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Limitation of Linear Models

Until now, we have worked primarily with linear models.

In the models we have previously discussed, we select beforehand the
basis functions.

If we have too many basis functions (i.e. one for each training point),
we tend to overfit.

Solutions to reduce these problems consists of using priors or different
loss functions.

These methods dominate Machine Learning nowadays.
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Neural Networks

Very network, not very neural after all.

In this case, we fix the number of basis functions but their parameters
are adapted during training.

These models are (too?) flexible.

They can perform well but it is diffi cult to train them and their
interpretability is diffi cult.

Revival of these approaches over recent years.
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Feed-forward network functions

We have worked with models where for regression

y (x) = wTΦ (x) =
M

∑
j=1
wjφj (x)

and for binary classification

Pr (y = 1| x) = g
(
wTΦ (x)

)
.

For the basic neural network (NN), we build first M linear
combinations of x = (x1, ..., xD )

aj = w
(1) T
j x =

D

∑
l=1

w (1)jl︸︷︷︸
weights

xl + w
(1)
j0︸︷︷︸
bias

for j = 1, ...,M

We then apply a nonlinear transformation - activation function
zj = g (aj ). We can use the logistic sigmoid or the hyperbolic
tangent. These are called hidden units.
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We obtain K output unit activations by setting for regression
problems

yk (x,w) = w(2) Tk z =
M

∑
j=1
w (2)kj zj + w

(2)
k0 for k = 1, ...,K

=
M

∑
j=1
w (2)kj g

(
D

∑
l=1

w (1)jl xl + w
(1)
j0

)
+ w (2)k0

For classification problems, we have

yk (x,w) = g (ak ) = g

(
M

∑
j=1
w (2)kj g

(
D

∑
l=1

w (1)jl xl + w
(1)
j0

)
+ w (2)k0

)

with K = 1 and g (·) logistic function for binary classification and
K = C − 1 and softmax link for C classes.
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Two-layer NN
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The NN architecture presented here is the most common one.

We can add layers of hidden units.

We can have sparse architectures where some of the connections are
not included.

Theoretical justification: Many results have established that a
two-layer network with linear outputs can approximate any continuous
function on a compact input domain to arbitrary accuracy provided
the network has a suffi ciently large number of hidden units.
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You should be a bit critical about these properties.

Essentially it tells you then if your model can be as complex as you
want then you can approximate anything.

However, it is true that NN can perform well in some scenarios.
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Regression examples

NN trained using 50 data on various functions using 3 hidden units with
‘tanh’activation functions and a linear output. Ouput of the hidden units
are in dashed lines.
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Regression examples

NN trained using 50 data on various functions using 3 hidden units with
‘tanh’activation functions and a linear output. Ouput of the hidden units
are in dashed lines.
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Classification example
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Two input, two hidden units with ‘tanh’activation and a single output
with logististic. Dashed blue lines show z = 0.5 for each hidden units, red
line is output y = 0.5 and green line is the true Bayes classifier.
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NN Training

Assume we are considering a regression problem
{
xi , y i

}N
i=1. To learn

the parameters in a regression case, we seek to minimize

E (w) =
1
2

N

∑
i=1

K

∑
k=1

(
y ik − yk

(
xi ,w

))2
which corresponds to maximizing the likelihood for a Gaussian model.

In the binary logistic regression case, we have

E (w) = −
N

∑
i=1

{
y i log

(
y
(
xi ,w

))
+
(
1− y i

)
log
(
1− y

(
xi ,w

))}
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In both cases, these functions are not convex and it is diffi cult to
minimize E (w) .
We can use a gradient descent method

w(t+1) = w(t) − δ
∂E (w)

∂w

∣∣∣∣
w(t)

We can also use Newton-Raphson

w(t+1) = w(t) −
[

∂2E (w)
∂w∂wT

∣∣∣∣
w(t)

]−1
∂E (w)

∂w

∣∣∣∣
w(t)

which provides usually algorithms converging faster.

We can also cycle over the observations using

w(t+1) = w(t) − δ
∂Ei (w)

∂w

∣∣∣∣
w(t)

where Ei (w) corresponds to observation i .
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A Regression Example

Consider the case where

aj =
D

∑
l=0

w (1)jl xl , zj = tanh (aj ) =
eaj − e−aj
eaj + e−aj

,

yk (x,w) =
M

∑
j=0
w (2)kj zj .

We have

Ei (w) =
1
2

K

∑
k=1

(
y ik − yk

(
xi ,w

))2
.

