
CS 340 Lec. 4: K-Nearest Neighbors

AD

January 2011

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 1 / 23

K-Nearest Neighbors

Introduction

Choice of Metric

Overfitting and Underfitting

Selection of K through Cross-Validation

Limitations

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 2 / 23

Supervised Classification

Assume you are given some training data
{
xi , y i

}N
i=1 where x

i ∈ Rd

and y i ∈ {1, 2, ...,C} .
Given an input test data x, you want to predict/estimate the output
label y associated to x.
Decision trees are applicable but not very practical and diffi cult to fit.

K−NN (K-Nearest Neighbors) is a very simple and reasonably
powerful alternative.

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 3 / 23

Nearest Neighbors: The simplest supervised classifier?

Let us introduce a distance D : Rd ×Rd → R+ which a numerical
description of how far apart two points in the input space are.

Mathematically a distance must satisfy three conditions

Positivity D (x, x′) ≥ 0 and D (x, x′) = 0 if and only if x = x′
Symmetry D (x, x′) = D (x′, x)
Triangle inequality D (x, x′) ≤ D (x, x′′) +D (x′′, x′)

For example, you can pick

L1 distance D (x, x′) = ∑d
k=1 |xk − x ′k |

L2 (Euclidean) distance D (x, x′) =
√

∑d
k=1 (xk − x ′k)

2

L∞ distance D (x, x′) = max
k∈{1,2,...,d}

|xk − x ′k |

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 4 / 23

Nearest Neighbor classifier

For K = 1, the 1-NN classifier ouputs looks at the point in the
training set that is the nearest to the test input x and outputs its
label; i.e.

ŷ (x) = y k where k = argmin
i∈{1,2,...,N}

D
(
x, xi

)
This corresponds to a so-called Voronoi tesselation of the space.

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 5 / 23

Nearest Neighbors classifier

For any K ≥ 1, we look the K points in the training set that are
nearest to the test input x, counts how many members of each class
are in this set, and do a majority voting.

Illustration of a K -nearest neighbors classifier in R2 for K = 3
for test input x1 and x2

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 6 / 23

Practical Issues: Normalisation

In practice, the different components of x = (x1, x2, ..., xd) can have
very different scales; e.g. x1 ∈ [−1, 1] and x2 ∈

[
105, 109

]
.

A standard approach consists of normalizing these features; i.e. for
k = 1, ..., d

xk =
xk −mk

σk

where mk = 1
N ∑N

i=1 x
i
k and σ2k =

1
N ∑N

i=1

(
x ik −mk

)2
are the

empirical mean and variance.

We then use K -NN on the training data
{
xi , y i

}N
i=1 with the rescaled

test input x.
Equivalently, this can be thought of using a different distance; e.g. if
we consider say the L1 distance

D
(
x, x′

)
=

d

∑
k=1

∣∣xk − x ′k ∣∣ = d

∑
k=1

|xk − x ′k |
σk

.

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 7 / 23

“Generalizations”

We have considered the case where X =Rd . In numerous
applications, X = {0, 1}d or X could be the set of directed graphs,
strings etc.

As long as we can define a valid distance, K -NN still applies.

For example for X = {0, 1}d , we can still use the L1 distance (known
as Hamming)

D
(
x, x′

)
=

d

∑
k=1

∣∣xk − x ′k ∣∣
which counts the number of entries which differ in x and x′.
Over recent years, many distance have been introduced for structured
objects.

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 8 / 23

Application: Handwriting Recognition

Objective: recognizing isolated (i.e., non-overlapping) digits, as in
ZIP or postal codes.

Training and Test Data: The MNIST15 dataset contains 60,000
training images and 10,000 test images of the digits 0 to 9, as written
by various people.

Details: Images are 28×28 and have grayscale values in the range
0:255.

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 9 / 23

Application: Handwriting Recognition

Results: 1-NN obtains a miss-classification rate of only 3.09% on the
test data using the Hamming distance!

This problem might look easy to you but remember that we do not
use any spatial information. The K-NN classifier would obtain exactly
the same results if the training and test data were permuted as it is
invariant to the order of the features.

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 10 / 23

Application: Pixel Labelling of LANDSAT Images

LANDSAT images for an agricultural area in 4 spectral bands; manual
labeling into 7 classes (red soil, cotton, vegetation, etc.);
Output of 5-NN using each 3x3 pixel block in all 4 channels (9*4=36
dimensions).

This approach outperformed all other methods in STATLOG project.
AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 11 / 23

Overfitting

For K = 1, we have no training error but are exposed to overfitting.

Increasing K yields smoother predictions, since we average over more
data.

For K = N, we predict the same output whatever being x!
01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 47

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

4

5

train

(a) (b) (c)

Figure 1.53: (a) Some synthetic 3 class training data in 2d. (b) Predicted labels for 1-NN. (c) Predicted labels for 5-NN. Figure generated by
knnClassifyDemo.

