn−1 for ηn−1. One point that is used recurrently is that equation (12)
suggests that a sensible, suboptimal, strategy consists of using an Ln which is an approximation
of the optimal kernel (21) where we have substituted πn−1 for ηn−1, i.e.

Ln−1.xn, xn−1/= πn−1.xn−1/Kn.xn−1, xn/

πn−1 Kn.xn/
.25/

which yields

w̃n.xn−1, xn/= γn.xn/∫
E

γn−1.xn−1/Kn.xn−1, xn/dxn−1

: .26/

It is often more convenient to use equation (26) than equation (21) as {γn} is known analyti-
cally, whereas {ηn} is not. If particles have been resampled at time n − 1, then ηn−1 is indeed
approximately equal to πn−1 and thus equation (21) is equal to equation (25).

3.3.2.2. Gibbs-type updates. Consider the case where x= .x1, . . . , xJ / and we only want to
update the kth (k ∈{1, . . . , J}) component xk of x, denoted xn,k, at time n. It is straightforward
to establish that the proposal distribution minimizing the variance of equation (26) conditional
on xn−1 is a Gibbs update, i.e.

Kn.xn−1, dxn/= δxn−1, −k
.dxn,−k/πn.dxn,k|xn,−k/ .27/

where xn,−k = .xn,1, . . . , xn,k−1, xn,k+1, . . . , xn,J /. In this case equations (25) and (26) are given
by

Ln−1.xn, dxn−1/= δxn,−k
.dxn−1, −k/πn−1.dxn−1, k|xn−1,−k/,

w̃n.xn−1, xn/= γn.xn−1, −k, xn,k/

γn−1.xn−1, −k/πn.xn,k|xn−1,−k/
:

When it is not possible to sample from πn.xn,k|xn−1, −k/ and/or to compute

γn−1.xn−1,−k/=
∫

γn−1.xn−1/dxn−1,k

analytically, this suggests using an approximation π̂n.xn,k|xn−1,−k/ to πn.xn,k|xn−1,−k/ to sam-
ple the particles and another approximation π̂n−1.xn−1,k|xn−1,−k/ to πn−1.xn−1,k|xn−1,−k/ to
obtain

Ln−1.xn, dxn−1/= δxn,−k
.dxn−1,−k/ π̂n−1.dxn−1,k|xn−1,−k/, .28/

w̃n.xn−1, xn/= γn.xn−1,−k, xn,k/ π̂n−1.xn−1,k|xn−1,−k/

γn−1.xn−1/ π̂n.xn,k|xn−1,−k/
: .29/
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3.3.2.3. Markov chain Monte Carlo kernels. A generic alternative approximation to equa-
tion (25) can also be made when Kn is an MCMC kernel of invariant distribution πn. It is given
by

Ln−1.xn, xn−1/= πn.xn−1/Kn.xn−1, xn/

πn.xn/
.30/

and will be a good approximation to equation (25) if πn−1 ≈πn; note that equation (30) is the
reversed Markov kernel that is associated with Kn: In this case, we have unnormalized incre-
mental weight

w̃n.xn−1, xn/=γn.xn−1/=γn−1.xn−1/: .31/

Contrary to equation (25), this approach does not apply in scenarios where En−1 ⊂ En and
En ∈E ∀n∈T as discussed in Section 5. Indeed, in this case

Ln−1.xn, xn−1/= πn.xn−1/Kn.xn−1, xn/∫
En−1

πn.xn−1/Kn.xn−1, xn/dxn−1

.32/

but the denominator of this expression is different from πn.xn/ as the integration is over En−1
and not over En.

3.3.2.4. Mixtures of kernels. Practically, we cannot typically compute expressions (23)
and (24) in closed form and so approximations are also necessary. As discussed previously, one
suboptimal choice consists of replacing ηn−1 with πn−1 in expressions (23) and (24) or using
further approximations like equation (30).

3.3.3. Summarizing remarks
To conclude this subsection, we emphasize that selecting {Ln} as close as possible to {L

opt
n } is

crucial for this method to be efficient. It could be tempting to select {Ln} in a different way.
For example, if we select Ln−1 =Kn then the incremental importance weight looks like an MH
ratio. However, this ‘aesthetic’ choice will be inefficient in most cases, resulting in importance
weights with a very large or infinite variance.

3.4. Convergence results
Using equation (13), the SMC algorithm yields estimates of expectations (1) via

EπN
n

.ϕ/=
∫

E

ϕ.x/πN
n .dx/: .33/

Using equation (14), we can also obtain an estimate of log.Zn=Z1/:

log
(

Ẑn

Z1

)
=

n∑
k=2

log
(

Ẑk

Zk−1

)
: .34/

We now present a central limit theorem, giving the asymptotic variance of these estimates in two
‘extreme’ cases: when we never resample and when we resample at each iteration. For simplicity,
we have considered only the case where multinomial resampling is used (see Chopin (2004a) for
analysis using residual resampling and also Künsch (2005) for results in the context of filtering).
The asymptotic variance expressions (33) and (34) for general SMC algorithms have previously
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been established in the literature. However, we propose here a new representation which clarifies
the influence of the kernels {Ln}:

In the following proposition, we denote by N .µ, σ2/ the normal distribution with mean µ
and variance σ2, convergence in distribution by ‘⇒’,

∫
π̃n.x1:n/dx1:k−1 dxk+1:n by π̃n.xk/ and∫

π̃n.x1:n/dx1:k−1 dxk+1:n−1=π̃n.xk/ by π̃n.xn|xk/.

