CS 340: Machine Learning Lecture 17: Neural Networks

AD

March 2010

Limitation of Linear Models

- Until now, we have worked primarily with linear models.
- In the models we have previously discussed, we select beforehand the basis functions.
- If we have too many basis functions (i.e. one for each training point), we tend to overfit.
- Solutions to reduce these problems consists of using priors or different loss functions.
- These methods dominate Machine Learning nowadays.

Neural Networks

- Very network, not very neural after all.
- In this case, we fix the number of basis functions but their parameters are adapted during training.
- These models are (too?) flexible.
- They can perform well but it is difficult to train them and their interpretability is difficult.
- Revival of these approaches over recent years.

Feed-forward network functions

- We have worked with models where for regression

$$
y(\mathbf{x})=\mathbf{w}^{\top} \Phi(\mathbf{x})=\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})
$$

and for binary classification

$$
\operatorname{Pr}(y=1 \mid \mathbf{x})=g\left(\mathbf{w}^{\top} \Phi(\mathbf{x})\right)
$$

- For the basic neural network (NN), we build first M linear combinations of $\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right)$

$$
a_{j}=\mathbf{w}_{j}^{(1) \mathrm{T}} \mathbf{x}=\sum_{l=1}^{D} \underbrace{w_{j l}^{(1)}}_{\text {weights }} x_{l}+\underbrace{w_{j 0}^{(1)}}_{\text {bias }} \text { for } j=1, \ldots, M
$$

- We then apply a nonlinear transformation - activation function $z_{j}=g\left(a_{j}\right)$. We can use the logistic sigmoid or the hyperbolic tangent. These are called hidden units.
- We obtain K output unit activations by setting for regression problems

$$
\begin{aligned}
y_{k}(\mathbf{x}, \mathbf{w}) & =\mathbf{w}_{k}^{(2) T} \mathbf{z}=\sum_{j=1}^{M} w_{k j}^{(2)} z_{j}+w_{k 0}^{(2)} \text { for } k=1, \ldots, K \\
& =\sum_{j=1}^{M} w_{k j}^{(2)} g\left(\sum_{l=1}^{D} w_{j l}^{(1)} x_{l}+w_{j 0}^{(1)}\right)+w_{k 0}^{(2)}
\end{aligned}
$$

- For classification problems, we have

$$
y_{k}(\mathbf{x}, \mathbf{w})=g\left(a_{k}\right)=g\left(\sum_{j=1}^{M} w_{k j}^{(2)} g\left(\sum_{l=1}^{D} w_{j l}^{(1)} x_{l}+w_{j 0}^{(1)}\right)+w_{k 0}^{(2)}\right)
$$

with $K=1$ and $g(\cdot)$ logistic function for binary classification and $K=C-1$ and softmax link for C classes.

Two-layer NN

- The NN architecture presented here is the most common one.
- We can add layers of hidden units.
- We can have sparse architectures where some of the connections are not included.
- Theoretical justification: Many results have established that a two-layer network with linear outputs can approximate any continuous function on a compact input domain to arbitrary accuracy provided the network has a sufficiently large number of hidden units.
- You should be a bit critical about these properties.
- Essentially it tells you then if your model can be as complex as you want then you can approximate anything.
- However, it is true that NN can perform well in some scenarios.

Regression examples

NN trained using 50 data on various functions using 3 hidden units with 'tanh' activation functions and a linear output. Ouput of the hidden units are in dashed lines.

Regression examples

NN trained using 50 data on various functions using 3 hidden units with 'tanh' activation functions and a linear output. Ouput of the hidden units are in dashed lines.

Classification example

Two input, two hidden units with 'tanh' activation and a single output with logististic. Dashed blue lines show $z=0.5$ for each hidden units, red line is output $y=0.5$ and green line is the true Bayes classifier.

NN Training

- Assume we are considering a regression problem $\left\{\mathbf{x}^{i}, y^{i}\right\}_{i=1}^{N}$. To learn the parameters in a regression case, we seek to minimize

$$
E(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{K}\left(y_{k}^{i}-y_{k}\left(\mathbf{x}^{i}, \mathbf{w}\right)\right)^{2}
$$

which corresponds to maximizing the likelihood for a Gaussian model.

