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Unsupervised Learning

In supervised learning, we have training data {xi , yi}Ni=1 and we want
to learn how to predict y given a new x.
In unsupervised learning, we just have data {xi}Ni=1 .
Our goal is to “summarize”or find “patterns”or “structure” in the
data using clustering, density estimation and dimensionality reduction.

The definition of “ground truth” is often missing: no clear error
function, or at least many reasonable alternatives

Useful in exploratory data analysis, and as a pre-processing step for
supervised learning
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Clustering

Clustering is grouping similar objects together.

To simplify data for further analysis/learning.
To establish prototypes, or detect outliers.
To visualize data (in conjunction with dimensionality reduction).

Clusterings are usually not “right”or “wrong”—different
clusterings/clustering criteria can reveal different things about the
data.

Clustering algorithms:

Employ some notion of distance/measure of similarity between objects.
Have an explicit or implicit criterion defining what a good cluster is and
optimize this criterion to determine the clustering.
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Clustering Height and Weight of Some People
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Figure 1.36: (a) The height and weight of some people. (b) A possible clustering using K = 2 clusters. (c) A possible clustering using
K = 3 clusters. Figure generated by kmeansHeightWeight.
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Figure 1.37: (a) Some yeast gene expression data plotted as a time series. (b) K-means clustering is used to assign each time series to one of
K = 16 clusters. (c) Visualizing the cluster centers. Figure generated by kmeansYeastDemo.

Unsupervised learning is more typical of human and animal learning. It is also more widely applicable than supervised
learning, since it does not require a human expert to manually label the data. Labeled data is not only expensive to acquire23,
but it also contains relatively little information, certainly not enough to reliably estimate the parameters of complex models. As
Geoff Hinton has said,

When we’re learning to see, nobody’s telling us what the right answers are – we just look. Every so often, your
mother says ’that’s a dog,’ but that’s very little information. You’d be lucky if you got a few bits of information —
even one bit per second — that way. The brain’s visual system has 1014 neural connections. And you only live for
109 seconds. So it’s no use learning one bit per second. You need more like 105 bits per second. And there’s only
one place you can get that much information: from the input itself. — Geoffrey Hinton, 1996 (quoted in [Gor06]).

Below we describe some canonical examples of unsupervised learning.

1.5.1 Discovering clusters
As a canonical example of unsupervised learning, consider the problem of clustering data into groups. For example, Fig-
ure 1.36(a) plots some 2d data, representing the height and weight of a group of 210 people. It is clear that there are various
clusters, or subgroups, although it is not clear how many. Let K denote the number of clusters. Our first goal is to estimate the
distribution over the number of clusters, p(K|D); this tells us if there are subpopulations within the data. For simplicity, we
often approximate the distribution p(K|D) by its mode, K∗ = arg maxK p(K|D). In the supervised case, we were told that
there are two classes (male and female), but in the unsupervised case, we are free to choose as many or few clusters as we like.
Picking a model of the “right” complexity is called model selection, and will be discussed in detail below.

Our second goal is to estimate which cluster each point belongs to. Let zi ∈ {1, . . . ,K} represent the cluster to which
data point i is assigned. (zi is an example of a hidden or latent variable, since it is never observed in the training set.) We
can infer which cluster each data point belongs to by computing z∗i = arg maxKk=1 p(zi = k|xi,D). This is illustrated in
Figure 1.36(b-c), where we use different colors to indicate the assignments.

Note that the identity of the labels (colors) used is immaterial; we are free to rename all the clusters, without affecting the
partitioning of the data (this is called label switching). Hence a more meaningful question is to estimate which data points

23The advent of crowd sourcing web sites such as Mechanical Turk, (https://www.mturk.com/mturk/welcome), which outsource data processing
tasks to humans all over the world, has reduced the cost of labeling data. Nevertheless, the amount of unlabeled data is still orders of magnitude larger than the
amount of labeled data.

c© Kevin P. Murphy. Draft — not for circulation.

(left) height and weight of some people (center) a possible clustering with
K = 2 clusters (right) a possible clustering using K = 3 clusters
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Clustering Yeast Gene Expression Data
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Figure 1.36: (a) The height and weight of some people. (b) A possible clustering using K = 2 clusters. (c) A possible clustering using
K = 3 clusters. Figure generated by kmeansHeightWeight.
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Figure 1.37: (a) Some yeast gene expression data plotted as a time series. (b) K-means clustering is used to assign each time series to one of
K = 16 clusters. (c) Visualizing the cluster centers. Figure generated by kmeansYeastDemo.

Unsupervised learning is more typical of human and animal learning. It is also more widely applicable than supervised
learning, since it does not require a human expert to manually label the data. Labeled data is not only expensive to acquire23,
but it also contains relatively little information, certainly not enough to reliably estimate the parameters of complex models. As
Geoff Hinton has said,

When we’re learning to see, nobody’s telling us what the right answers are – we just look. Every so often, your
mother says ’that’s a dog,’ but that’s very little information. You’d be lucky if you got a few bits of information —
even one bit per second — that way. The brain’s visual system has 1014 neural connections. And you only live for
109 seconds. So it’s no use learning one bit per second. You need more like 105 bits per second. And there’s only
one place you can get that much information: from the input itself. — Geoffrey Hinton, 1996 (quoted in [Gor06]).

Below we describe some canonical examples of unsupervised learning.