Proposition 2. Under the weak integrability conditions that were given in Chopin (2004a),
theorem 1, or Del Moral (2004), section 9.4, pages 300–306, we obtain the following results.
When no resampling is performed, we have

N1=2{EπN
n

.ϕ/−Eπn.ϕ/}⇒N{0, σ2
IS,n.ϕ/}

with

σ2
IS,n.ϕ/=

∫
π̃n.x1:n/2

ηn.x1:n/
{ϕ.xn/−Eπn.ϕ/}2 dx1:n .35/

where the joint importance distribution ηn is given by

ηn.x1:n/=η1.x1/
n∏

k=2
Kk.xk−1, xk/:

We also have

N1=2
{

log
(

Ẑn

Z1

)
− log

(
Zn

Z1

)}
⇒N .0, σ2

IS,n/

with

σ2
IS,n =

∫
π̃n.x1:n/2

ηn.x1:n/
dx1:n −1: .36/

When multinomial resampling is used at each iteration, we have

N1=2{EπN
n
.ϕ/−Eπn.ϕ/}⇒N{0, σ2

SMC,n.ϕ/}
where, for n�2,

σ2
SMC,n.ϕ/=

∫
π̃n.x1/2

η1.x1/

{∫
ϕ.xn/ π̃n.xn|x1/dxn −Eπn.ϕ/

}2

dx1

+
n−1∑
k=2

∫ {π̃n.xk/Lk−1.xk, xk−1/}2

πk−1.xk−1/Kk.xk−1, xk/

{∫
ϕ.xn/ π̃n.xn|xk/dxn −Eπn.ϕ/

}2

dxk−1:k

+
∫ {πn.xn/Ln−1.xn, xn−1/}2

πn−1.xn−1/Kn.xn−1, xn/
{ϕ.xn/−Eπn.ϕ/}2 dxn−1:n .37/

and

N1=2
{

log
(

Ẑn

Z1

)
− log

(
Zn

Z1

)}
⇒N .0, σ2

SMC,n/

where

σ2
SMC,n =

∫
π̃n.x1/2

η1.x1/
dx1 −1+

n−1∑
k=2

[∫ {π̃n.xk/Lk−1.xk, xk−1/}2

πk−1.xk−1/Kk.xk−1, xk/
dxk−1:k −1

]

+
∫ {πn.xn/Ln−1.xn, xn−1/}2

πn−1.xn−1/Kn.xn−1, xn/
dxn−1:n −1: .38/
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Remark 4. In the general case, we cannot claim that σ2
SMC,n.ϕ/ <σ2

IS,n.ϕ/ or σ2
SMC,n <σ2

IS,n.
This is because, if the importance weights do not have a large variance, resampling is typically
wasteful as any resampling scheme introduces some variance. However, resampling is beneficial
in cases where successive distributions can vary significantly. This has been established theoreti-
cally in the filtering case in Chopin (2004a), theorem 5: under mixing assumptions, the variance
is shown to be upper bounded uniformly in time with resampling and to go to ∞ without it.
The proof may be adapted to the class of problems that is considered here, and it can be shown
that for expression (8)—under mixing assumptions on {Kn} and using equations (25) or (30) for
{Ln}—the variance σ2

SMC,n.ϕ/ is upper bounded uniformly in time for a logarithmic schedule
{φn} whereas σ2

IS,n.ϕ/ goes to ∞ with n. Similar results hold for residual resampling. Finally we
note that, although the resampling step appears somewhat artificial in discrete time, it appears
naturally in the continuous time version of these algorithms (Del Moral, 2004; Rousset and
Stoltz, 2005).

3.5. Connections with other work
To illustrate the connections with, and differences from, other published work, let us consider
the case where we sample from {πn} using MCMC kernels {Kn} where Kn is πn invariant.

Suppose that, at time n−1, we have the particle approximation {W
.i/
n−1, X

.i/
n−1} of πn−1. Sev-

eral recent algorithms are based on the implicit or explicit use of the backward kernel (30). In
the case that is addressed here, where all the target distributions are defined on the same space,
it was used for example in Chopin (2002), Jarzynski (1997) and Neal (2001). In the case where
the dimension of the target distributions increases over time, it was used in Gilks and Berzuini
(2001) and MacEachern et al. (1999).

