
CS 340 Tutorial Notes January 2011

We covered these notes in the tutorial sessions. I strongly recommend that you further
read the presented materials in classical books on linear algebra. Please make sure that you
understand the proofs and that you can regenerate them. Should you have any questions,
please feel free to contact the TAs.

Matrix Vector Products

Let A be a matrix in Rn×n whose (i, j)-th element is denoted by aij , and v be a vector
in Rn whose i-th element is denoted by vi. Note that the elements of A and v are real
numbers. The length of v, denoted by ‖v‖, is defined as

‖v‖ =

√√√√ n∑
i=1

v2i

The matrix vector product Av is a vector in Rn defined as follows:

[Av]i =

n∑
j=1

aijvj

The relationship between v and Av is the focus of our discussion in this section.
There are two basic questions that one needs to deal with when A is multiplied by v:
what happens to v; and what happens to A? The former question is that of deforming a
vector whereas the latter is that of projecting several points. The answer to each question
provides us with a different interpretation of Av.
When a vector is multiplied by a matrix, its orientation changes and its length gets scaled
as the following example illustrates:
Example 1: Let A be given by

A =

[
2 0
0 1

]
, (1)

and take

v =

[
1/
√

2

1/
√

2

]
.

Note that v has unit length and makes an angle of π
4 with the x axis. The vector Av,

however, has length ‖v‖ =
√

5 and orientation atan(1/2) < π
4 . The amount by which the

length and orientation of Ax differ from those of x are related to properties of A. Hence,
Av is sometimes called the image of v under A.
Let A represent a set of m observations (rows of A) made over n features (column of A).
Then, Ax represents a projection of m samples from A onto x. In other words, it is a one
dimensional representation of A. To retrieve the coordinates of Ax in Rn, one needs to
convert each element of the image into a vector along the direction of x. Note that the
element [Ax]i is the length of the i-th row of A projected onto x. The coordinates of the
projected data in the original coordinate are given by AxxT . See Fig.1 for more details.

Eigenvalues and Eigenvectors

A scalar λ is called an eigenvalue of A if there exists v ∈ Rn with ‖v‖ 6== 0 such that

Av = λv,
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(a)

Figure 1: Different interpretations ofAv. The red circles are two observations contained inA. Their

projection on the unit length vector v =

[
1/
√

2

1/
√

2

]
is given by the green stars AvvT . Therefore,

Av gives us the length of the projected points on v. Furthermore, Av can also be viewed as a

vector, which is called the image of v under A. Av is in general a vector with a different length and

orientation than that of Av. In fact, if v does not rotate under A, then it must be an eigenvector (see

the section on eigenvalues). If one images Av under A, the new image A2v is further stretched and

rotated. In this particular case, the length of the Av is
√

5/2 and the length of A2v is
√

17/2. A2v

is more oriented toward the x-axis. If we keep imaging v under A, we obtain the largest eigenvector

of A. One can see that A10v is almost aligned with the x-axis.

which implies (A − λI)v = 0. The vector v is called a right eigenvector for A. Similarly,
a vector satisfying vTA = λvT is a left eigenvector for A. From a geometrical point of
view, an eigenvector is one that does not change its orientation when imaged under A (see
Fig.1); it only gets scaled by a factor called the eigenvalue. Note that Av and λv have the
same orientation and differ only by a constant factor. Furthermore, note that any λ at
which (A − λI) becomes singular is an eigenvalue for A. If A has n distinct eigenvalues
{λ1, ..., λn}, we have

det(λI −A) = (λ− λ1)(λ− λ2)...(λ− λn).

The right hand side of the above equation is called the characteristic polynomial of A. In
fact, we can find the eigenvalues of A by finding the roots of the characteristic polynomial.
This gives us an analytical approach to find the eigenvalues of either small matrices or
matrices with special structures– this is not, however, computationally efficient and it is
not how numerical solvers find eigenvalues. An eigenvector vi of A belongs to the null space
of A− λiI, which means that it satisfies the equality (A− λi)vi = 0. If the eigenvalues are
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distinct, their corresponding eigenvectors are unique up to a scaling factor, i.e., there is a
unique direction along which (A− λi)vi = 0 occurs.
Example 2: Let A be given by Eq.1. The eigenvalues of A are the roots of

det(A− λI) = (λ− 2)(λ− 1),

which are λ1 = 2 and λ2 = 1. The eigenvectors of A are given by

(A− λ1I)

[
v11
v12

]
= 0.

