CS 340 Lec. 21: Hidden Markov Models

AD

April 2011

- For the time being, we have always assumed that available data $\{\mathbf{x}_t\}_{t=1}^T$ are independent.
- In numerous applications, we only have access to data which are statistically dependent; i.e.

$$p\left(\left\{\mathbf{x}_{t}\right\}_{t=1}^{T}\right) \neq \prod_{t=1}^{T} p\left(\mathbf{x}_{t}\right).$$

- Typical applications include: speech processing, tracking, stock prices.
- Most popular model for time dependent data is Hidden Markov Models = Mixture Models + Markov chain on the "cluster labels".

Introduction to HMM

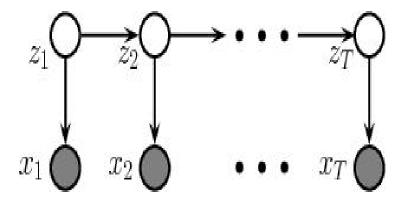
• In a standard mixture models, we have independent cluster labels $\{z_t\}_{t=1}^{T}$ and data $\{\mathbf{x}_t\}_{t=1}^{T}$ so

$$p\left(\{z_{t}\}_{t=1}^{T}, \{\mathbf{x}_{t}\}_{t=1}^{T}\right) = \prod_{t=1}^{T} p(z_{t}, \mathbf{x}_{t}) = \prod_{t=1}^{T} p(z_{t}) p(\mathbf{x}_{t} | z_{t})$$
$$= \prod_{t=1}^{T} p(z_{t}) \prod_{t=1}^{T} p(\mathbf{x}_{t} | z_{t})$$

• In an HMM model, the cluster labels $\{z_t\}_{t=1}^T$ follow a Markov chain

$$p\left(\{z_{t}\}_{t=1}^{T}, \{\mathbf{x}_{t}\}_{t=1}^{T}\right) = p(z_{1})\prod_{t=2}^{T}p(z_{t}|z_{t-1})\prod_{t=1}^{T}p(\mathbf{x}_{t}|z_{t})$$

Graphical Representation



HMM as a directed graphical model

HMM Specification

Assume z_t ∈ {1, ..., K} then the Markov chain is defined by its initial distribution

$$p(z_1=k)=\pi_k$$

and the transition probabilities

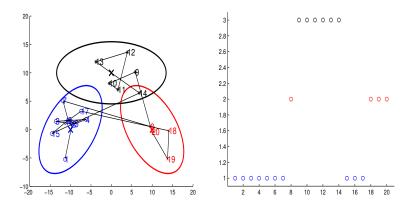
$$p(z_t = l | z_{t-1} = k) = P_{k,l}$$

• We have the conditional densities/distribution

$$p(\mathbf{x}_t | z_t = k) = p_k(\mathbf{x}_t)$$

where we could have for example $p_k(\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_t; \mu_k, \Sigma_k)$ or $p_k(\mathbf{x}_t = 1) = \alpha_k$.

Data Sampled from an HMM



(left) Some data sampled from a 3 state HMM. Each state emits from a 2d Gaussian. (right) The hidden state sequence $\{z_t\}$.

- Automatic speech recognition: **x**_t is the speech signal, z_t represents the word that is being spoken.
- Activity recognition: x_t represents a video frame, z_t is the class of activity the person is engaged in (e.g., running, walking, sitting, etc.)
- Part of speech tagging: x_t represents a word, z_t represents its part of speech (noun, verb, adjective, etc.)
- Gene finding: **x**_t represents the DNA nucleotides (A,C,G,T), z_t represents whether we are inside a gene-coding region or not.

- Assume for the time being that the parameters of the models are known, we want to estimate z_t given observations {x_t}.
- Filtering: compute $p(z_t = k | \mathbf{x}_{1:t})$
- **Prediction:** compute $p(z_{t+L} = k | \mathbf{x}_{1:t})$ for L > 0
- Smoothing: compute $p(z_t = k | \mathbf{x}_{1:T})$
- In the independent case,

$$p(z_{t} = k | \mathbf{x}_{1:t}) = p(z_{t} = k | \mathbf{x}_{1:T}) = p(z_{t} = k | \mathbf{x}_{t}) \text{ and } p(z_{t+L} = k | \mathbf{x}_{1:t}) = p(z_{t+L} = k).$$

Inference in HMM: Filtering

- Given the filter $p(z_{t-1}|\mathbf{x}_{1:t-1})$ at time t-1, we compute $p(z_t|\mathbf{x}_{1:t})$ as follows.
- Prediction:

$$p(z_{t} = k | \mathbf{x}_{1:t-1}) = \sum_{l=1}^{K} p(z_{t-1} = l, z_{t} = k | \mathbf{x}_{1:t-1})$$

