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Multivariate Gaussian

Consider data
{
xi
}N
i=1 where x

i ∈ RD and we assume they are
independent and identically distributed.

A standard pdf used to model multivariate real data is the
multivariate Gaussian or normal

p (x| µ,Σ) = N (x; µ,Σ)

=
1

(2π)D/2 |Σ|1/2 exp(−
1
2
(x− µ)T Σ−1 (x− µ)︸ ︷︷ ︸
Mahalanobis distance

).

It can be shown that µ is the mean and Σ is the covariance of
N (x; µ,Σ) ; i.e.

E (X) = µ and cov (X) = Σ.

It will be used extensively in our discussion on unsupervised learning
and can also used for generative classifiers (i.e. discriminant analysis).
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Special Cases

When D = 1, we are back to

p
(
x | µ, σ2

)
= N

(
x ; µ, σ2

)
=

1√
2πσ2

exp
(
− 1
2σ2

(x − µ)2
)

When D = 2 and writing

Σ =
(

σ21 ρσ1σ2
ρσ1σ2 σ22

)
where ρ = corr (X1,X2) ∈ [−1, 1] we have

p (x| µ,Σ) = 1
2πσ1σ2

√
1−ρ2

× exp
(
− 1
2(1−ρ2)

{
(x1−µ1)

2

σ21
+
(x2−µ2)

2

σ22
− 2(x1−µ1)(x2−µ2)

σ1σ2

})
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Graphical Ilustrations

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

introBody.tex 25

−10
−5

0
5

10

−10

−5

0

5

10
0

0.05

0.1

0.15

0.2

full

(a)

−5

0

5

−10

−5

0

5

10
0

0.05

0.1

0.15

0.2

diagonal

(b)

−5

0

5

−5

0

5
0

0.05

0.1

0.15

0.2

spherical

(c)

full

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(d)

diagonal

−5 −4 −3 −2 −1 0 1 2 3 4 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

(e)

spherical

−4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

(f)

Figure 1.28: Top: plot of pdf’s for 2d Gaussian distributions. Bottom: corresponding level sets, i.e., we plot the points x where p(x) = c for
different values of c. Left: a full covariance matrix has elliptical contours. Middle: a diagonal covariance matrix is an axis aligned ellipse.
Right: a spherical covariance matrix has a circular shape. Figure generated by gaussPlot2Ddemo.

The denominator p(x|θ) is just a normalizing constant, which is independent of y. So we can summarise the above equation as
follows:

posterior ∝ likelihood × prior (1.47)

We will give many examples of using this equation later. (See Section 2.6.5 for more discussion of Bayes rule.)
The term p(y = c|θ) specifies how likely each class is before we have seen any data. The term p(x|y = c,θ) is called the

class conditional density for class c. Together these distributions specify the joint distribution, p(y,x|θ). The overall model is
called a generative classifier, since it specifies how to generate the observed feature vector x for each possible class. (It is also
possible to make generative models for regression, although this is less common. We will see examples later.)

For the class prior, it is natural to use a discrete distribution, p(y|θ) = Cat(y|π), where πc is the probability of class c.
This parameter can be estimated by simply counting how many examples we have of each class. The more difficult question
is: what form of distribution should we use for the class conditional densities, p(x|y = c,θ)? Obviously this depends on the
nature of the features. The basic problem is that specifying the joint distribution of many features is difficult. We describe some
simple models below. Later, we will see more sophisticated methods.

1.4.1 Discriminant analysis
If the features are all continuous, it is natural to use a multivariate Gaussian or multivariate normal (MVN) for the class
conditional density. The pdf of the MVN is given by

N (x|µ,Σ) :=
1

(2π)D/2|Σ|1/2
× exp[−1

2
(x− µ)TΣ−1(x− µ)] (1.48)

where D is the dimensionality of x, µ = E [X] is the mean, and Σ = cov [X] is the covariance matrix (see Section 2.7.2
for details). Σ is a symmetric matrix, which means ΣT = Σ. In addition, it is a positive definite matrix, which means
vTΣv > 0 for any (non-zero) vector v ∈ RD. The normalization constant 1

(2π)D/2|Σ|1/2 ensures that the pdf integrates to 1
(see Exercise 6.1). If D = 1, the MVN reduces to the familiar univariate Gaussian. If D = 2, the MVN becomes the bivariate
Gaussian (see Exercise 6.2).