- In the binary logistic regression case, we have

$$
E(\mathbf{w})=-\sum_{i=1}^{N}\left\{y^{i} \log \left(y\left(\mathbf{x}^{i}, \mathbf{w}\right)\right)+\left(1-y^{i}\right) \log \left(1-y\left(\mathbf{x}^{i}, \mathbf{w}\right)\right)\right\}
$$

- In both cases, these functions are not convex and it is difficult to minimize $E(\mathbf{w})$.
- We can use a gradient descent method

$$
\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\left.\delta \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}\right|_{\mathbf{w}^{(t)}}
$$

- We can also use Newton-Raphson

$$
\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\left.\left[\left.\frac{\partial^{2} E(\mathbf{w})}{\partial \mathbf{w} \partial \mathbf{w}^{T}}\right|_{\mathbf{w}^{(t)}}\right]^{-1} \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}}\right|_{\mathbf{w}^{(t)}}
$$

which provides usually algorithms converging faster.

- We can also cycle over the observations using

$$
\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\left.\delta \frac{\partial E_{i}(\mathbf{w})}{\partial \mathbf{w}}\right|_{\mathbf{w}^{(t)}}
$$

where $E_{i}(\mathbf{w})$ corresponds to observation i.

A Regression Example

- Consider the case where

$$
\begin{gathered}
a_{j}=\sum_{l=0}^{D} w_{j l}^{(1)} x_{l}, \quad z_{j}=\tanh \left(a_{j}\right)=\frac{e^{a_{j}}-e^{-a_{j}}}{e^{a_{j}}+e^{-a_{j}}} \\
y_{k}(\mathbf{x}, \mathbf{w})=\sum_{j=0}^{M} w_{k j}^{(2)} z_{j} .
\end{gathered}
$$

- We have

$$
E_{i}(\mathbf{w})=\frac{1}{2} \sum_{k=1}^{K}\left(y_{k}^{i}-y_{k}\left(\mathbf{x}^{i}, \mathbf{w}\right)\right)^{2} .
$$

- We want to compute

$$
\frac{\partial E_{i}(\mathbf{w})}{\partial w_{j l}^{(1)}} \text { and } \frac{\partial E_{i}(\mathbf{w})}{\partial w_{k j}^{(2)}}
$$

Backpropagation algorithm

- We have

$$
\begin{aligned}
\frac{\partial E_{i}(\mathbf{w})}{\partial w_{k j}^{(2)}} & =\frac{\partial E_{i}(\mathbf{w})}{\partial y_{k}\left(\mathbf{x}^{i}, \mathbf{w}\right)} \frac{\partial y_{k}\left(\mathbf{x}^{i}, \mathbf{w}\right)}{\partial w_{k j}^{(2)}} \\
& =\left(y_{k}\left(\mathbf{x}^{i}, \mathbf{w}\right)-y_{k}^{i}\right) z_{j}
\end{aligned}
$$

- $E_{i}(\mathbf{w})$ only depends on $w_{j l}^{(1)}$ via the summed input z_{j} so

$$
\frac{\partial E_{i}(\mathbf{w})}{\partial w_{j l}^{(1)}}=\frac{\partial E_{i}(\mathbf{w})}{\partial z_{j}} \frac{\partial z_{j}}{\partial w_{j l}^{(1)}}
$$

where

$$
\frac{\partial z_{j}}{\partial w_{j l}^{(1)}}=x_{l}^{i}\left(1-z_{j}^{2}\right)
$$

as $[\tanh (x)]^{\prime}=1-\tanh (x)^{2}$.