1.7.1.2 Overfitting in classification

The overfitting problem is not restricted to regression. If we use polynomials to represent the decision boundary, it is clear that
we will overfit if the decision boundaries become “too wiggly”.

Figure 1.53 illustrates overfitting using a K-nearest neighbor classifier. On the left, we plot some training data for a 3-class
problem. In the middle, we plot the predicted label for each location in a 2d grid using K = 1. We see that the prediction
“surface” is quite “jagged”. We can get “smoother” predictions by taking multiple neighbors into account, and computing the
majority vote of their labels. On the right, we plot predictions using K = 5. We see that the decision regions are indeed much
smoother. We see that that K = 1 has overfit the training data, whereas K = 5 seems “just right”. But we can also oversmooth,
or underfit, the data. For example, if K = N , then we just compute the majority vote of all the training data. Thus we always
predict the same label, no matter what the test point.

In Figure 1.52(b) we plot the training and test error vs K, and we see the usual U-shaped curve for the test error. Note
that the horizontal axes in Figure 1.52(a) and Figure 1.52(b) have opposite intepretations: for (a), as we move to the right, the
polynomial degree d (and hence model complexity) increases, whereas in (b), as we move to the right, the number of neighbors
K that we average over increases, so the models become smoother and smoother. It is therefore quite common to plot the errors
versus a model complexity parameter, known as the degrees of freedom. The precise definition is somewhat complex, but this
quantity basically refers to the effective number of free parameters in a model. In a linear model with D parameters fit using
maximum likelihood, we have dof = D. In a KNN, we have dof ≈ N/K, since increasing N and/or decreasing K increases
the model complexity.

1.7.1.3 Overfitting in unsupervised learning

Overfitting can also arise in unsupervised learning settings. For example, we may use too many clusters, some of which might
be used to model outliers or noise. Or we may pick a low dimensional subspace that is too high dimensional, thus capturing the
noise as well as the signal. We will discuss these issues later.

1.7.2 The benefits of more data

One way to avoid overfitting it to use lots of data. Indeed, it should be intuitively obvious that the more training data we have,
the better we will able to learn. (This assumes the training data is randomly sampled, and we don’t just get repetitions of the
same examples. Having informatively sampled data can help even more; this is the motivation for an approach known as active
learning, where you get to choose your training data.) Thus the test set error should decrease to some plateau as N increases.

This is illustrated in Figure 1.54, where we plot the mean squared error incurred on the test set achieved by polynomial
regression models of different degrees vs N (a plot of error vs training set size is known as a learning curve). The level of the
plateau for the test error consists of two terms: an irreducible component that all models incur, due to the intrinsic variability of
the generating process (this is called the noise floor); and a component that depends on the discrepancy between the generating
process (the “truth”) and the model: this is called structural error.

In Figure 1.54, the truth is a degree 2 polynomial, and we try fitting polynomials of degrees 1, 2 and 25 to this data. Call the
3 modelsM1,M2 andM25. We see that the structural error for modelsM2 andM25 is zero, since both are able to capture
the true generating process. However, the structural error forM1 is substantial, which is evident from the fact that the plateau
occurs high above the noise floor.

For any model that is expressive enough to capture the truth (i.e., one with small structural error), the test error will go to
the noise floor as N → ∞. However, it will typically go to zero faster for simpler models, since there are fewer parameters to
estimate. In particular, for finite training sets, there will be some discrepancy between the parameters that we estimate and the

Machine Learning: a Probabilistic Approach, draft of December 29, 2010

Figure: Training data (left), 1-NN (center) and 5-NN (right)

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 12 / 23

How to Select K

We want to select K so as to obtain a small classification error on the
test data but, in real-world applications, we cannot evaluate this error
on the test set!
A simple idea to evaluate the error rate consists of splitting the
training data into two blocks: a block used as training data and the
other block known as validation set.
Example: Assume you are given

{
xi , y i

}N
i=1 training data, then only

Ntrain < N data, say
{
xi , y i

}Ntrain
i=1 are used as training data whereas

the remaining Nvalid = N −Ntrain data
{
xi , y i

}N
i=Ntrain+1

are used to
assess the performance of the classifier using

Err︸︷︷︸
Error rate

=
1

Nvalid

N

∑
i=Ntrain+1

I
(
ŷ
(
xi
)
6= y i

)
.

We compute Err for various values of K and select the one which
minimizes Err .
This is a very common, general and useful procedure!

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 13 / 23

Cross-Validation

If N is small, this technique is unreliable as the model won’t have
enough data to train on, and we won’t have enough data to make a
reliable estimate of the future performance.
A simple and popular solution to this is M-fold cross validation
(CV). We split the training data into M folds then, for each fold
k ∈ {1, 2, ...,M}, we train on all the folds but the k’th, and test on
the k’th, in a round-robin fashion to estimate Err = 1

M ∑M
k=1 Errk .