Figure 1.28 plots some MVN densities in 2d for three different kinds of covariance matrices. A full covariance matrix has
D(D + 1)/2 parameters (we divide by 2 since Σ is symmetric). A diagonal covariance matrix has D parameters, and has 0s
in the off-diagonal terms. A spherical or isotropic covariance, Σ = σ2ID, has one free parameter.

The expression inside the exponent of the MVN is called the Mahalanobis distance, and is a scalar value equal to

∆ = (x− µ)TΣ−1(x− µ) = xTΣ−1x + µTΣ−1µ− 2µTΣ−1x (1.49)

Machine Learning: a Probabilistic Approach, draft of January 4, 2011

Illustration of 2D Gaussian pdfs for different covariance matrices (left):
full, (middle): diagonal, (right): spherical.
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Why are the contours of a multivariate Gaussian elliptical

If we plot the values of x s.t. p (x| µ,Σ) is equal to a constant, i.e.
s.t. (x− µ)T Σ−1 (x− µ) = c > 0 where c is given, then we obtain
an ellipse.
Σ is a positive definite matrix so we have

Σ = UΛUT

where U is an orthonormal matrix of eigenvectors, i.e. UTU = I , and
Λ = diag (λ1, ...,λD ) with λk ≥ 0 is the diagonal matrix of
eigenvalues.
Hence, we have

Σ−1 =
(
UT
)−1

Λ−1U−1 = UΛ−1UT =
D

∑
k=1

1
λk
ukuTk ,

so

(x− µ)T Σ−1 (x− µ) =
D

∑
k=1

y2k
λk

where yk = uTk (x− µ) .
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Graphical Ilustrations
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Figure 1.28: Top: plot of pdf’s for 2d Gaussian distributions. Bottom: corresponding level sets, i.e., we plot the points x where p(x) = c for
different values of c. Left: a full covariance matrix has elliptical contours. Middle: a diagonal covariance matrix is an axis aligned ellipse.
Right: a spherical covariance matrix has a circular shape. Figure generated by gaussPlot2Ddemo.

The denominator p(x|θ) is just a normalizing constant, which is independent of y. So we can summarise the above equation as
follows:

posterior ∝ likelihood × prior (1.47)

We will give many examples of using this equation later. (See Section 2.6.5 for more discussion of Bayes rule.)
The term p(y = c|θ) specifies how likely each class is before we have seen any data. The term p(x|y = c,θ) is called the

class conditional density for class c. Together these distributions specify the joint distribution, p(y,x|θ). The overall model is
called a generative classifier, since it specifies how to generate the observed feature vector x for each possible class. (It is also
possible to make generative models for regression, although this is less common. We will see examples later.)

For the class prior, it is natural to use a discrete distribution, p(y|θ) = Cat(y|π), where πc is the probability of class c.
This parameter can be estimated by simply counting how many examples we have of each class. The more difficult question
is: what form of distribution should we use for the class conditional densities, p(x|y = c,θ)? Obviously this depends on the
nature of the features. The basic problem is that specifying the joint distribution of many features is difficult. We describe some
simple models below. Later, we will see more sophisticated methods.

1.4.1 Discriminant analysis
If the features are all continuous, it is natural to use a multivariate Gaussian or multivariate normal (MVN) for the class
conditional density. The pdf of the MVN is given by

N (x|µ,Σ) :=
1

(2π)D/2|Σ|1/2
× exp[−1

2
(x− µ)TΣ−1(x− µ)] (1.48)

where D is the dimensionality of x, µ = E [X] is the mean, and Σ = cov [X] is the covariance matrix (see Section 2.7.2
for details). Σ is a symmetric matrix, which means ΣT = Σ. In addition, it is a positive definite matrix, which means
vTΣv > 0 for any (non-zero) vector v ∈ RD. The normalization constant 1

(2π)D/2|Σ|1/2 ensures that the pdf integrates to 1
(see Exercise 6.1). If D = 1, the MVN reduces to the familiar univariate Gaussian. If D = 2, the MVN becomes the bivariate
Gaussian (see Exercise 6.2).

Figure 1.28 plots some MVN densities in 2d for three different kinds of covariance matrices. A full covariance matrix has
D(D + 1)/2 parameters (we divide by 2 since Σ is symmetric). A diagonal covariance matrix has D parameters, and has 0s
in the off-diagonal terms. A spherical or isotropic covariance, Σ = σ2ID, has one free parameter.

