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Supervised learning as function fitting

We are given some training data

D =
{(
xi , y i

)}N
i=1

Consider a restricted set of mappings/parametric functions f in
hypothesis class H

f ∈ H : X × Θ −→ Y ,

we will predict using
ŷ (x) = f (x; θ)

where θ ∈ Θ.
Learning: Given H, learn parameters θ given D so that predictions
on non-labeled inputs (i.e. test set, real-world data) are as accurate
as possible.
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Definitions

Empirical/Training error:

Err_Train =
1
N

N

∑
i=1

I
(
ŷ
(
xi
)
6= y i

)
.

Test error:

Err_Test =
1

N_test

N_test

∑
i=1

I
(
ŷ
(
xitest

)
6= y itest

)
.

Generalization error:

Proba [error] = E [I (ŷ (x) 6= y)] =
∫

I (ŷ (x) 6= y) p (x,y) dxdy

where the expectation is w.r.t the UNKNOWN probability density
function p (x,y) of (x,y) .
Empirical/Training error are approximations of generalization error
thanks to the Law of Large Numbers.
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Law of Large Numbers

Assume that some Z-valued random variables
{
z i
}
are independent

and identically distributed according to a probability density function
p (z) then for any function g : Z →R the law of large numbers states
that

lim
N→∞

1
N

N

∑
i=1
g
(
z i
)

︸ ︷︷ ︸
empirical average

= E [g (z)]︸ ︷︷ ︸
statistical average

where the expectation E [g (Z )] is defined by

E [g (z)] =
∫
g (z) p (z) dz .

This fundamental theorem states that the limit of the empirical
average converges to the statistical average.

In the supervised learning case, we have simply z = (x, y) and
g (z) = g (x, y) = I (ŷ (x) 6= y) .
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Binary classification: Credit card scoring

Say you have training data of the following form

Income Savings Risk
100 50 Hi
100 100 Lo
50 75 Hi
500 93 Lo

Test data are of the form

Income Savings Risk
98 49 ?
100 102 ?
400 20 ?

In this case x = (x1, x2) ∈
(
X =R2

)
and Y = {high,low} .
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Example function

f (x; θ) = f ((income,savings) ; (θ1, θ2)) = IF (x1 = income)>θ1
AND (x2 = savings)>θ2 THEN low-risk ELSE high-risk.
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Decision Trees
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Classifying Shapes
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Hypothesis (Decision Trees)
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Decision Trees

Generalization beyond training set can be diffi cult: Blue → yes:
Reasonable?
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Decision Trees

Generalization beyond training set can be diffi cult: Yellow small ring
→ no: Reasonable?
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Decision Trees

Decision trees are easy to use and easy to understand, and they can
easily handle mixed discrete and continuous inputs.

They can be very diffi cult to build (NP hard even in some simple
cases).

Optimal tree structure is sensitive to the particular patterns in the
training data: not very stable to perturbations.

Adding one more example of a certain kind can change the whole tree
topology and the model does not generalize very well to novel inputs.

No longer very popular in machine learning.
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What’s the right hypothesis class?

Figure: Training data where xi ∈ R2 and y i ∈ {−1, 1}
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Linearly separable data

Figure: Linear classifier where xi ∈ R2 and y i ∈ {−1, 1}

Linearly separable means if f is a “linear” function of x, we can
perfectly fit the training data.
In this case
f (x; θ) =sgn

(
θT (1 x)

)
=sgn(θ0 + θ1x1 + θ2x2) ∈ {−1, 1}
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Which linear hypothesis is better?

Even if the chosen hypothesis class is properly chosen, we will need to
specify a criterion to select θ!
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Not linearly separable data

Figure: Non-linearly separable training data where xi ∈ R2 and y i ∈ {−1, 1}

AD () January 2011 16 / 37



Quadratically separable

f (x; θ) =sgn
(
θ0 + θ1x1 + θ2x2 + θ3x21 + θ4x22 + θ5x1x2

)
.
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Noisy/Mislabeled data and/or Features non-informative
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Overfitting

An overly flexible function might models irrelevant details of training
set.
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Overfitted functions do not predict well
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Overfitted functions do not predict well

Test points are mis-predicted
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Tradeoff simplicity for model fit
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Tradeoff simplicity for model fit
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Ockham’s razor

If two models fit the data equally well, pick the simpler one

In general, since our goal is to predict the test data, we may choose
to incur errors on the training set if it results in a simpler function.
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Function fitting

Choose the right hypothesis classe H given training data D.

