CS 340: Machine Learning Lecture 2: Introduction to Supervised Learning

AD

January 2011

- Given a training set of N input-output pairs $\{\mathbf{x}^i, y^i\} \in \mathcal{X} \times \mathcal{Y}$, "learn" a function $f : \mathcal{X} \to \mathcal{Y}$ to predict the output $\hat{y} = f(\mathbf{x})$ associated to a new input \mathbf{x} .
 - Each input \mathbf{x}^i is a *p*-dimensional feature vector (covariates, explanatory variables).
 - Each output y^i is a target variable (response).
- Classification corresponds to $\mathcal{Y} = \{1, ..., K\}.$
- Regression corresponds to $\mathcal{Y} = \mathbb{R}^d$.
- Aim: produce the correct output given a new input.

- Email spam filtering (feature vector = "bag of words").
- Webpage classification ("bag of words", URL etc).
- Detecting credit card fraud (#transactions, average transactions, locations).
- Credit scoring (income, saving, degree, age...)
- Handwritten digit recognition.

Handwritten digit recognition

Figure: Examples of handwritten digits from US postal employes

• In this case, $\mathcal{X} = \{0,1\}^{16 \times 16}$ and $\mathcal{Y} = \{0,1,...,9\}$.

Recognizing Tufas

Figure: Can you pick out the tufas?

• In this case, $\mathcal{X}=\left\{0,...,255
ight\}^{128 imes 128}$ and $\mathcal{Y}=\left\{0,1
ight\}$.

Classifying Gene Microarrays for Cancer Diagnosis

 Training data: xⁱ gene expression data on p genes and yⁱ ∈ {0, 1} (cancer/no cancer).

• In this case, we have dim $(\mathbf{x}^i) >> N$.

Learning is plagued with problems

- Is there any information present in the data? (e.g. are you monitoring the right genes?)
- Is there enough information in the data? (e.g. are you monitoring only a part of the genes?)
- Is there too much/irrelevant information in the data? (e.g. are you monitoring all the genes? FDR).
 - **True example 1**: There is a close relationship between the salaries of Presbyterian ministers in Massachusetts and the price of rum in Havana.
 - **True example 2**: Connect neuroimaging data to measures of behavior found in social and cognitive neuroscience. Some researchers do one correlation analysis against all the voxels in the brain (~160,000+) to find those that are related to their measure of behavior.
- Training data are noisy and/or mislabelled (e.g. measurement errors/diagnosis error).

Supervised learning as function fitting

• We are given some training data

$$\mathcal{D} = ig\{ig(\mathbf{x}^i, y^iig)ig\}_{i=1}^N$$

• Consider a restricted set of mappings/parametric functions *f* in *hypothesis class* H

$$f \in \mathcal{H} : \mathcal{X} \times \Theta \longrightarrow \mathcal{Y},$$

we will predict using

$$\widehat{y}(\mathbf{x}) = f(\mathbf{x}; \theta)$$

where $\theta \in \Theta$.

• Learning: Given \mathcal{H} , learn parameters θ given \mathcal{D} so that predictions on non-labeled inputs (i.e. test set, real-world data) are as accurate as possible.

• Training error:

$$\mathsf{Err}_{\mathsf{Train}} = rac{1}{N} \sum_{i=1}^{N} \mathbb{I}\left(\widehat{y}\left(\mathbf{x}^{i}
ight) \neq y^{i}
ight).$$

• Test error:

$$\mathsf{Err_Test} = \frac{1}{N_\mathsf{test}} \sum_{i=1}^{N_\mathsf{test}} \mathbb{I}\left(\widehat{y}\left(\mathbf{x}_{\mathsf{test}}^{i}\right) \neq y_{\mathsf{test}}^{i}\right).$$

• Test error cannot be computed in real-world applications where $\{y_{\text{test}}^i\}$ is not available.

Binary classification: Credit card scoring

• Say you have training data of the following form

Income	Savings	Risk
100	50	Hi
100	100	Lo
50	75	Hi
500	93	Lo

• Test data are of the form

Income	Savings	Risk
98	49	?
100	102	?
400	20	?

• In this case $\mathbf{x} = (x_1, x_2) \in (\mathcal{X} = \mathbb{R}^2)$ and $\mathcal{Y} = \{\text{high,low}\}$.

Example function

• $f(\mathbf{x}; \theta) = f((\text{income,savings}); (\theta_1, \theta_2)) = \text{IF}(x_1 = \text{income}) > \theta_1$ AND $(x_2 = \text{savings}) > \theta_2$ THEN low-risk ELSE high-risk.