For the algorithms that are listed above, the associated backward kernels lead to the incre-
mental weights

w̃n.X
.i/
n−1, X.i/

n /∝πn.X
.i/
n−1/=πn−1.X

.i/
n−1/: .39/

The potential problem with expression (39) is that these weights are independent of {X.i/
n }

where X.i/
n ∼ Kn.X

.i/
n−1, ·/. In particular, the variance of expression (39) will typically be high

if the discrepancy between πn−1 and πn is large even if the kernel Kn mixes very well. This
result is counter-intuitive. In the context of AIS (Neal, 2001) where the sequence of p target
distributions (7) is supposed to satisfy πn−1 ≈ πn, this is not a problem. However, if succes-
sive distributions vary significantly, as in sequential Bayesian estimation, this can become a
significant problem. For example, in the limiting case where Kn.xn−1, xn/ =πn.xn/, we would
end up with a particle approximation {W.i/

n , X.i/
n } of πn where the weights {W.i/

n } have a high
variance whereas {X.i/

n } are independent and identically distributed samples from πn; this is
clearly suboptimal.

To deal with this problem, RM strategies were used by (among others) Chopin (2002) and
Gilks and Berzuini (2001). RM corresponds to the SMC algorithm that is described in Sec-
tion 3 using the backward kernel (30). RM resamples the particle approximation {W.i/

n , X
.i/
n−1}

of π̃n.xn−1/ if the variance (that is measured approximately through the ESS) is high and only
then do we sample {X.i/

n } to obtain a particle approximation {N−1, X.i/
n } of πn, i.e. all parti-

cles have an equal weight. This can be expected to improve over not resampling if consecutive
targets differ significantly and the kernels {Kn} mix reasonably well; we demonstrate this in
Section 4.

Proposition 1 suggests that a better choice (than equation (30)) of backward kernels is given
by equation (25) for which the incremental weights are given by
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w̃n.X
.i/
n−1, X.i/

n /∝ πn.X.i/
n /

πn−1Kn.X
.i/
n /

: .40/

Expression (40) is much more intuitive than expression (39). It depends on Kn and thus the
expression of the weights (40) reflects the mixing properties of the kernel Kn. In particular, the
variance of expression (40) decreases as the mixing properties of the kernel increases.

To illustrate the difference between SMC sampling using expression (40) instead of expres-
sion (39), consider the case where x = .x1, . . . , xJ / and we use the Gibbs kernel (27) to update
the component xk so that expression (40) is given by

w̃n.X
.i/
n−1, X.i/

n /∝πn.X
.i/
n−1,−k/=πn−1.X

.i/
n−1,−k/: .41/

By a simple Rao–Blackwell argument, the variance of expression (41) is always smaller than the
variance of expression (39). The difference will be particularly significant in scenarios where the
marginals πn−1.x−k/ and πn.x−k/ are close to each other but the full conditional distributions
πn.xk|x−k/ and πn−1.xk|x−k/ differ significantly. In such cases, SMC sampling using expres-
sion (39) resamples many more times than SMC sampling using expression (41). Such scenarios
appear for example in sequential Bayesian inference as described in Section 5 where each new
observation only modifies the distribution of a subset of the variables significantly.

It is, unfortunately, not always possible to use equation (25) instead of equation (30) as an
integral appears in expression (40). However, if the full conditional distributions of πn−1 and
πn can be approximated analytically, it is possible to use equations (28) and (29) instead.

Recent work of Cappé et al. (2004) is another special case of the framework proposed. They
considered the homogeneous case where πn = π and Ln.x, x′/ = π.x′/. Their algorithm cor-
responds to the case where Kn.x, x′/=Kn.x′/ and the parameters of Kn.x′/ are determined by
using statistics over the entire population of particles at time n−1. Extensions of this work for
missing data problems are presented in Celeux et al. (2006).

Finally Liang (2002) presented a related algorithm where πn =π and Kn.x, x′/=Ln.x, x′/=
K.x, x′/.

4. From Markov chain Monte Carlo to sequential Monte Carlo samplers

4.1. Methodology
We now summarize how it is possible to obtain an SMC algorithm to sample from a fixed target
distribution π, using MCMC kernels or approximate Gibbs steps to move the particles around
the space. The procedure is

(a) build a sequence of distributions {πn}, n= 1, . . . , p, such that π1 is easy to sample from
or to approximate and πp =π,

(b) build a sequence of MCMC transition kernels {Kn} such that Kn is πn invariant or Kn is
an approximate Gibbs move of invariant distribution πn,

(c) on the basis of {πn} and {Kn}, build a sequence of artificial backward Markov kernels
{Ln} approximating {L

opt
n } (two generic choices are equations (25) and (30); for approxi-

mate Gibbs moves, we can use equation (28)) and
(d) use the SMC algorithm that was described in the previous section to approximate {πn}

and to estimate {Zn}.

4.2. Bayesian analysis of finite mixture distributions
In the following example, we consider a mixture modelling problem. Our objective is to illustrate
the potential benefits of resampling in the SMC methodology.
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4.2.1. Model
Mixture models are typically used to model heterogeneous data, or as a simple means of den-
sity estimation; see Richardson and Green (1997) and the references therein for an overview.
Bayesian analysis of mixtures has been fairly recent and there is often substantial difficulty in
simulation from posterior distributions for such models; see Jasra et al. (2005b) for example.

