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At this stage, you should...

Know what class of methods to use when given a problem.

Know the criteria optimized by these methods.

Be able to do basic linear algebra and proba/stats calculations.

Be able to provide/complete simple Matlab scripts.
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K-Nearest Neighbours

Supervised classification.

Metric / K .

Strengths: easy to implement/understand, can perform reasonably
well on clean data.

Weakness: curse of dimensionality in high dimension, basic version
non-probabilistic, cannot handle missing features.

How to select the metric? how to select K?
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PCA

Dimensionality reduction.

Minimize
N

∑
i=1
‖xi − x̂i‖2

We obtain

x̂i =
k

∑
j=1

(
xTi ui

)
ui

Can be used for latent semantic analysis, visualization, compression.

Usefulness in nonlinear scenarios? How to select k?
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Markov Chains and PageRank

What is a Markov chain?

When do we have lim
k

πk = π? when is this limit unique?

What is the principle of PageRank?

Power method.
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Bayesian Classifiers

Supervised classification.

Require modelling class conditional densities of features and use
Bayes rules.

Learning of the parameters using MLE, MAP (or full Bayes):
multinomial, Gaussian.

In multivariate Gaussian case, same structure as logistic but different
parameters.

Strengths: Exploit features density, missing features easily handled.

Weakness: Require reliable model of class conditional density, can be
diffi cult to learn.
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Linear Regression

Least square criterion, regression and probabilistic interpretation.

Use of basis functions.

Limitations of least square regression: robust regression, ridge
regression, L1 regression

How to estimate the regularization coeffi cient?
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Logistic Regression

Discriminative model for supervised classification.

Use of basis functions.

Maximum Likelihood/Penalized Maximum likelihood estimation via
gradient.

Geometry of decision boundaries.

Strengths: Quite easy to implement and probabilistic model.

Weakness: Does not exploit density of features, cannot handle missing
features.
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K-Means

Unsupervised learning: clustering.

Objective function minimized.

Strengths: Fast algorithm

Weaknesses: non probabilistic, local maxima, cluster shapes not
modelled...

How to estimate the number of clusters?
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Mixture Models and EM

Unsupervised learning: clustering and density estimation.

Maximum likelihood parameter learning using EM.

EM exploits that complete log-likelihood can be easily maximized.

Strengths: Flexible models, elegant algorithm.

Weaknesses: local maxima...
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