Function fitting

1. Choose right hypothesis class H given D

2. Fit parameters of function θ given H and D

linear quadratic

f(x, θ) = sgn(θTx) = sgn(θ0 + θ1x1 + θ2x2)

Depth-2 decision tree

Learn parameters θ of function f (x; θ) given H and D; e.g.

f (x; θ) = sgn
(

θT (1 x)
)
= sgn (θ0 + θ1x1 + θ2x2)

according to a given (typically statistical) criterion.
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Hypothesis class depends on data

More complex function is ok if we have more data, because we have
more evidence for it.
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Decision regions might be discontinuous
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Another Simple Example

Learn concept of “healthy levels”of cholestrol x1 and insulin x2 from
positive and negative examples.

H = space of rectangles in R2.

Assume for the time being that the “true”mapping belongs also to
H.

H=rectangles in the Rd plane

learn concept of “healthy levels” of cholestrol x1 and 
insulin x2 from positive and negative examples

True concept C (hidden)
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Training Data
Training data D

Training data D sampled from CTrue concept C (hidden)
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Learning: Inferring hidden concept/function

Learning = inferring hidden concept (function)

Too big Too small Just right
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Empirical/Training ErrorEmpirical error

Nerr =
N∑

n=1

I(ŷ(xn) �= yn)

I(e) =

{
1 if e is true
0 if e is false

Predicted
label

True
label
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False Positive

False positive

Nfp =
N∑

n=1

I(ŷ(xn) = 1 ∧ yn = 0)

N_FalsePos =
N

∑
i=1

I (ŷ (xi ) = 1∧ yi = 0)
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False Negative

False negative

Nfn =
N∑

n=1

I(ŷ(xn) = 0 ∧ yn = 1)

N_FalseNeg =
N

∑
i=1

I (ŷ (xi ) = 0∧ yi = 1)
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Generalization Error and Empirical Risk Minimization
Generalization error

We want to minimize the average error rate,
where the test cases are assumed to be sampled from C

E[err] = Ex,yI(ŷ(x) �= y)

=

∫

x∈X

∑

y∈Y

I(ŷ(x) �= y)p(x, y)

But p(x,y) (which defines C) is unknown

Generalization error

Proba [error] = E [I (ŷ (x) 6= y)] =
∫

I (ŷ (x) 6= y) p (x,y) dxdy

where the expectation is w.r.t the UNKNOWN probability density
function p (x,y) of (x,y) .
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Version Space Version space

There may be many functions which have zero training error,
ranging from the most specific hypothesis to the most general.
Which one we pick depends on our prior knowledge.

most specific hypothesis, S

most general hypothesis, G

There may be many functions which have zero training error, ranging
from the most specific hypothesis to the most general. Which one we
pick depends on our prior knowledge.
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Lower Bound on Achievable Error Rate

If the true concept (green blob) is a rectangle, we can fit it perfectly,
and thus get 0 training error. But if the truth is more complex, we
will just choose the best-fitting rectangular approximation (blue box)
and so Err_Train=N_err 6= 0.

If the true concept (green blob) is a rectangle, we can 
fit it perfectly, and thus get 0 training error.

But if the truth is more complex, we will just choose 
the best-fitting rectangular approximation (blue box) 
and so Nerr ≠ 0  

Lower bound on achievable error rate
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Overfitting in Rectangle Land

Overfitting in rectangle land

• We can always make the empirical error be 0 by 
putting a little rectangle around every +ve training 
example.

• But this may not lead to good generalization 
performance

• Hence we cannot use empirical error to select 
between models of different complexity

We can always make the empirical/training error be 0 by putting a
little rectangle around every + in the training set.

This may not lead to good generalization performance

Hence we cannot use directly empirical error to select between models
of different complexity.
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