We use the model of Richardson and Green (1997), which is as follows; data y1, . . . , yc are
independent and identically distributed with distribution

yi|θr ∼
r∑

j=1
ωj N .µj, λ−1

j /

where θr = .µ1:r, λ1:r, ω1:r/, 2� r<∞ and r known. The parameter space is E=Rr × .R+/r ×Sr

for the r-component mixture model where Sr = {ω1:r : 0 � ωj � 1 ∩ Σr
j=1 ωj = 1}. The priors,

which are the same for each component j = 1, . . . , r, are taken to be µj ∼ N .ξ, κ−1/, λj ∼
Ga.ν, χ/, ω1:r−1 ∼D.ρ/, where D.ρ/ is the Dirichlet distribution with parameter ρ and Ga.ν, χ/

is the gamma distribution with shape ν and scale χ. We set the priors in an identical manner to
those in Richardson and Green (1997), with the χ-parameter set as the mean of the hyperprior
that they assigned that parameter.

One particular aspect of this model, which makes it an appropriate test example, is the feature
of label switching. As noted above, the priors on each component are exchangeable, and con-
sequently, in the posterior, the marginal distribution of µ1 is the same as µ2, i.e. the marginal
posterior is equivalent for each component-specific quantity. This provides us with a diagnostic
to establish the effectiveness of the simulation procedure. For more discussion see, for example,
Jasra et al. (2005b). It should be noted that very long runs of an MCMC sampler targeting πp

could not explore all the modes of this distribution and failed to produce correct estimates (see
Jasra et al. (2005b)).

4.2.2. Sequential Monte Carlo sampler
We shall consider AIS and SMC samplers. Both algorithms use the same MCMC kernels Kn

with invariant distribution πn and the same backward kernels (30). The MCMC kernel is a
composition of the following update steps.

(a) Update µ1:r via an MH kernel with an additive normal random-walk proposal.
(b) Update λ1:r via an MH kernel with a multiplicative log-normal random-walk proposal.
(c) Update ω1:r via an MH kernel with an additive normal random-walk proposal on the

logit scale.

For some of the runs of the algorithm, we shall allow more than one iteration of the above
Markov kernel per time step. Finally, the sequence of densities is taken as

πn.θr/∝ l.y1:c; θr/
φn f.θr/

where 0�φ1 < . . . <φp =1 are tempering parameters and we have denoted the prior density as
f and likelihood function as l.

4.2.3. Illustration
4.2.3.1. Data and simulation parameters. For the comparison, we used the simulated data

from Jasra et al. (2005b): 100 simulated data points from an equally weighted mixture of four
(i.e. r =4) normal densities with means at (−3,0,3,6) and standard deviations 0.55. We ran SMC
samplers and AIS with MCMC kernels with invariant distribution πn for 50, 100, 200, 500 and
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1000 time steps with 1 and 10 MCMC iterations per time step. The proposal variances for the
MH steps were the same for both procedures and were dynamically falling to produce an aver-
age acceptance rate in .0:15, 0:6/. The initial importance distribution was the prior. The C++
code and the data are available at http://www.cs.ubc.ca/∼arnaud/smcsamplers.
html.

We ran the SMC algorithm with N =1000 particles and we ran AIS for a similar central pro-
cessor unit time. The absence of a resampling step allows AIS to run for a few more iterations
than SMC sampling. We ran each sampler 10 times (i.e. for each time specification and itera-
tion number, each time with 1000 particles). For this demonstration, the resampling threshold
was 500 particles. We use systematic resampling. The results with residual resampling are very
similar.

We selected a piecewise linear cooling schedule {φn}. Over 1000 time steps, the sequence
increased uniformly from 0 to 15=100 for the first 200 time points, then from 15=100 to 40=100
for the next 400 and finally from 40=100 to 1 for the last 400 time points. The other time spec-
ifications had the same proportion of time attributed to the tempering parameter setting. The
choice was made to allow an initially slow evolution of the densities and then to allow more
complex densities to appear at a faster rate. We note that other cooling schedules may be imple-
mented (such as logarithmic or quadratic) but we did not find significant improvement with
such approaches.

4.2.3.2. Results. Table 1 gives the average of the (unnormalized) log-posterior values of
the particles at time p (averaged over 10 runs), the average number of times that resampling
occurred for SMC sampling and the averaged estimates of the log-normalizing constant (or
log-marginal likelihood).

Table 1 displays the following: the particles that are generated by the SMC samplers have on
average much higher log-posterior values. The standard deviation of these values (which is not
given here) is also significantly smaller than for AIS. However, the estimates of the normalizing
constant that were obtained via SMC sampling are not improved compared with AIS. For a low
number of time steps p, the estimates for both algorithms are particularly poor and improve
similarly as p increases. Therefore, if we are interested in estimating normalizing constants, it
appears that it is preferable to use only one iterate of the kernel and more time steps. In addition,
and as expected, the number of resampling steps decreases when p increases. This is because the
discrepancy between consecutive densities falls, and this leads to reduced weight degeneracy. As
the number of iterations per time step increases, this further reduces the number of resampling
steps, which we attribute to the fact that the kernels mix faster, allowing us a better coverage of
the space.