The expression inside the exponent of the MVN is called the Mahalanobis distance, and is a scalar value equal to

∆ = (x− µ)TΣ−1(x− µ) = xTΣ−1x + µTΣ−1µ− 2µTΣ−1x (1.49)
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Illustration of 2D Gaussian pdfs level sets for different covariance matrices
(left): full, (middle): diagonal, (right): spherical.
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Properties of Multivariate Gaussians

Marginalization is straightforward.
Conditioning is easy; e.g. if X = (X1 X2) with

p (x) = p (x1, x2) = N (x; µ,Σ)

where

µ =

(
µ1
µ2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
then

p (x1| x2) =
p (x1, x2)
p (x2)

= N
(
x1; µ1|2,Σ1|2

)
with

µ1|2 = µ1 + Σ12Σ−122 (x2 − µ2) ,

Σ1|2 = Σ11 − Σ12Σ−122 Σ21.
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Independence and Correlation for Gaussian Variables

It is well-known that independence implies uncorrelations; i.e. if the
components (X1, ...,XD ) of a vector X are independent then they are
uncorrelated. However, uncorrelated does not imply independence in
the general case.

If the components (X1, ...,XD ) of a vector X distributed according to
a multivariate Gaussian are uncorrelated then they are independent.

Proof. If (X1, ...,XD ) are uncorrelated then Σ = diag
(
σ21, ..., σ

2
D

)
and |Σ| =

D

∏
k=1

σ2k so

p (x| µ,Σ) =
D

∏
k=1

p
(
xk | µk , σ2k

)
=

D

∏
k=1

N
(
xk ; µk , σ

2
k

)
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ML Parameter Learning for Multivariate Gaussian

Consider data
{
xi
}N
i=1 where x

i ∈ RD and assume they are
independent and identically distributed from N (x; µ,Σ) .
The ML parameter estimates of (µ,Σ) maximize by definition

N

∑
i=1
log N

(
xi ; µ,Σ

)
= −ND

2
log (2π)− N

2
log |Σ| − 1

2

N

∑
i=1

(
xi − µ

)T
Σ−1

(
xi − µ

)
.

We obtain after painful calculations the fairly intuitive results

µ̂ =
∑N
i=1 xi

N
, Σ̂ =

∑N
i=1

(
xi − µ̂

) (
xi − µ̂

)T
N

.
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Application to Supervised Learning using Bayes Classifier

Assume you are given some training data
{
xi , y i

}N
i=1 where x

i∈ RD

and y i ∈ {1, 2, ...,C} can take C different values.
Given an input test data x, you want to predict/estimate the output y
associated to x.
Previously we have followed a probabilistic approach

p (y = c | x) = p (y = c) p (x| y = c)
∑C
c ′=1 p (y = c ′) p (x| y = c ′)

.

This requires modelling and learning the parameters of the class
conditional density of features p (x| y = c) .
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Height Weight Data
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Figure 1.29: (a) Height/weight data. (b) Visualization of 2d Gaussians fit to each class. 95% of the probability mass is inside the ellipse.
Figure generated by gaussHeightWeight.

Intuitively, this just measures the distance of point x from µ, where each dimension gets weighted differently. In the case of a
diagonal covariance, it becomes a weighted Euclidean distance:

∆ = (x− µ)TΣ−1(x− µ) =
D∑
j=1

(xj − µj)2Σ−1
jj (1.50)

In Section 5.2.1, we show, using eigenanalysis of Σ, that in general, the Mahalanobis distance correponds to “regular” Euclidean
distance in a linearly transformed (rotatated and scaled) coordinate system.

If we use the MVN as the class conditional density, we get

p(x|y = c,θ) = N (x|µc,Σc) (1.51)

Using this inside Equation 1.45 results in a technique called discriminant analysis (even though it is a generative, not discrim-
inative, classifier!).

Figure 1.29 shows two Gaussian class-conditional densities in 2d, representing the height and weight of men and women.
We can see that the features are correlated, as is to be expected (tall people tend to weigh more). The ellipses for each class
contain 95% of the probability mass (see Section ?? for an explanation of why the contours are elliptical).

We can classify a feature vector using the following decision rule, derived from Equation 1.45:

ŷ(x) = arg max
c

[log p(y = c|π) + log p(x|θc)] (1.52)

When we compute the probability of x under each class conditional density, we are measuring the distance from x to the center
of each class, µc. Thus the classifier essentially picks the centroid µc that is closest. As we show below, the effect of the πc
terms is just to change the threshold at which the classifier “fires”.