N-fold CV is called leave-one-out CV.

Figure: 5-fold cross validation

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 14 / 23

Cross-Validation for K-NN

Illustration of the 10-fold CV for K-NN.

CV for kNN

• In hw1, you will implement CV and use it to select K
for a kNN classifier

• Can use the “one standard error” rule*, where we
pick the simplest model whose error is no more
than 1 se above the best.

• For KNN, dof=N/K, so we would pick K=11.

K

CV error

* HTF p216
Figure: 10 fold-CV error rate as a function of K

In this case, we would pick K = 11.

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 15 / 23

Problems with K-NN

Can be slow to find nearest neighbor in high-dimensional space.

Need to store all the training data, so takes a lot of memory.

Need to specify the distance function.

Does not give probabilistic output.

Diffi cult to interpret.

Curse of dimensionality...

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 16 / 23

Reducing Running Time of K-NN

Takes O (Nd) to find the exact nearest neighbor

Use a branch and bound technique where we prune points based on
their partial distances

Dr
(
x, x′

)
=

r

∑
k=1

(
xk − x ′k

)2
.

Structure the points hierarchically into a kd-tree (does offl ine
computation to save online computation).

Use locality sensitive hashing (a randomized algorithm).

Various heuristic algorithms have been proposed to prune/edit/
condense “irrelevant”points that are far from the decision boundaries.

Later we will study sparse kernel machines that give a more principled
solution to this problem.

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 17 / 23

A Probabilistic Version of K-NN

A classification function returns a single best guess ŷ (x) of y given
an input x.
A probabilistic classifier returns a probability distribution over outputs
given an input:

Pr (ŷ (x) = i | x) ≥ 0
C

∑
i=1
Pr (ŷ (x) = i | x) = 1.

For C = 2 if Pr (ŷ (x) = i | x) ≈ 0.5 (very uncertain), the system may
choose not to classify as 0/1 and instead ask for human help.

Useful to fuse different predictions ŷ (x) of y .

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 18 / 23

A Basic Probabilistic K-NN

We can compute the empirical distribution over labels in the
K -neighborhood; i.e. we set

Pr (ŷ (x) = i | x) ≈ 1
K ∑
{j :xj is one of the K -NN of x}

I
(
y j = i

)
Example: let C = 3, K = 5 and the 5 nearest neighbor of x have
labels {2, 3, 3, 1, 2} then

i 1 2 3
Pr (ŷ (x) = i | x) 1

5
2
5

2
5

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 19 / 23

A Basic Probabilistic K-NN
Probabilistic kNN

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

3

4

5

train P(y=1|x, D)
p(y=1|x,K=10,naive)

-4.47 -3.13 -1.79 -0.45 0.89 2.23 3.56 4.90 6.24

-3.83

-2.49

-1.15

0.19

1.53

2.86

4.20

5.54

6.88

8.22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p(y=2|x,K=10,naive)

-4.47 -3.13 -1.79 -0.45 0.89 2.23 3.56 4.90 6.24

-3.83

-2.49

-1.15

0.19

1.53

2.86

4.20

5.54

6.88

8.22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

1

3

p(y=3|x,K=10,naive)

-4.47 -3.13 -1.79 -0.45 0.89 2.23 3.56 4.90 6.24

-3.83

-2.49

-1.15

0.19

1.53

2.86

4.20

5.54

6.88

8.22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(y=2|x, D) P(y=3|x, D)

Figure: Illustration of the outpout of a probabilistic KNN classifier

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 20 / 23

Curse of Dimensionality for K-NN

To explain the curse, consider using a KNN classifier where the inputs
are uniformly distributed in the unit hypercube [0, 1]d .

Suppose we want to take our decision for a test point x by “growing”
a hypercube around x until it contains a desired fraction s of the
training data points.

The expected edge length of this cube will be ed (s) = s1/d as
e (s)d = s.

If d = 10 and we want to base our estimate on 1% of the data, we
have e10 (0.01) = 0.011/10 ≈ 0.63 so we need to extend the cube
63% along each dimension around x. Since the entire range of the
data is only 1 along each dimension, the method is no longer very
local, despite the name “nearest neighbor”.

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 21 / 23

Curse of Dimensionality for K-NN

Figure: Illustration of the curse of dimensionality

AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 22 / 23

Limiting the Curse of Dimensionality

Feature selection: eliminate some of the “irrelevant” features xi ;
e.g. the car you drive might not be a good indicator whether you are
obese or not.
Dimension reduction: find a low-dimensional manifold on which the
data lies, and measure distance in that subspace.

Figure: Simulated data in three classes, near the surface of a half-sphere
AD () CS 340 Lec. 4: K-Nearest Neighbors January 2011 23 / 23