We now turn to Table 2 which displays estimates of the posterior means for {µr} for both
algorithms. Owing to the non-identifiability of the mixture components, we expect the esti-
mated means (for each component) to be all equal and approximately 1.5. In this case, SMC
sampling provides more accurate estimates of these quantities than AIS. This is particularly
significant when p is moderate (p=100 and p=200/ and when the kernel is mixing reasonably
well (i.e. the number of iterations is 10). This underlines that the resampling step can improve
the sampler substantially, with little extra coding effort. This is consistent with the discussion
in Section 3.5.

These experimental results can also be partially explained via the expressions of the asymp-
totic variances (38) and (37). (We do not use multinomial resampling in our experiments and
we do not resample at each iteration but the variance expressions behave similarly for more
complex resampling schemes). For the estimates of the normalizing constants, when the kernel
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Table 1. Results from the mixture comparison for SMC sam-
pling and AIS†

Sampler details Results for the following
iterations per time step:

1 10

SMC (50 time steps)
Average log-posterior −155.22 −152.03
Average times resampled 7.70 10.90
Average log-normalizing constant −245.86 −240.90

AIS (50 time steps)
Average log-posterior −191.07 −166.73
Average log-normalizing constant −249.04 −242.07

SMC (100 time steps)
Average log-posterior −153.08 −152.97
Average times resampled 8.20 5.10
Average log-normalizing constant −245.43 −244.18

AIS (100 time steps)
Average log-posterior −180.76 −162.37
Average log-normalizing constant −250.22 −244.17

SMC (200 time steps)
Average log-posterior −152.62 −152.99
Average times resampled 8.30 4.20
Average log-normalizing constant −246.22 −245.84

AIS (200 time steps)
Average log-posterior −174.40 −160.00
Average log-normalizing constant −247.45 −245.92

SMC (500 time steps)
Average log-posterior −152.31 −151.90
Average times resampled 7.00 3.00
Average log-normalizing constant −247.08 −247.01

AIS (500 time steps)
Average log-posterior −167.67 −157.06
Average log-normalizing constant −247.30 −247.94

SMC (1000 time steps)
Average log-posterior −152.12 −151.94
Average times resampled 5.70 2.00
Average log-normalizing constant −247.40 −247.40

AIS (1000 time steps)
Average log-posterior −163.14 −155.31
Average log-normalizing constant −247.50 −247.36

†We ran each sampler 10 times with 1000 particles. For AIS the
number of time steps is slightly higher than stated, as it corresponds
to the same central processor unit time as the SMC sampler.
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Table 2. Estimates of means from mixture comparison for SMC sampling and AIS†

Sampler details Estimates for the following components:

1 2 3 4

SMC (50 steps, 1 iteration) 0.38 0.83 1.76 2.69
AIS (50 steps, 1 iteration) 0.03 0.75 1.68 2.28
SMC (50 steps, 10 iterations) 1.06 1.39 1.62 1.70
AIS (50 steps, 10 iterations) 0.26 0.96 1.61 2.85
SMC (100 steps, 1 iteration) 0.68 0.91 2.02 2.14
AIS (100 steps, 1 iteration) 0.61 0.75 1.46 2.72
SMC (100 steps, 10 iterations) 1.34 1.44 1.44 1.54
AIS (100 steps, 10 iterations) 0.88 1.06 1.59 2.25
SMC (200 steps, 1 iteration) 1.11 1.29 1.39 1.98
AIS (200 steps, 1 iteration) 0.89 1.23 1.72 1.96
SMC (200 steps, 10 iterations) 1.34 1.37 1.53 1.53
AIS (200 steps, 10 iterations) 1.26 1.34 1.45 1.74
SMC (500 steps, 1 iteration) 0.98 1.38 1.54 1.87
AIS (500 steps, 1 iteration) 0.87 1.31 1.47 2.12
SMC (500 steps, 10 iterations) 1.40 1.44 1.42 1.50
AIS (500 steps, 10 iterations) 1.36 1.38 1.48 1.57
SMC (1000 steps, 1 iteration) 1.10 1.48 1.50 1.69
AIS (1000 steps, 1 iteration) 1.17 1.36 1.57 1.60
SMC (1000 steps, 10 iterations) 1.39 1.39 1.41 1.51
AIS (1000 steps, 10 iterations) 1.39 1.41 1.41 1.53

†We ran each sampler 10 times with 1000 particles. For AIS the number of time steps is
slightly higher than stated, as it corresponds to the same central processor unit time as
the SMC sampler. The estimates are presented in increasing order, for clarity.

mixes perfectly (i.e. Kk.xk−1, xk/=πk.xk/) the terms appearing in the variance expression are of
the form∫ {π̃n.xk/Lk−1.xk, xk−1/}2

πk−1.xk−1/Kk.xk−1, xk/
dxk−1:k −1=

∫ {πk.xk−1/πk+1.xk/}2

πk−1.xk−1/πk.xk/
dxk−1:k −1

when Lk−1 is given by equation (30). These terms will remain high if the discrepancy between
successive target distributions is large. For estimates of conditional expectations, the terms
appearing in the variance expression are of the form∫ {π̃n.xk/Lk−1.xk, xk−1/}2

πk−1.xk−1/Kk.xk−1, xk/

{∫
ϕ.xn/ π̃n.xn|xk/dxn −Eπn.ϕ/

}2

dxk−1:k:

These terms go to 0 as the mixing properties of Kk improve as in such cases π̃n.xn|xk/≈πn.xn/.