1.4.1.1 Form of the decision boundary: multiclass case

The posterior over class labels is given by Equation 1.45. We can gain further insight into this model by plugging in the
definition of the Gaussian density, as follows:

p(y = c|x,θ) =
πc|2πΣc|−

1
2 exp

[
− 1

2 (x− µc)TΣ−1
c (x− µc)

]∑
c′ πc′ |2πΣc′ |−

1
2 exp

[
− 1

2 (x− µc′)TΣ−1
c′ (x− µc′)

] (1.53)

We now proceed to simplify this equation, in order to gain intuition into the behavior of the model. Let us first consider the
case where Σc = Σ; we say that Σ is tied across the classes. In this case, we can simplify the numerator as follows:

p(y = c|x,θ) ∝ πc exp
[
µTc Σ−1x− 1

2
xTΣ−1x− 1

2
µTc Σ−1µc

]
(1.54)

= exp
[
µTc Σ−1x− 1

2
µTc Σ−1µc + log πc

]
exp[−1

2
xTΣ−1x] (1.55)

Since the quadratic term xTΣ−1x is independent of c, it will cancel out in the numerator and denominator. If we define

γc = −1
2
µTc Σ−1µc + log πc (1.56)

βc = Σ−1µc (1.57)

c© Kevin P. Murphy. Draft — not for circulation.

(left) Height/Weight data for female/male (right) 2d Gaussians fit to
each class. 95% of the proba mass is inside the ellipse
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Supervised Learning using Bayes Classifier

Assume we pick

p (x| y = c) = N (x; µc ,Σc )

and p (y = c) = πc then

p (y = c | x) ∝ πc |Σc |−1/2 exp(− 12 (x− µc )
T Σ−1c (x− µc ))

= exp(µTc Σ−1c x− 1
2µTc Σ−1c µc + logπc ) exp

(
− 12xTΣ−1c x

)
For models where Σc = Σ then this is known as linear discriminant
analysis

p (y = c | x) =
exp

(
βTc x+ γc

)
∑C
c ′=1 exp

(
βTc ′x+ γc ′

)
where βc = Σ−1µc , γc = − 12µTc Σ−1µc + logπc and the model is
very similar to logistic regression.
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Decision Boundaries
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Figure 1.30: Decision boundaries in 2D for the 2 and 3 class case. Figure generated by discrimAnalysisDboundariesDemo.

then we can write

p(y = c|x,θ) =
eβ

T
c x+γc∑

c′ e
βT
c′x+γc′

(1.58)

which is the softmax function (see Section 1.2.12). This is equivalent in form to multinomial logistic regression. However, the
overall method is not equivalent to logistic regression, as we explain in Section 1.4.6.

The decision boundary between two classes say c and c′, is the set of points x for which p(y = c|x,θ) = p(y = c′|x,θ).
This turns out to be a linear function of x. Using the softmax function, we have

p(y = c|x,θ) = p(y = c′|x,θ) (1.59)
βTc x + γc = βTc′x + γc′ (1.60)

xT (βc′ − β) = γc′ − γc (1.61)

Hence this technique is called linear discriminant analysis or LDA. The reason it is linear is because the xTΣ−1x cancels
from the numerator and denominator. We get a single decision boundary between each class, and the decision region for each
region is singly connected. See Figure 1.30(a-b) for some examples.

In general, the xTΣ−1
c x terms will not cancel, so we end up with cross product terms. The resulting decision boundary

will be a quadratic. This is called quadratic discriminant analysis. See Figure 1.30(c-d) for some examples in 2d. (For
implementation details on how to plot these decision boundaries, see Supplement 1.3.)

1.4.1.2 Form of the decision boundary: two-class case

To gain further insight into the meaning of these equations, let us consider the binary case. The softmax becomes the logistic
function:

p(y = 1|x,θ) =
eβ

T
1 x+γ1

eβ
T
1 x+γ1 + eβ

T
0 x+γ0

=
1

1 + e(β0−β1)Tx+(γ0−γ1)
= σ

(
(β1 − β0)Tx + (γ1 − γ0)

)
(1.62)

Machine Learning: a Probabilistic Approach, draft of January 4, 2011

Decision boundaries in 2D for 2 and 3 class case.
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Binary Classification

Consider the case where C = 2 then one can check that

p (y = 1| x) = g
(
(β1 − β0)

T x+ γ1 − γ0

)
We have

γ1 − γ0 = −1
2
(µ1 − µ0)

T Σ−1 (µ1 + µ0) + log (π1/π0) ,

x0 : =
1
2
(µ1 + µ0)−

(µ1 − µ0) log (π1/π0)

(µ1 − µ0)
T Σ−1 (µ1 − µ0)

w : = β1 − β0 = Σ−1 (µ1 − µ0)

then
p (y = 1| x) = g

(
wT (x− x0)

)
x is shifted by x0 and then projected onto the line w.
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Binary Classification
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Figure 1.31: Geometry of LDA in the 2 class case where Σ1 = Σ2 = I.