= $\sum_{l=1}^{K} p(z_{t} = k | \mathbf{x}_{1:t-1}, z_{t-1} = l) p(z_{t-1} = l | \mathbf{x}_{1:t-1})$
= $\sum_{l=1}^{K} p(z_{t} = k | z_{t-1} = l) p(z_{t-1} = l | \mathbf{x}_{1:t-1})$
= $\sum_{l=1}^{K} P_{l,k} p(z_{t-1} = l | \mathbf{x}_{1:t-1})$

• Update:

$$p(z_{t} = k | \mathbf{x}_{1:t}) = \frac{p(\mathbf{x}_{t} | z_{t} = k) p(z_{t} = k | \mathbf{x}_{1:t-1})}{\sum_{l=1}^{K} p(\mathbf{x}_{t} | z_{t} = l) p(z_{t} = l | \mathbf{x}_{1:t-1})}$$
$$= \frac{p_{k}(\mathbf{x}_{t}) p(z_{t} = k | \mathbf{x}_{1:t-1})}{\sum_{l=1}^{K} p_{l}(\mathbf{x}_{t}) p(z_{t} = l | \mathbf{x}_{1:t-1})}$$

• This has computational complexity $O(K^2T)$.

- We want to compute $p(z_{t+L} = k | \mathbf{x}_{1:t})$ for L > 0.
- We have

$$p(z_{t+1} = k | \mathbf{x}_{1:t}) = \sum_{l=1}^{K} P_{l,k} p(z_t = l | \mathbf{x}_{1:t-1})$$

and similarly

$$p(z_{t+m} = k | \mathbf{x}_{1:t}) = \sum_{l=1}^{K} P_{l,k} p(z_{t+m-1} = l | \mathbf{x}_{1:t-1})$$

Inference in HMM: Smoothing

• We have for $1 \leq t < T$

$$p(z_{t} = k | \mathbf{x}_{1:T}) = \frac{p(z_{t} = k | \mathbf{x}_{1:t-1}) p(\mathbf{x}_{t:T} | z_{t} = k)}{\sum_{l=1}^{K} p(z_{t} = l | \mathbf{x}_{1:t-1}) p(\mathbf{x}_{t:T} | z_{t} = l)}$$

• We can compute $p(\mathbf{x}_{t:T} | z_t = k)$ using the following backward recursion initialized at $p(\mathbf{x}_T | z_T = k) = p_k(\mathbf{x}_T)$

$$p(\mathbf{x}_{t+1:T} | z_t = k) = \sum_{l=1}^{K} p(\mathbf{x}_{t+1:T}, z_{t+1} = l | z_t = k)$$

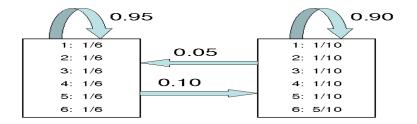
= $\sum_{l=1}^{K} p(\mathbf{x}_{t+1:T} | z_t = k, z_{t+1} = l) p(z_{t+1} = l | z_t = k)$
= $\sum_{l=1}^{K} p(\mathbf{x}_{t+1:T} | z_{t+1} = l) P_{k,l}$

and

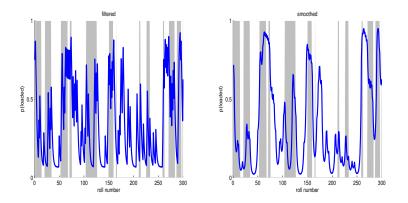
$$p(\mathbf{x}_{t:T} | z_t = k) = p(\mathbf{x}_t, \mathbf{x}_{t+1:T} | z_t = k) = p_k(\mathbf{x}_t) p(\mathbf{x}_{t+1:T} | z_t = k)$$

Example: Casino

- In this model, xt ∈ {1, 2, ..., 6} represents which dice face shows up, and zt represents the identity of the dice that is being used. Most of the time the casino uses a fair dice, z = 1, but occasionally it switches to a loaded dice, z = 2, for a short period.
- If z = 1 the observation distribution is a uniform distribution over $\{1, 2, ..., 6\}$. If z = 2, the observation distribution is skewed towards face 6.



Example: Casino



Inference in the dishonest casino. Vertical gray bars denote the samples that we generated using a loaded die. (left) Filtered estimate of probability of using a loaded dice. We hope to see a spike up whenever there is a gray bar. (right) Smoothed estimates.