4.2.4. Summarizing remarks
In this example we have provided a comparison of SMC sampling and AIS. For normalizing
constants, SMC sampling does not seem to improve estimation over AIS. However, for poster-
ior expectations, it can provide a substantial gain when p is moderate and the kernels mix well.
This is of importance in more complicated applications. For example, in many modern statistics
problems (e.g. the population genetics example in Jasra et al. (2005a)), the computational cost of
applying many iterations of an MCMC kernel (and thus good performance of AIS) is prohibitive
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and thus the usage of the resampling step can enhance the performance of the algorithm.
In the situations for which the kernels mix quickly but p is small (i.e. where SMC sampling

outperforms AIS for the same N) we might improve AIS by reducing N and increasing p to
obtain similar computational cost and performance. The drawback of this approach is that it
often takes a significant amount of investigation to determine an appropriate trade-off between
N and p for satisfactory results, i.e. SMC sampling is often easier to calibrate (to specify simu-
lation parameters) than AIS.

For more complex problems, say if r �5, it is unlikely that SMC sampling will explore all the
r! modes for a reasonable number of particles. However, in such contexts, the method could pro-
vide a good indication of the properties of the target density and could be used as an exploratory
technique.

5. Sequential Bayesian estimation

In the following example we present an application of SMC samplers to a sequential, trans-
dimensional inference problem. In particular, we demonstrate our methodology in a case where
the supports of the target distributions are nested, i.e. En−1 ⊂En. Such scenarios also appear in
numerous counting problems in theoretical computer science, e.g. Jerrum and Sinclair (1996).

5.1. Model
We consider the Bayesian estimation of the rate of an inhomogeneous Poisson process, sequen-
tially in time. In the static case, a similar problem was addressed in Green (1995). In the sequential
case, related problems were discussed in Chopin (2004b), Fearnhead and Clifford (2003), Godsill
and Vermaak (2005) and Maskell (2004).

We suppose that we record data y1, . . . , ycn up to some time tn with associated likelihood

ln[y1:cn |{λ.u/}u�tn ]∝
{

cn∏
j=1

λ.yj/

}
exp

{
−

∫ tn

0
λ.u/du

}
:

To model the intensity function, we follow Green (1995) and adopt a piecewise constant func-
tion, defined for u� tn:

λ.u/=
k∑

j=0
λj I[τj ,τj+1/.u/

where τ0 =0, τk+1 = tn and the changepoints (or knots) τ1:k of the regression function follow a
Poisson process of intensity ν whereas for any k> 0

f.λ0:k/=f.λ0/
k∏

j=1
f.λj|λj−1/

with λ0 ∼Ga.µ, υ/ and λj|λj−1 ∼Ga.λ2
j−1=χ, λj−1=χ/.

At time tn we restrict ourselves to the estimation of λ.u/ on the interval [0, tn/. Over this
interval the prior on the number k of changepoints follows a Poisson distribution of parameter
νtn,

fn.k/= exp.−νtn/
.νtn/k

k!
,

and, conditionally on k, we have
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fn.τ1:k/= k!
tkn

IΘn,k .τ1, . . . , τk/

where Θn,k ={τ1:k : 0 < τ1 < . . . < τk < tn}. Thus at time tn we have the density

πn.λ0:k, τ1:k, k/∝ ln[y1:cn |{λ.u/}u�tn ]f.λ0/

{
k∏

j=1
f.λj|λj−1/

}
fn.τ1:k/fn.k/:

5.2. Sequential Monte Carlo sampler
We shall consider a sequence of strictly increasing times {tn}. For the problem that was consid-
ered above, we have defined a sequence of distributions on spaces:

En = ⋃
k∈N0

[{k}× .R+/k+1 ×Θn,k],

i.e. our densities are defined on a sequence of nested transdimensional spaces, En−1 ⊂ En. As
noted in Section 3.3.2, previously developed methodologies such as AIS and RM cannot be
applied in such scenarios. Additionally, we must be careful, as in Green (1995), to construct
incremental weights which are indeed well-defined Radon–Nikodym derivatives.

As noted in the transdimensional MCMC and SMC literatures (e.g. Green (2003), Carpenter
et al. (1999), Doucet et al. (2000) and Pitt and Shephard (1999)) and in Section 3.3.2, a poten-
tially good way to generate proposals in new dimensional spaces is to use the full conditional
density. We shall use a similar idea to generate the new changepoints.