Now

γ1 − γ0 = −1
2
µT1 Σ−1µ1 +

1
2
µT0 Σ−1µ0 + log(π1/π0) (1.63)

= −1
2

(µ1 − µ0)TΣ−1(µ1 + µ0) + log(π1/π0) (1.64)

So if we define

w = β1 − β0 = Σ−1(µ1 − µ0) (1.65)

x0 =
1
2

(µ1 + µ0)− (µ1 − µ0)
log(π1/π0)

(µ1 − µ0)TΣ−1(µ1 − µ0)
(1.66)

then we have wTx0 = −(γ1 − γ0), and hence

p(y = 1|x,θ) = σ(wT (x− x0)) (1.67)

So we see that we shift x by x0, and then project onto the line w. If Σ = σ2I, then w is in the direction of µ1 − µ0. So we
classify the point based on whether its projection is closer to µ0 or µ1. This is illustrated in Figure 1.31.

Furthemore, if π1 = π0, then x0 = 1
2 (µ1 + µ0), which is half way between the means. If we make π1 > π0, then x0 gets

closer to µ0, so the boundary shifts left (towards µ0), which makes sense, since more of the real line belongs to class 1 apriori.
Conversely if π1 < π0, the boundary shifts right. Thus we see that the class prior, πc, just changes the threshold, and not the
overall geometry, as we claimed above.

The magnitude of w determines the steepness of the logistic function, and depends on how well-separated the means are,
relative to the variance. In psychology and signal detection theory, it is common to define the discriminability of a signal from
the background noise using a quantity called d-primed:

d′ :=
µ1 − µ0

σ
(1.68)

where µ1 is the mean of the signal and µ0 is the mean of the noise, and σ is the standard deviation of the noise. If d′ is large,
the signal will be easier to discriminate from the noise. (See Section 9.3 for a discussion of the different kinds of errors a signal
detection system (aka binary classifier) can make.)

1.4.2 Robust discriminant analysis
As we discussed in Section 32.2.3, the Gaussian distribution is sensitive to outliers. The Student distribution is a robust
alternative. It is straightforward to build a robust version of discriminant analysis in which we replace the multivariate Gaussian
with the multivariate Student distribution, whose pdf is given by

T (x|µ,Σ, ν) ∝
[
1 +

1
ν

(x− µ)TΣ−1(x− µ)
]−( ν+D2 )

(1.69)

(1.70)

This has heavier tails than a Gaussian (see Figure 1.32), although as ν →∞, the distribution tends towards a Gaussian.
Let us consider a simple example of robust discriminant analysis. We consider a small N = 66, D = 2 data set regarding

the bankrupty patterns of certain companies (this example is from [Lo09, ch3]). The first feature specifies the ratio of retained

c© Kevin P. Murphy. Draft — not for circulation.

Example where Σ = σ2I so w is in the direction of µ1 − µ0.
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Generative or Discriminative Classifiers

When the model for class conditional densities is correct, resp.
incorrect, generative classifiers will typically outperform, resp.
underperform, discriminative classifiers for large enough datasets.

Generative classifiers can be diffi cult to learn whereas Discriminative
classifiers try to learn directly the posterior probability of interest.

Generative classifiers can handle missing data easily, discriminative
methods cannot.

Discriminative can be more flexible; e.g. substitute x to Φ (x) .
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Figure 1.32: Left: T distribution in 2d with dof=0.1 and Σ = 0.5I2. Right: Gaussian density with Σ = 0.5I2. Both have µ = (0, 0).
Vertical axis is log-density. We see the Gaussian distribution goes to zero faster than the T. Figure generated by studentPlotDemo.
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Figure 1.33: Discriminant analysis on the bankruptcy data set. Left: Gaussian class conditional densities. Right: Student class conditional
densities. Points that belong to class 1 are shown as triangles, Points that belong to class 2 are shown as circles. The estimated labels, based
on the posterior probability of belonging to each class, are computed. If these are incorrect, the point is colored red, otherwise it is colored
blue. (Training data is in black.) Figure generated by robustDiscrimAnalysisBankruptcyDemo.
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Discriminant analysis on the bankruptcy data set. Gaussian class
conditional densities. Estimated labels, based on the posterior proba of
belonging to each class, are computed. If incorrect, the point is colored
read, otherwise in blue (Training data are black).
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