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Lots of High Dimensional Data

Lots of high-dimensional data...

face images

Zambian President Levy
Mwanawasa has won a
second term in office in
an election his challenger
Michael Sata accused him
of rigging, official results
showed on Monday.

According to media reports,
a pair of hackers said on
Saturday that the Firefox
Web browser, commonly
perceived as the safer
and more customizable
alternative to market
leader Internet Explorer,
is critically flawed. A
presentation on the flaw
was shown during the
ToorCon hacker conference
in San Diego.

documents

gene expression data MEG readings

2
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Motivation

Why do dimensionality reduction?

Computational: compress data ⇒ time/space effi ciency

Statistical: fewer dimension ⇒ better generalization

Visualization: understand structure of data

Anomaly detection: describe normal data, detect outliers

Dimensionality reduction in this course:

Linear methods (this week)

Clustering.

Feature selection.
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Types of Problems

Supervised learning (classification, regression):
Applications: face recognition, gene expression prediction
Techniques: kNN, SVM, least squares (+ dimensionality reduction
preprocessing)

Structure discovery: find an alternative representation z of data x
Applications: visualization
Techniques: clustering, linear dimensionality reduction

Density estimation p (x): model the data,
Applications: anomaly detection, language modeling
Techniques: clustering, linear dimensionality reduction
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What is the true dimensionality of these data?
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What is the true dimensionality of this data?

Figure: Simulated data in three classes, near the surface of a half-sphere
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Linear Dimensionality Reduction

Which line is best?

?

?

?

COMP-652, Lecture 15 - November 10, 2010 9

How do we assign points to lines?

?

COMP-652, Lecture 15 - November 10, 2010 10

Which line should I pick?
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Linear Dimensionality ReductionBasic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector x ∈ R361

x ∈ R361

z = U>x

z ∈ R10

5

Represent each face as a high-dimensional vector x ∈R361 by a
lower-dimensional vector say z ∈R10.

Basic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector x ∈ R361

x ∈ R361

z = U>x

z ∈ R10

How do we choose U?

5
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Review of Linear Algebra

x = 3.4, x =

 x1
...
xd

 , A =
 a11 · · · a1p
...
ad1 · · · adp

 ,
B =

 b11 · · · b1n
...
bp1 · · · bpn

 .
Here x is scalar (1× 1), x is d × 1, A is d × p and B is p × n.
Transposition: xT = x , xT =

(
x1 · · · xd

)
,
(
AT
)
i ,j = aji .

Quantities whose inner dimensions match may be “multiplied”by
summing over this index. The outer dimensions give the dimensions
of the answer.

(Ax)i = ∑
j=1
ai ,jxj , (AB)i ,j =

p

∑
k=1

ai ,kbk ,j

xTx scalar, xxT d × d , Ax d × 1, AB d × n, xTAx scalar.
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Review of Linear Algebra

Simple and valid manipulations

(AB)C = A (BC ) , A (B + C ) = AB + AC ,

(A+ B)T = AT + BT, (AB)T = BTAT

Consider a square matrix A then u is an eigenvector of A and λ is its
associated eigenvalue iff

Au =λu.

If the matrix is diagonalizable

AU = UD ⇔ A = UDU−1

Q: Prove that Ak = UDkU−1. Why is this expression useful?
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Review of Linear Algebra: PD Matrices

A real-valued square matrix A is called (semi-)positive definite if

xTAx ≥ 0

Q: Prove that for any matrix M, the matrix MTM is (semi-)positive
definite.

Q: Prove that a positive definite matrix only admits positive
eigenvalues.
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Review of Linear Algebra: Inner Product

Let u, v ∈Rd , then the inner product of u and v is a scalar

uTv = vTu =
d

∑
i=1
uivi

The (Euclidean) length/norm of a vector u is written ‖u‖ and is
defined as the square root of the inner product of the vector with itself

‖u‖ =
√
uTu =

√√√√ d

∑
i=1
u2i .

If the angle between vectors u and v is θ then

cos (θ) =
uTv
‖u‖ ‖v‖ .
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Approximating High-dimensional Vectors

We are given N data {xi}Ni=1 where xi∈Rd and we want to
approximate them by {x̂i}Ni=1 using

x̂i =
k

∑
j=1
zj ,iwj

where zi ,j ∈ R and {wi}ki=1 are Rd -valued basis vector.
This can be rewritten as

x̂i =Wzi

for

W =
(
w1 · · · wk

)
, d × k matrix

zi =
(
z1,i · · · zk ,i

)T
, k × 1 vector
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Approximating High-dimensional Vectors

An even more compact notation is

X̂︸︷︷︸
d×N

= W︸︷︷︸
d×k

Z︸︷︷︸
k×N

where X̂ =
(
x̂1 · · · x̂N

)
and Z =

(
z1 · · · zN

)
.