Backpropagation algorithm

- We have

$$
\begin{aligned}
\frac{\partial E_{i}(\mathbf{w})}{\partial z_{j}} & =\sum_{k=1}^{K} \frac{\partial E_{i}(\mathbf{w})}{\partial y_{k}\left(\mathbf{x}^{i}, \mathbf{w}\right)} \frac{\partial y_{k}\left(\mathbf{x}^{i}, \mathbf{w}\right)}{\partial z_{j}} \\
& =\sum_{k=1}^{K}\left(y_{k}\left(\mathbf{x}^{i}, \mathbf{w}\right)-y_{k}^{i}\right) w_{k j}^{(2)}
\end{aligned}
$$

- So putting all the terms together we have

$$
\frac{\partial E_{i}(\mathbf{w})}{\partial w_{j l}^{(1)}}=x_{l}^{i}\left(1-z_{j}^{2}\right) \sum_{k=1}^{K}\left(y_{k}\left(\mathbf{x}^{i}, \mathbf{w}\right)-y_{k}^{i}\right) w_{k j}^{(2)}
$$

Summary

- Apply \mathbf{x}^{i} to the network and propagate forward through $a_{j}=\sum_{l=0}^{D} w_{j l}^{(1)} x_{l}^{i}, z_{j}=h\left(a_{j}\right)$
- Evaluate $\varepsilon_{k}=y_{k}\left(\mathbf{x}^{i}, \mathbf{w}\right)-y_{k}^{i}$ for the ouput units and compute $\frac{\partial E_{i}(\mathbf{w})}{\partial w_{k j}^{(2)}}=\varepsilon_{k} z_{j}$.
- "Backpropagate" the ε^{\prime} s to compute

$$
\frac{\partial E_{i}(\mathbf{w})}{\partial w_{j l}^{(1)}}=x_{l}^{i}\left(1-z_{j}^{2}\right) \sum_{k=1}^{K} \varepsilon_{k} w_{k j}^{(2)} .
$$

- Perform a gradient descent step $\mathbf{w} \leftarrow \mathbf{w}-\left.\delta \frac{\partial E_{i}(\mathbf{w})}{\partial \mathbf{w}}\right|_{\mathbf{w}}$.

Application to Digit Recognition

Input Layer 29×29

- Over 100,000 parameters trained using backpropagation, 1.40% test error on MNIST database.

Bayesian Neural Networks

- In practice, it can help to regularize the solution using a Gaussian prior

$$
\begin{aligned}
p(\mathbf{w} \mid \alpha) & =\prod_{j l} p\left(w_{j l}^{(1)} \mid \alpha\right) \prod_{k j} p\left(w_{k j}^{(2)} \mid \alpha\right) \\
& =\prod_{j l} \mathcal{N}\left(w_{j l}^{(1)} ; 0, \alpha^{-1}\right) \prod_{k j} \mathcal{N}\left(w_{k j}^{(2)} ; 0, \alpha^{-1}\right)
\end{aligned}
$$

but this is inefficient as $\left\{w_{j l}^{(1)}\right\}$ and $\left\{w_{k j}^{(2)}\right\}$ play different roles.

- It is much more efficient to have a layer specific regularization

$$
\begin{aligned}
p\left(\mathbf{w} \mid \alpha_{1}, \alpha_{2}\right) & =\prod_{j l} p\left(w_{j l}^{(1)} \mid \alpha_{1}\right) \prod_{k j} p\left(w_{k j}^{(2)} \mid \alpha_{2}\right) \\
& =\prod_{j l} \mathcal{N}\left(w_{j l}^{(1)} ; 0, \alpha_{1}^{-1}\right) \prod_{k j} \mathcal{N}\left(w_{k j}^{(2)} ; 0, \alpha_{2}^{-1}\right) .
\end{aligned}
$$

- In practice, we also use specific very vague priors for the bias (as in ridge regression).

Bayesian Neural Networks

Samples from the regression function $y(\mathbf{x}, \mathbf{w})$ for various values of the prior parameters.