5.2.1. Extend move
In the extend move, we modify the location of the last changepoint, i.e. we use the Markov
kernel

Kn.x, dx′/= δτ1:k−1,λ0:k ,k{d.τ ′
1:k−1, λ′

0:k, k′/}πn.dτ ′
k|τ1:k−1, λ0:k, k/:

The backward kernel (25) is used.
In the context of the present problem, the full conditional density is given by

πn.τ ′
k|τ1:k−1, λ0:k, k/∝λ

n[τk−1,τ ′
k

/

k−1 λ
n[τ ′

k
, tn/

k exp{−τ ′
k.λk−1 −λk/} I[τk−1,tn/.τ

′
k/

where n[a,b/ =Σcn

j=1 I[a,b/.yj/. It is possible to sample exactly from this distribution through com-
position. It is also possible to compute in closed form its normalizing constant, which is required
for the incremental weight (26).

5.2.2. Birth move
We also adopt a birth move which is simulated as follows. We generate a new changepoint
τ ′

k+1 from a uniform distribution on [τk, tn/ and conditionally on this generate a new intensity
according to its full conditional:

πn.λ′
k+1|τ ′

k+1, λk/∝λ′
k+1
n[τ ′

k+1, tn/+λ2
k=χ−1

exp{−λ′
k+1.tn − τ ′

k+1/+λk=χ}:

All other parameters are kept the same. This leads to incremental weight

πn.k +1, τ ′
1:k+1, λ′

0:k+1/.tn − τk/

πn−1.k, τ1:k+1, λ0:k+1/πn.λ′
k+1|τ ′

k+1, λk/
:

5.2.3. The sampler
We thus adopt the following SMC sampler.
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(a) At time n make a random choice between the extend move (chosen with probability αn.x/)
or birth move. Clearly no extend move is possible if k =0.

(b) Perform the selected move.
(c) Choose whether or not to resample and do so.
(d) Perform an MCMC sweep of the moves that were described in Green (1995), i.e. we retain

the same target density and thus the incremental weight is 1, owing to the invariance of
the MCMC kernel.

5.3. Illustration
To illustrate the approach that was outlined above we use the popular coal-mining disaster data
set that was analysed in (among others) Green (1995). The data consist of the times of coal-min-
ing disasters in the UK, between 1851 and 1962. We assume that inference is of interest annually
and so we define 112 densities (i.e. the nth density is defined up to time tn =n). For illustration we
take prior parameters as µ=4:5, υ =1:5, χ=0:1 and ν =20=112. For this example, the extend
move performed better than the birth move; thus we let αn.x/ equal 1 if k �1 and 0 otherwise.
The backward probability is taken as equal to αn.x/ when k �1 (as this is the only state that it
is evaluated in).

We ran our SMC sampler with 10000 particles and resampling threshold 3000 parti-
cles, using the systematic resampling approach. The initial (importance) distribution was the
prior. The C++ code and the data are available at http://www.cs.ubc.ca/∼arnaud/
smcsamplers.html.

Fig. 1(a) demonstrates the performance of our algorithm with respect to weight degener-
acy. Here we see that, after the initial difficulty of the sampler (due to the initialization from
the prior, and the targets’ dynamic nature—we found that using more MCMC sweeps did not
improve the performance) the ESS never drops below 25% of its previous value. Additionally,
we resample, on average, every 8.33 time steps. These statements are not meaningless when
using resampling. This is because we found, for less efficient forward and backward kernels,
that the ESS would drop to 1 or 2 if consecutive densities had regions of high probability mass
in different areas of the support. Thus the plot indicates that we can indeed extend the space in
an efficient manner.

Fig. 1(c) shows the intensity function for the final density (full curve) in the sequence, the
filtered density at each time point (i.e. E{λ.tn/|y1:cn}, the crosses) and the smoothed estimate,
up to lag 10 (E{λ.tn/|y1:cn+10}, the pluses). We can see, as expected, that the smoothed intensity
approaches the final density, with the filtered intensity displaying more variability. We found
that the final rate was exactly the same as Green’s (1995) transdimensional MCMC sampler for
our target density.

Figs 1(b) and 1(d) illustrate the performance when we only allow the MCMC steps to operate
on the last five knot points. This will reduce the amount of central processor unit time that is
devoted to sampling the particles and will allow us to consider a truly realistic on-line imple-
mentation. This is of interest for large data sets. Here, we see (in Fig. 1(b)) a similar number of
resampling steps to those in Fig. 1(a). In Fig. 1(d), we observe that the estimate of the intensity
function suffers (slightly), with a more elongated structure at later times (in comparison with
Fig. 1(c)), reflecting the fact that we cannot update the values of early knots in light of new data.

5.4. Summarizing remarks
In this example we have presented an application of SMC samplers to a transdimensional,
sequential inference problem in Bayesian statistics. We successfully applied our methodology
to the coal-mining disaster data set.
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One point of interest is the performance of the algorithm if we cannot use the backward
kernel (25) in the extend step for alternative likelihood functions. We found that not performing
the integration and using the approximation idea in equations (28) and (29) could still lead to
good performance; this idea is also useful for alternative problems such as optimal filtering for
non-linear, non-Gaussian state space models (Doucet et al., 2006).