Then, [
0 0
0 −1

] [
v11
v12

]
= 0 =⇒

v11 = 1, v12 = 0

Note that Amv =

[
2m 0
0 1

]
v. One can see that v1 =

[
1
0

]
is the unit length limit of

Amv as m −→∞. This concept is illustrated in Fig.1.
We now consider cases where an eigenvalue λr is repeated. This happens when the char-
acteristic polynomial has a repeated root:

det(λI −A) = (λ− λr)m(λ− λ1)...(λ− λn−m), m > 1.

m is called the algebraic multiplicity of λr. In this case, the eigenvector satisfying (A −
λrI)v = 0 may no longer be unique. More precisely, if A − λrI has rank n − m then
there are m independent vectors that satisfy (λrI −A)v = 0. If this occurs, the number of
independent (and, in fact, orthogonal) eigenvectors associated with λr, also called geometric
multiplicity, is equal to m. However, if A − λrI has rank k > n −m, we cannot find m
independent vectors v that satisfy (A − λrI)v = 0. In this case, we need to introduce
generalized eigenvectors to complete a basis for A. In what follows, let v1 denote the
regular eigenvector that satisfied (A− λrI)v = 0.
Example 3: Let A be the identity matrix.

A =

[
1 0
0 1

]
.

The eigenvalues of A are given by λ1 = λ2 = 1. Therefore, 1 is a repeated eigenvalue with
multiplicity 2. The eigenvectors of A must satisfy

(A− 1I)v =

[
0 0
0 0

]
v = 0.

One can see that any vector in R2 is an eigenvector for A. We can choose v1 =
[

1 0
]

and v2 =
[

0 1
]

to form an orthogonal basis.
Example 4: Let A be given by

A =

[
0 1
−1 2

]
.
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Again, A has a repeated eigenvalue at 1 with multiplicity 2. The associated eigenvectors
must satisfy:

(A− 1I)v =

[
−1 1
−1 1

]
.

In this case, there is a unique eigenvector (up to a scaling factor) v1 =
[

1/
√

2 1/
√

2
]

for
λ = 1. This means that A is a defective matrix and we need to use generalized eigenvectors
to complete a basis for A. One can show that (A− 1I)v2 = v1 yields,

v2 =
[
− 1

2
√
2

1
2
√
2

]
.

It can be verified that (I − A)v2 = v1 and that Q = [v1v2] forms a basis for A. Now we
can prove an important property of symmetric matrices.
Lemma 1: There are no generalized eigenvectors for symmetric matrices.
Proof: Assume otherwise. Then, there exist vectors v1 and v2 for some symmetric matrix
A, such that

(A− λrI)v2 = v1,

for some repeated eigenvalue λr. However, this implies that

vT1 (A− λrI)v2 = vT1 v1,

or
vT1 Av2 − λrvT1 vT2 = vT1 v1. (2)

Note that for a general matrix A, if Av = λv, we have vTAT = λvT . This means that a
right eigenvector v is always a left eigenvector for AT . However, if A is symmetric, we have

(Av)T = vTAT = vTA = λrv
T .

Replacing vT1 A in the first term of Eq.2 by λrv
T yields

vT1 v1 = 0,

which implies v1 = 0. However, this is a contradiction because v1 = 0 cannot be an eigen-
vector. Therefore, A cannot have generalized eigenvectors. Q.E.D

Diagonalizing Symmetric Matrices

In the first homework, you were asked to prove that any matrix with a set of n linearly
independent eigenvectors Q = [ v1 · · · vn ] is diagonalizable, i.e., can be decomposed
into A = QΣQ−1. In general, defective matrices are not diagonalizable (A similar de-
composition exists for defective matrices of the form A = QJQ−1 where J contains the
eigenvalues of A and is in the normal Jordan form). Therefore, using Lemma1, one can
conclude that symmetric matrices are always diagonalizable. The following Lemma proves
a stronger property of symmetric matrices.
Lemma 2: Symmetric matrices are unitarily diagonalizable, i.e., they can be decomposed
into A = QΣQT .
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proof: Lemma 1 implies that Q contains n linearly independent eigenvectors. This means
the decomposition A = QΣQ−1 exists (homework 1). Therefore, it suffices to prove that
Q is orthogonal, i.e., Q−1 = QT . To do so, one needs to prove that the columns of Q are
orthogonal, i.e., vTi vj = 0 for i 6= j with ‖vi‖ = 1 (why does this imply Q−1 = QT ?). Two
cases are to be considered: λj 6= λi and λj = λi.
Case 1: λi 6= λj It follows from the definition of eigenvectors that

Avi = λivi
Avj = λjvj

}
=⇒ vTj Avi = λiv

T
j vi

vTi Avj = λjv
T
i vj

The left hand sides are transposes of each other. Therefore,

(vTi Avj)
T = λjv

T
j vi = λiv

T
j vi.