Bayesian Neural Networks for Regression

- Assume that $K=1$ and

$$
p(y \mid \mathbf{x}, \mathbf{w}, \beta)=\mathcal{N}\left(y ; y(\mathbf{x}, \mathbf{w}), \beta^{-1}\right)
$$

Additionally, for sake of simplicity we set $\alpha_{1}=\alpha_{2}$ so that

$$
p(\mathbf{w} \mid \alpha)=\prod_{j l} \mathcal{N}\left(w_{j l}^{(1)} ; 0, \alpha^{-1}\right) \prod_{k j} \mathcal{N}\left(w_{k j}^{(2)} ; 0, \alpha^{-1}\right)
$$

- For data $D=\left\{\mathbf{x}^{i}, y^{i}\right\}_{n=1}^{N}$, we are interested in the posterior

$$
p(\mathbf{w} \mid D, \alpha, \beta)=\frac{p\left(\left\{y^{i}\right\}_{n=1}^{N} \mid\left\{\mathbf{x}^{i}\right\}_{n=1}^{N}, \mathbf{w}, \beta\right) p(\mathbf{w} \mid \alpha)}{p\left(\left\{y^{i}\right\}_{n=1}^{N} \mid\left\{\mathbf{x}^{i}\right\}_{n=1}^{N}, \alpha, \beta\right)} \propto \exp (-E(\mathbf{w}))
$$

where

$$
E(\mathbf{w})=\frac{\beta}{2} \sum_{i=1}^{N}\left(y^{i}-y\left(\mathbf{x}^{i}, \mathbf{w}\right)\right)^{2}+\frac{\alpha}{2} \mathbf{w}^{\top} \mathbf{w}
$$

- Because the likelihood is highly non-linear in w, there is no closed-form solution for the posterior.

Laplace approximation of the Posterior and Predictive

- Assuming we have found the MAP estimate $\mathbf{w}_{\text {MAP }}$ then the Laplace approximation approximates the posterior by a multivariate Gaussian distribution (more next week!) centered around the MAP

$$
p(\mathbf{w} \mid D, \alpha, \beta) \approx q(\mathbf{w} \mid D, \alpha, \beta)=\mathcal{N}\left(\mathbf{w} ; \mathbf{w}_{\mathrm{MAP}}, A\right)
$$

where

$$
A=-\frac{\partial^{2} \log p(\mathbf{w} \mid D, \alpha, \beta)}{\partial \mathbf{w} \partial \mathbf{w}^{\top}}=\alpha I+\beta H
$$

with H the Hessian of the sum of squared prediction errors.

- We have

$$
\begin{aligned}
p(y \mid D, \alpha, \beta, \mathbf{x}) & =\int p(y \mid \mathbf{x}, \mathbf{w}) p(\mathbf{w} \mid D, \alpha, \beta) d \mathbf{w} \\
& \approx \int p(y \mid \mathbf{x}, \mathbf{w}) q(\mathbf{w} \mid D, \alpha, \beta) d \mathbf{w} \\
& \approx \mathcal{N}\left(y ; y\left(\mathbf{x}, \mathbf{w}_{\mathrm{MAP}}\right), \sigma^{2}(\mathbf{x})\right)
\end{aligned}
$$

where $\sigma^{2}(\mathbf{x})=\beta^{-1}+\left.\left.\frac{\partial y(\mathbf{x}, \mathbf{w})}{\partial \mathbf{w}}\right|_{\mathbf{w}_{\mathrm{MAP}}} ^{-1} A \frac{\partial y(\mathbf{x}, \mathbf{w})}{\partial \mathbf{w}}\right|_{\mathbf{w}_{\mathrm{MAP}}}$

Example

True function (green), $y\left(\mathbf{x}, \mathbf{w}_{\mathrm{MAP}}\right)$ (red) and $y\left(\mathbf{x}, \mathbf{w}_{\mathrm{MAP}}\right) \mp \sigma(\mathbf{x})$ (blue) for an MLP with 3 hidden nodes, trained on 16 data points. (a) Laplace approximation, after performing empirical Bayes to optimize (α, β). (b) Samples from $y(\mathbf{x}, \mathbf{w})$ where $\mathbf{w} \sim p(\mathbf{w} \mid D, \alpha, \beta)$ obtained using hybrid Monte Carlo, using the same (α, β) as in (a).