We can gain very significantly in terms of storage if k << d as we
only need to store W (size d × k) and Z (size k ×N) to compute X̂
instead of X (size d ×N).
Example: For d = 1000, k = 10 and N = 106, we have
d ×N/ (d × k + k ×N) ≈ 100.
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Approximating High-dimensional Vectors

How should we select W and Z to ensure X̂ ≈ X?
We introduce the reconstruction error X−X̂ and propose to minimize
the square of its Frobenius norm

J (W,Z) =
1
N

∥∥∥X−X̂∥∥∥2
F
=
1
N

N

∑
i=1
‖xi − x̂i‖2

=
1
N

d

∑
j=1

N

∑
i=1
(xj ,i − x̂j ,i )2

subject to W be an orthonormal matrix; i.e.

wTi wj =
{
1 if i = j
0 otherwise

⇔WTW = Ik .

Q: What is the minimum total squared reconstruction error for
k = d? What about k > d?
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Preliminaries: Normalization and Centering of the Data

It is standard to normalize and center the data beforehand.

This ensures that PCA finds the “interesting”directions of variation,
not the ones which just happen to be large because of the units of
measurement that are used.

Hence in practice if the “original data”were {xi}, we compute

mj=
1
N

N

∑
i=1
xj ,i , σ2j =

1
N

N

∑
i=1
(xj ,i −mj )2

and we set xi =
(
x1,i · · · xd ,i

)T
where

x j ,i =
xj ,i −mj

σj
.
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Finding the first principal component

Consider first the case k = 1 then we want to minimize

J (W,Z) = J
(
w1, z1

)
=
1
N

N

∑
i=1
‖xi − z1,iw1‖2

=
1
N

N

∑
i=1
xTi xi − 2xTi z1,iw1 + z1,iwT1 w1z1,i

=
1
N

N

∑
i=1
xTi xi − 2z1,ixTi w1 + z21,i

subject to wT1 w1 = 1 with z
1 = (z1,1 z1,2 · · · z1,N ).

Taking derivative w.r.t. z1,i and setting it equal to zero

∂J
(
w1, z1

)
∂z1,i

= −2xTi w1 + 2z1,i = 0⇔ z1,i = xTi w1

Optimal reconstruction weights are obtained by orthogonally
projecting the data onto the first principal direction w1.
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Finding the first principal component

Minimizing J (w1) is thus equivalent to maximizing

1
N

N

∑
i=1
z21,i =

1
N

N

∑
i=1

(
wT1 xi

)2
= wT1

(
1
N

N

∑
i=1
xixTi

)
︸ ︷︷ ︸

Σ̂

w1 s.t. ‖w1‖ = 1.

Assume the data have been centered, so that
N

∑
i=1
xi = 0

then
1
N

n

∑
i=1

(
wT1 xi

)2
≈ E

((
wT1 x

)2)
≈ Var

(
wT1 x

)
;

i.e. we seek w1 maximizing the variance of the projected data.
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Note additionally that we have

Σ̂ =
1
N

N

∑
i=1
xixTi ≈ E

(
xxT

)
= Cov (x) .

That is Σ̂ is an estimate of the covariance/correlation matrix of the
data.
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Finding the first principal component

Minimizing J (w1) is equivalent to maximizing

wT1 Σ̂w1 s.t. ‖w1‖ = 1.

Proposition: The vector wopt1 minimizing J (w1) is the eigenvector
(selected such that ‖w1‖ = 1) associated to the largest eigenvalue of
Σ̂.
Proof: Σ̂ is a symmetric matrix so it is diagonalizable by an
orthornormal matrix U; i.e.

Σ̂U = UD⇔ Σ̂ = UDUT

with D diagonal. Without loss of generality, we pick
D =diag

(
σ21, ..., σ

2
d

)
where σ21 ≥ σ22 ≥ · · · ≥ σ2d .
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Finding the first principal component

It follows that

argmax
w1 :‖w1‖=1

wT1 Σ̂w1 = argmax
w1 :‖w1‖=1

(
UTw1

)T D (UTw1)
= argmax

y=UTw1 :‖y‖=1
yTDy

= argmax
y=UTw1 :‖y‖=1

d

∑
i=1

σ2i y
2
i

so yopt =
(
1 0 . . . 0

)T ⇒ w1 = Uyopt = u1.
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PCA Example

9

Principal Components Analysis

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

4

x̂i =
∑k

j=1 zijvj .

scores Loadings (basis)

We have d = 2 and k = 1. Circles are the original data points, crosses are
the reconstructions. The red star is the data mean.
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The second principal component