1.5.1 Discovering clusters
As a canonical example of unsupervised learning, consider the problem of clustering data into groups. For example, Fig-
ure 1.36(a) plots some 2d data, representing the height and weight of a group of 210 people. It is clear that there are various
clusters, or subgroups, although it is not clear how many. Let K denote the number of clusters. Our first goal is to estimate the
distribution over the number of clusters, p(K|D); this tells us if there are subpopulations within the data. For simplicity, we
often approximate the distribution p(K|D) by its mode, K∗ = arg maxK p(K|D). In the supervised case, we were told that
there are two classes (male and female), but in the unsupervised case, we are free to choose as many or few clusters as we like.
Picking a model of the “right” complexity is called model selection, and will be discussed in detail below.

Our second goal is to estimate which cluster each point belongs to. Let zi ∈ {1, . . . ,K} represent the cluster to which
data point i is assigned. (zi is an example of a hidden or latent variable, since it is never observed in the training set.) We
can infer which cluster each data point belongs to by computing z∗i = arg maxKk=1 p(zi = k|xi,D). This is illustrated in
Figure 1.36(b-c), where we use different colors to indicate the assignments.

Note that the identity of the labels (colors) used is immaterial; we are free to rename all the clusters, without affecting the
partitioning of the data (this is called label switching). Hence a more meaningful question is to estimate which data points

23The advent of crowd sourcing web sites such as Mechanical Turk, (https://www.mturk.com/mturk/welcome), which outsource data processing
tasks to humans all over the world, has reduced the cost of labeling data. Nevertheless, the amount of unlabeled data is still orders of magnitude larger than the
amount of labeled data.

c© Kevin P. Murphy. Draft — not for circulation.

(left) Yeast gene expression data plotted as time series (center) a possible
clustering with K = 16 clusters (right) Cluster centers.
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K-Means Clustering

One of the most popular clustering algorithms: easy to implement
and fast.

Assume the data {xi}Ni=1 to be clustered are d-dimensional
real-vectors.

Goal: Find

cluster labels: {zi}Ni=1 where each zi ∈ {1, 2, ...,K} .
cluster centers: {µk}

K
k=1 where each µk ∈ Rd .

We will always have

zi = argmin
k∈{1,...,K }

‖xi − µk‖
2

each point is assigned to the closest cluster centers.
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K-Means Clustering Algorithm

Initialization, t = 0. Set
{
z (0)i

}N
i=1

to some initial values (e.g.

random initial values)

At iteration t, t ≥ 1.
Update the cluster centers. For k = 1, ...,K set

µ
(t)
k =

∑Ni=1 xi I
(
z (t−1)i = k

)
∑Ni=1 I

(
z (t−1)i = k

) ;

i.e. µ
(t)
k is the mean of all the data assigned to the cluster.

For i = 1, ...,N, set z (t)i = argmin
k∈{1,...,K }

∥∥∥xi − µ
(t)
k

∥∥∥2.
The algorithm converges in finite time and provide an estimate of
cluster centers {µk}

K
k=1 and cluster labels {zi}

N
i=1 .
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K-Means Clustering Objective Function

The K-Means clustering algorithm seeks to minimize

J
(
{zi}Ni=1 , {µk}

K
k=1

)
=

N

∑
i=1

∥∥∥xi − µzi

∥∥∥2 .
This objective function can take KN possible values and K-means is a
greedy algorithm which finds a local minimum of J.

Each time we reassign a vector to a cluster with a nearer centroid, J
decreases (or stays the same.).

Each time we recompute the centroids of each cluster, J decreases (or
stays the same.)

Thus, the algorithm must terminate but the solution depends on the
initial assignments of clusters. Different initializations might give
different solutions.
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Initialization Recipe...

Assigning each item to random cluster in {1, ...,K} is sensible but
typically results in cluster centroids near the centroid of all the data in
the first round.

A different heuristic tries to spread the initial centroids around as
much as possible:

Place first center on top of a randomly chosen data point
Place second center on a data point as far away as possible from the
first one
Place the i-th center as far away as possible from the closest of centers
1 through i − 1

K-means clustering typically runs quickly. With a randomized
intialization step, you can run the algorithm multiple times and take
the clustering with smallest J.
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Example application: Color quantization

Suppose you have an image stored with 24 bits per (≈ 17 millions
colors) pixel and want to compress it so that you use only K colors.

You want the compressed image to look as similar as possible to the
original image

Perform K-means clustering on the original set of color vectors with
K colors.

Cluster centers (rounded to integer intensities) form the entries in the
K -color colormap.
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Example application: Color quantization

Example application: Color quantization

• Suppose you have an image stored with 24 bits per pixel

• You want to compress it so that you use only 8 bits per pixel (256
colors)

• You want the compressed image to look as similar as possible to the
original image

⇒ Perform K−means clustering on the original set of color vectors with
K = 256 colors.
– Cluster centers (rounded to integer intensities) form the entries in

the 256-color colormap
– Each pixel repesented by 8-bit index into colormap

COMP-652, Lecture 14 - November 1, 2010 5

Example (Bishop)
K = 2 K = 3 K = 10 Original image

COMP-652, Lecture 14 - November 1, 2010 6
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More generally: Vector quantization with Euclidean loss

Suppose we want to send all the instances over a communication
channel

In order to compress the message, we cluster the data and encode
each instance as the center of the cluster to which it belongs

The reconstruction error for real-valued data can be measured as
Euclidian distance between the true value and its encoding.

An optimal K-means clustering minimizes the reconstruction error
among all possible codings of the same type

AD () March 2011 12 / 13



How to Select K?

In quantization/compression applications, K is fixed but in most other
applications we would like to determine it from the data.

Without a probabilistic model, it is diffi cult to have a sensible
procedure here: cross-validation is not applicable here!

Heuristic Ideas:

Delete clusters that cover too few points.
Split clusters that cover too many points.
Add extra clusters for “outliers”.
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