This implies that (λi− λj)vTj vi = 0. Given that λi 6= λj , it must hold that vTi vj = 0. Case
2: λi = λj The proof follows directly from Lemma 1. Recall that since A is not defective,
A − λiI has rank n − m with m being the multiplicity of λi. Therefore, there is an m
dimensional subspace N (see Example 3) such that (A − λiI)v = 0 ∀v ∈ N . One can
always choose orthogonal vectors vi and vj from N such that vTi vj = 0. Q.E.D

Principal Component Analysis

Let A be m×n containing m zero mean observations in n dimensions. The interest in this
section is to find a 1 dimensional vector v that maximizes the variance of Av (the variance
of the projection of A on v). It is proven in your textbook (see the chapter on PCA) that
maximizing the variance amounts to minimizing the loss in projection . In other words,

argminv∈Rm

N∑
i=1

(aTi − aTi vvT ) = argmaxv∈Rm(vTATAv).

Note that aTi refers to the i-th row of A. Let φ : Rm 7−→ R denote the variance φ(y) =
yTATAy. Maximizing φ(y) amounts to maximizing the norm of A. The following Lemma
proves that the maximum is equal to the largest singular value of A and occurs at the
principal eigenvector of ATA.
Lemma 3: Let A be m × n containing m zero mean observations in n dimensions and
define φ(y) = yTATAy. Let σmax denote the largest eigenvalue of ATA and vmax be its
associated eigenvector. It holds that:

vmax = argmax‖y‖=1φ(y).

In other words, the largest eigenvector of ATA is a maximizer of the variance φ over the
set of unit length vectors.
proof 1: Since ATA is symmetric, it can be decomposed to ATA = QΣQT with Q =
[ v1 · · · vn ]. Given that Q forms a basis for ATA, any vector y can be written as a
linear combination of the columns of Q

y =

n∑
i=1

αivi,
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with
∑n

i=1 αi = 1. The variance φ can be written as a function of α

φ(α1, ..., αn) = (

n∑
i=1

αiv
T
i )QTΣQ(

n∑
i=1

αiv
T
i ).

Furthermore, note that QT vj = vj . Therefore,

φ(α1, ..., αn) = (

n∑
i=1

αiv
T
i )Σ(

n∑
i=1

αiv
T
i )

Given that Σ is diagonal, and that vTi v
T
j = 0 for i 6= j, one can write

φ(α1, ..., αn) = (

n∑
i=1

α2
i σi).

It is clear that the maximum of φ(α) = σmax occurs at αmax = 1, where αmax is the weight
of the eigenvector for associated with σmax. Thus, the maximizing y occurs at ymax. Q.E.D
proof 2: Consider the following convex optimization problem:

maximize yTATAy
s.t. yT y = 1,

Define the Lagrangian L:

L(λ, y) = yTATAy − λ(yT y − 1).

The necessary optimality conditions require that

∂L

∂y
= 0,

which means
ATAy = λy.

This implies that the optimal Lagrange multiplier λ is an eigenvalue of ATA and that the
optimal y is an eigenvector of ATA. Furthermore, note that ATA can be decomposed into
ATA = QΣQT . Imposing the constraint yT y = 1 yields

L(y) = yTQTΣQy, y ∈ {v1, ..., vn},

where vi’s are eigenvectors of ATA. Let y = vk be k-th eigenvector. We have:

L(y, λ) = vTkQ
TΣQvk = σk.

Therefore, the maximum value of L is σmax, which occurs at y = vmax. Q.E.D
Example 5: Consider the set of points shown in Fig.2. The goal is to find the PCA
components of the set. This requires us to find a line on which the projected points are as
diverse as as possible. For instance, if the points are projected on the x-axis, the differences
along the y-axis is lost. Note that if we change the y-coordinates of the points the x-
axis does not change! Similarly, projecting points along the y-axis does not preserve the
difference along the x-axis. However, as can be seen in the figure, the PCA line maximizes
the projected variance by taking into account the differences in both coordinates. The code
for generating the PCA direction is provided below.
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(a)

Figure 2: A sample data set and its first principal components.

% choose arbitrary points and press enter to see the principal components

close all

[x,y]=getpts

plot(x,y,’ro’);hold on

A=[x y];

Ab=A-repmat(mean(A),size(A,1),1);

[v,d]=eig(Ab’*Ab);

z=Ab*v(:,end)*v(:,end)’;

z=z+repmat(mean(A)*v(:,end)*v(:,end)’,size(z,1),1);

plot([min(z(:,1)) max(z(:,1))],...

[z(z(:,1)==min(z(:,1)),2) v(2,end)/v(1,end)*max(z(:,1))],’b--’);

plot(z(:,1),z(:,2),’g*’);

legend(’Original points’,’PCA direction’,’Projected points’)

axis equal
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