We want to minimize

J
(
w1, z1,w2, z2

)
=
1
N

N

∑
i=1
‖xi − z1,iw1 − z2,iw2‖2

s.t. ‖w1‖ = ‖w2‖ = 1 and wT1 w2 = 0.
Optimizing w.r.t w1, z1 gives the same results as before. If we
optimize w.r.t z2,i , we find

∂J
(
wopt1 , zopt,1,w2, z2

)
∂z2,i

= −2xTi w2 + 2z2,i = 0⇔ z2,i = xTi w2

Similarly it can be proved that wopt2 is the eigenvector (selected such
that ‖w2‖ = 1) associated to the second largest eigenvalue of Σ̂.
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General Case

Compute the eigendecomposition of

Σ̂ =
1
N
XXT = UDUT

with σ21 ≥ σ22 ≥ · · · ≥ σ2d and keep only the associated k eigenvectors

Uk =
(
u1 · · · uk

)
The estimate is given by

X̂ = Uk
(
UTkX

)
︸ ︷︷ ︸
Zopt

=
k

∑
j=1
uj
(
uTj X

)
︸ ︷︷ ︸
“loadings”

It can be additionally shown that (for k < d)

1
N

∥∥∥X−X̂∥∥∥2
F
=

d

∑
j=k+1

σ2j
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Important Practical Remark

If you have centered and normalize the data beforehand, don’t forget
to correct later on!!

Suppose you have considered

X=Φ−1 (X− µ)⇔ X = µ+ΦX

then the reconstruction will be

X̂ = µ+ΦX̂

where X̂ is the PCA approximation of X.
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Reconstruction Error

We have

xi−x̂i =
d

∑
j=k+1

uj
(
uTj xi

)
Hence it follows that

‖xi−x̂i‖2 =

(
d

∑
j=k+1

uj
(
uTj xi

))T ( d

∑
j=k+1

uj
(
uTj xi

))

=

(
d

∑
j=k+1

(
uTj xi

)
uTj

)(
d

∑
j=k+1

uj
(
uTj xi

))

=
d

∑
j=k+1

(
uTj xi

)2
as uTj ul = 1 if j = l and 0 if j 6= l

=
d

∑
j=k+1

uTj xix
T
i uj
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Reconstruction Error

Thus we have

1
N

∥∥∥X−X̂∥∥∥2
F
=

1
N

N

∑
i=1
‖xi−x̂i‖2

=
1
N

N

∑
i=1

(
d

∑
j=k+1

uTj xix
T
i uj

)

=
1
N

d

∑
j=k+1

uTj

(
N

∑
i=1
xixTi

)
uj

=
d

∑
j=k+1

uTj Σ̂uj

=
d

∑
j=k+1

σ2j
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How Many Principal Components?

Magnitude of eigenvalues indicate fraction of variance captured.

Typically eigenvalues drop off sharply so you don’t need too many.

How many principal components?
• Similar to question of “How many clusters?”

• Magnitude of eigenvalues indicate fraction of variance captured.

• Eigenvalues on a face image dataset:

2 3 4 5 6 7 8 9 10 11

i

287.1

553.6

820.1

1086.7

1353.2

λi

• Eigenvalues typically drop off sharply, so don’t need that many.

• Of course variance isn’t everything...

Principal component analysis (PCA) / Basic principles 15
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PCA Example

Example: λ1 = 0.0938, λ2 = 0.0007

COMP-652, Lecture 15 - November 10, 2010 29

Example: λ1 = 0.1260, λ2 = 0.0054

COMP-652, Lecture 15 - November 10, 2010 30

Example where PCA is of interest.
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PCA Example

Difficult example

• PCA will make no difference between these examples, because the
structure on the left is not linear

• Are there ways to find non-linear, low-dimensional manifolds?

COMP-652, Lecture 15 - November 10, 2010 35

Making PCA non-linear

• Suppose that instead of using the points xi as is, we wanted to go to
some different feature space φ(xi) ∈ RN

• E.g. using polar coordinates instead of cartesian coordinates would
help us deal with the circle

• In the higher dimensional space, we can then do PCA
• The result will be non-linear in the original data space!
• Similar idea to support vector machines

COMP-652, Lecture 15 - November 10, 2010 36

Examples where PCA is of no interest.
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Image Compression using PCA

Given one single image, how can you use the PCA to perform image
compression?

Many different approaches are possible

Example 1: Interpret the columns of the image as different data points
xi .
Example 2: Interpret the rows of the image as different data points xi .
Example 3: Partition the image in non-overlapping small blocks, blocks
are now xi .

Note: There are better ways to compress images!