We want to compute

∂Ei (w)

∂w (1)jl
and

∂Ei (w)

∂w (2)kj
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Backpropagation algorithm

We have

∂Ei (w)

∂w (2)kj
=

∂Ei (w)
∂yk (xi ,w)

∂yk
(
xi ,w

)
∂w (2)kj

=
(
yk
(
xi ,w

)
− y ik

)
zj

Ei (w) only depends on w
(1)
jl via the summed input zj so

∂Ei (w)

∂w (1)jl
=

∂Ei (w)
∂zj

∂zj

∂w (1)jl

where
∂zj

∂w (1)jl
= x il

(
1− z2j

)
as [tanh (x)]′ = 1− tanh (x)2 .
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Backpropagation algorithm

We have

∂Ei (w)
∂zj

=
K

∑
k=1

∂Ei (w)
∂yk (xi ,w)

∂yk
(
xi ,w

)
∂zj

=
K

∑
k=1

(
yk
(
xi ,w

)
− y ik

)
w (2)kj

So putting all the terms together we have

∂Ei (w)

∂w (1)jl
= x il

(
1− z2j

) K

∑
k=1

(
yk
(
xi ,w

)
− y ik

)
w (2)kj
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Summary

Apply xi to the network and propagate forward through
aj = ∑D

l=0 w
(1)
jl x

i
l , zj = h (aj )

Evaluate εk = yk
(
xi ,w

)
− y ik for the ouput units and compute

∂Ei (w)

∂w (2)kj
= εkzj .

“Backpropagate” the ε′s to compute

∂Ei (w)

∂w (1)jl
= x il

(
1− z2j

) K

∑
k=1

εkw
(2)
kj .

Perform a gradient descent step w← w− δ
∂Ei (w)

∂w

∣∣∣
w
.
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Application to Digit Recognition
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Figure 16.3: (a) A neural network with one hidden layer. (b) Two possible activation functions. Produced by tanhPlot.

Figure 16.4: The convolutional neural network from [SSP03]. Source: http://www.codeproject.com/KB/library/
NeuralNetRecognition.aspx . Used with kind permission of Mike O’Neill.

16.2.2.2 The output layer

We can combine the cases of regression, multi-class classification and binary classification into one common notation by
defining

z2n = g2(a2n) (16.13)

where g2(a) = a for regression, g2(a) = S(a) for multi-class classification, and g2(a) = [σ(a1), . . . , σ(aC)] for multi-label
classification. We can then summarize the whole pipeline as follows (ignoring the bias terms for simplicity):

xni
w1ji→ a1nj

g→ z1nj
w2kj→ a2nk

g2→ z2nk (16.14)

For simplicity, we will let the output of the model be denoted by fnk = z2nk, since the output units are not normally considered
as being hidden.

16.2.3 Convolutional neural networks
A form of MLP which is particularly well suited to 1d signals like speech or text, or 2d signals like images, is the convolutional
neural network. This is an MLP in which the hidden units have local receptive fields (as in the primary visual cortex), and in
which the weights are tied or shared across the image, in order to reduce the number of parameters. Intuitively, the effect of such
spatial parameter tying is that any useful features that are “discovered” in some portion of the image can be re-used everywhere
else without having to be independently learned. The resulting network then exhibits translation invariance, meaning it can
classify patterns no matter where they occur inside the input image.

Machine Learning: a Probabilistic Approach, draft of January 4, 2011

Over 100,000 parameters trained using backpropagation, 1.40% test
error on MNIST database.
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Bayesian Neural Networks

In practice, it can help to regularize the solution using a Gaussian prior

p (w| α) = ∏
jl

p
(
w (1)jl

∣∣∣ α
)

∏
kj

p
(
w (2)kj

∣∣∣ α
)

= ∏
jl

N
(
w (1)jl ; 0, α

−1
)

∏
kj

N
(
w (2)kj ; 0, α

−1
)

but this is ineffi cient as
{
w (1)jl

}
and

{
w (2)kj

}
play different roles.

It is much more effi cient to have a layer specific regularization

p (w| α1, α2) = ∏
jl

p
(
w (1)jl

∣∣∣ α1
)

∏
kj

p
(
w (2)kj

∣∣∣ α2
)

= ∏
jl

N
(
w (1)jl ; 0, α

−1
1

)
∏
kj

N
(
w (2)kj ; 0, α

−1
2

)
.

In practice, we also use specific very vague priors for the bias (as in
ridge regression).
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Bayesian Neural Networks

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

474 nnetBody.tex

−1 −0.5 0 0.5 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

aw1=0.010, ab1=0.100, aw2=1.000, ab2=1.000

(a)

−1 −0.5 0 0.5 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

aw1=0.001, ab1=0.100, aw2=1.000, ab2=1.000

(b)

−1 −0.5 0 0.5 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

aw1=0.010, ab1=0.010, aw2=1.000, ab2=1.000

(c)

−1 −0.5 0 0.5 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

aw1=0.010, ab1=0.100, aw2=0.100, ab2=1.000

(d)

−1 −0.5 0 0.5 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

aw1=0.010, ab1=0.100, aw2=1.000, ab2=0.100

(e)

Figure 16.8: The effects of changing the hyper-parameters on an MLP. (a) Default parameter values αw1 = 0.01, αb1 = 0.1, αw2 = 1, αb2 = 1.
(b) Decreasing αw1 by factor of 10. (c) Decreasing αb1 by factor of 10. (d) Decreasing αw2 by factor of 10. (e) Decreasing αb2 by factor of 10.
Figure generated by mlpPriorsDemo.