6. Conclusion

SMC algorithms are a class of flexible and general methods to sample from distributions and
to estimate their normalizing constants. Simulations demonstrate that this set of methods is
potentially powerful. However, the performances of these methods are highly dependent on the
sequence of targets {πn}, forward kernels {Kn} and backward kernels {Ln}.

In cases where we want to use SMC methods to sample from a fixed target π, it would be
interesting—in the spirit of path sampling (Gelman and Meng, 1998)—to obtain the optimal
path (in the sense of minimizing the variance of the estimate of the ratio of normalizing constants)
for moving from an easy-to-sample distribution π1 to πp =π. This is a very difficult problem.
Given a parameterized family {πθ.t/}t∈.0,1/ such that πθ.0/ is easy to sample and πθ.1/ = π, a
more practical approach consists of monitoring the ESS to move adaptively on the path θ.t/;
see Johansen et al. (2005) for details.

Finally, we have restricted ourselves here to Markov kernels {Kn} to sample the particles.
However, it is possible to design kernels whose parameters are a function of the whole set of
current particles as suggested in Crisan and Doucet (2000), Cappé et al. (2004), Chopin (2002)
or West (1993). This allows the algorithm to scale a proposal distribution automatically. This
idea is developed in Jasra et al. (2005a).
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Appendix A

A.1. Proof of proposition 1
The result follows easily from the variance decomposition formula

var{wn.X1:n/}=E[var{wn.X1:n/|Xn}]+var[E{wn.X1:n/|Xn}]: .42/

The second term on the right-hand side of equation (42) is independent of the backward Markov kernels
{Lk} as

E{wn.X1:n/|Xn}=γn.Xn/=ηn.Xn/

whereas var{w.X1:n/|Xn} is equal to 0 if we use equation (21).

A.2. Proof of proposition 2
Expression (35) follows from the delta method. Expression (37) follows from a convenient rewriting of the
variance expression that was established in Del Moral (2004), proposition 9.4.2, page 302; see also Chopin
(2004a), theorem 1, for an alternative derivation. The variance is given by
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σ2
SMC,n.ϕ/=Eη1 [w̄2

1 Q2:n{ϕ−Eπn .ϕ/}2]+
n∑

k=2
Eπk−1Kk

[w̄2
k Qk+1:n{ϕ−Eπn .ϕ/}2] .43/

where the semigroup Q is defined as Qn+1:n.ϕ/=ϕ,

Qk+1:n.ϕ/=Qk+1 ◦ . . .◦Qn.ϕ/

and

Qn.ϕ/.xn−1/=EKn.xn−1, ·/{w̄n.xn−1, Xn/ϕ.Xn/}
where

w̄n.xn−1, xn/= πn.xn/Ln−1.xn, xn−1/

πn−1.xn−1/Kn.xn−1, xn/

= Zn−1

Zn

w̃n.xn−1, xn/:

Expression (43) is difficult to interpret. It is conveniently rearranged here. The key is to note that

Qn.ϕ/.xn−1/=EKn.xn−1,·/{w̄n.xn−1, Xn/ϕ.Xn/}

=
∫

Kn.xn−1, xn/
πn.xn/Ln−1.xn, xn−1/

πn−1.xn−1/Kn.xn−1, xn/
ϕ.xn/ dxn

= 1
πn−1.xn−1/

∫
ϕ.xn/πn.xn/Ln−1.xn, xn−1/ dxn

= π̃n.xn−1/

πn−1.xn−1/

∫
ϕ.xn/ π̃n.xn|xn−1/ dxn:

Similarly, we obtain

Qn−1:n.ϕ/=Qn−1{Qn.ϕ/}.xn−1/

=EKn−1.xn−2,·/{wn−1.xn−2:n−1/Qn.ϕ/.xn−1/}

= 1
πn−2.xn−2/

∫ {
1

πn−1.xn−1/

∫
ϕ.xn/πn.xn/Ln−1.xn, xn−1/ dxn

}
πn−1.xn−1/Ln−2.xn−1, xn−2/ dxn−1

= 1
πn−2.xn−2/

∫ {∫
ϕ.xn/ π̃n.xn−1:n|xn−2/ dxn−1:n

}
π̃n−2.xn−2/ dxn−1

= π̃n−1.xn−2/

πn−2.xn−2/

∫
ϕ.xn/ π̃n.xn|xn−2/ dxn

and, by induction, we obtain

Qk+1:n.ϕ/= 1
πk.xk/

∫
· · ·

∫
ϕ.xn/πn.xn/

n−1∏
i=k

Li.xi, xi−1/ dxk+1:n .44/

= π̃n.xk/

πk.xk/

∫
ϕ.xn/ π̃n.xn|xk/ dxn:

The expression of σ2
SMC,n.ϕ/ that is given in equation (37) follows now directly from equations (44) and

(43). Similarly we can rewrite the variance expression that was established in Del Moral (2004), proposition
9.4.1, page 301, and use the delta method to establish equation (38).
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