AD () January 2011 32 / 46



Computing the Principal Components

Computing Σ̂ takes O
(
Nd2

)
operations and computing the

eigenvectors of the d × d matrix Σ̂ takes O
(
d3
)
operations. This can

be very prohibitive!
If d >> N, then we can compute the eigenvectors based on the
eigenvectors of the so-called N ×N Gram matrix XTX in O

(
N3
)

instead.
Assume vi is an eigenvector of XTX such that ‖vi‖ = 1 associated to
the eigenvalue λi then by definition

XTXvi = λivi
so by multiplying both sides by X then

XXT︸︷︷︸
N Σ̂

(Xvi ) = λi (Xvi )

That is Xvi = ũi is an eigenvector of Σ̂ associated to the eigenvalue
λi
N and we can have a unit norm eigenvector by selecting
ui = λ−1/2

i ũi .
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Singular Value Decomposition

Given a d ×N matrix X, the SVD of X is a factorization of the form

X︸︷︷︸
d×N

= UDVT =
r

∑
i=1

λi ui︸︷︷︸
d×1

vTi︸︷︷︸
1×N

where r = min (d ,N) , U are the left singular vectors with UTU = Ir ,
V are the right singular vectors with VTV = Ir .
Right singular vectors are eigenvectors of XTX

XTX =
(
UDVT

)T (
UDVT

)
= VDUTUDVT

= VD2VT ⇒ XTXV = VD2

Left singular vectors are eigenvectors of XXT

XXT =
(
UDVT

) (
UDVT

)T
= UDVTVDUT

= UD2UT ⇒ XTXU = UD2

and clearly σ2i = λ2i /N.
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Singular Value Decomposition and PCA

In the PCA, we have
X̂ = Uk

(
UTkX

)
.

If we plug the SVD decomposition

X̂ = Uk
(
UTkU

)
DVT

=
k

∑
i=1

λiuivTi

i.e. the truncated SVD yields the PCA approximation.

This can be computationally beneficial.
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Visualization

12

Visualizing data

• Project 256 dimensional vectors (representing 
16x16 images of digits) into 2D
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Visualization

13

Embed vectors into their z1, z2 coords

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

AD () January 2011 37 / 46



Eigen-Faces

d is the number of pixels.

Each xi ∈ Rd is a face image.

Eigen-faces [Turk and Pentland, 1991]

• d = number of pixels

• Each xi ∈ Rd is a face image

• xji = intensity of the j-th pixel in image i

Xd×n u Ud×k Zk×n

( . . . ) u ( ) ( z1 . . . zn )

Principal component analysis (PCA) / Case studies 18

Idea: zi more “meaningful” representation of i-th face than xi .
Can use zi for nearest-neighbor classication
Much faster: O (dk +Nk) time instead of O (dN) when N, d >> k.
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Eigen-Faces with K-NN

15

Eigenfaces

test images
closest match in training set using K=4

K=4
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Eigen-Faces with K-NN

17

Eigenfaces

test images closest match in training set using K=10

K=10
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Eigen-Faces with K-NN

16

Misclassification rate vs K
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Latent Semantic Analysis

PCA can be used to cluster documents and carry out information
retrieval by using concepts as opposed to exact word-matching.

This enables us to surmount the problems of synonymy (car, auto)
and polysemy (money bank, river bank).

The data is available in a term-frequency (TF) matrix

N is the number of documents.
d is the number of words in the vocabulary.

Each xi ∈ Rd is a vector of word counts; xj ,i = numbers of
occurences of word j in document i .
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Example

Document 1: {I, eat, chips}
Document 2: {computer,chips,chips}
Document 3: {intel,computer,chips}
We have

X =


1 0 0
1 0 0
1 2 1
0 1 1
0 0 1
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PCA for Latent Semantic Analysis

Using the PCA, we obtain

X ≈ Uk Zk

That is we approximate the documents by a linear combination of k
“basis”documents.

How to measure similarity between two documents x̂i and xj?

x̂Ti x̂j is probably better than x
T
i xj

Applications: information retrieval.

Note: usually no computational savings; original x is already sparse.
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Network Anomaly Detection

xji = amount of traffi c on link j in the network during each time
interval i

Network anomaly detection [Lakhina, ’05]

xji = amount of traffic on
link j in the network
during each time interval i

Model assumption: total traffic is sum of flows along a few “paths”
Apply PCA: each principal component intuitively represents a “path”
Anomaly when traffic deviates from first few principal components

Principal component analysis (PCA) / Case studies 20

Model assumption: total traffi c is sum of flows along a few “paths”.
Apply PCA: each principal component intuitively represents a “path”.
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Network Anomaly Detection

Anomaly when traffi c deviates from first few principal components.

Network anomaly detection [Lakhina, ’05]

xji = amount of traffic on
link j in the network
during each time interval i

Model assumption: total traffic is sum of flows along a few “paths”
Apply PCA: each principal component intuitively represents a “path”
Anomaly when traffic deviates from first few principal components

Principal component analysis (PCA) / Case studies 20
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