16.4 Bayes for neural networks *
Although MAP estimation is a succesful way to reduce overfitting, there are still some good reasons to want to adopt a fully
Bayesian approach to “fitting” neural networks:

• Integrating out the parameters instead of optimizing them is a much stronger form of regularization than MAP estimation.

• We can use Bayesian model selection to determine things like the hyper-parameter settings and the number of hidden
units. This is likely to be much faster than cross validation, especially if we have many hyper-parameters (e.g., as in
ARD).

• Modelling uncertainty in the parameters will induce uncertainty in our predictive distributions, which is important for
certain problems such as active learning and risk-averse decision making.

• We can use online inference methods, such as the extended Kalman filter, to do online learning.

One can adopt a variety of approximate Bayesian inference techniques in this context. In this section, we discuss the Laplace
approximation. One can also use MCMC.

16.4.1 Regression
We start by considering regression, following the presentation of [Bis06b, sec 5.7]. We will use a prior of the form p(w) =
N (w|0, (1/α)I), although this can be generalized. We will denote the precision of the noise by β = 1/σ2.

16.4.1.1 Parameter posterior

In this section, we will derive a Laplace approximation to the posterior. The approximation is necessary because the mean is a
non-linear function of the weights.

Assuming a single Gaussian prior p(w) = N (w|0, 1/αI) for notational simplicity, the posterior can be written as follows:

p(w|D, α, β) ∝ exp(−E(w)) (16.41)
E(w) := βED(w) + αEW (w) (16.42)

ED(w) :=
1
2

N∑
n=1

(yn − f(xn,w))2 (16.43)

EW (w) :=
1
2
wTw (16.44)

c© Kevin P. Murphy. Draft — not for circulation.

Samples from the regression function y (x,w) for various values of the
prior parameters.
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Bayesian Neural Networks for Regression

Assume that K = 1 and

p (y | x,w,β) = N
(
y ; y (x,w) , β−1

)
.

Additionally, for sake of simplicity we set α1 = α2 so that

p (w| α) = ∏
jl

N
(
w (1)jl ; 0, α

−1
)

∏
kj

N
(
w (2)kj ; 0, α

−1
)

For data D =
{
xi , y i

}N
n=1, we are interested in the posterior

p (w|D, α,β) =
p
({
y i
}N
n=1

∣∣∣ {xi}Nn=1 ,w,β) p (w| α)
p
(
{y i}Nn=1

∣∣∣ {xi}Nn=1 , α, β) ∝ exp (−E (w))

where

E (w) =
β

2

N

∑
i=1

(
y i − y

(
xi ,w

))2
+

α

2
wTw

Because the likelihood is highly non-linear in w, there is no
closed-form solution for the posterior.
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Laplace approximation of the Posterior and Predictive

Assuming we have found the MAP estimate wMAP then the Laplace
approximation approximates the posterior by a multivariate Gaussian
distribution (more next week!) centered around the MAP

p (w|D, α, β) ≈ q (w|D, α, β) = N (w;wMAP,A)
where

A = −∂2 log p (w|D, α, β)
∂w∂wT

= αI + βH

with H the Hessian of the sum of squared prediction errors.
We have

p (y |D, α, β, x) =
∫
p (y | x,w) p (w|D, α, β) dw

≈
∫
p (y | x,w) q (w|D, α, β) dw

≈ N
(
y ; y (x,wMAP) , σ2 (x)

)
where σ2 (x) = β−1 + ∂y (x,w)

∂w

∣∣∣−1
wMAP

A ∂y (x,w)
∂w

∣∣∣
wMAP

.
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Figure 16.9: The posterior predictive density for an MLP with 3 hidden nodes, trained on 16 data points. The dashed green line is the
true function. (a) Result of using a Laplace approximation, after performing empirical Bayes to optimize the hyperparameters. The solid
red line is the posterior mean prediction, and the dotted blue lines are 1 standard deviation above and below the mean. Produced by
mlpRegEvidenceDemo. (b) Result of using hybrid Monte Carlo, using the same trained hyperparameters as in (a). The solid red line
is the posterior mean prediction, and the dotted blue lines are samples from the posterior predictive. Produced by mlpRegHmcDemo.

where ED is the data error, EW is the prior error, and E is the overall error (negative log prior plus log likelihood). Now let us
make a second-order Taylor series approximation of E(w) around its minimum (the MAP estimate)

E(w) ≈ E(wMP ) +
1
2

(w −wMP )TA(w −wMP ) (16.45)

where A is the Hessian of E:
A = ∇∇E(wMP ) = βH + αI (16.46)

where H = ∇∇ED(wMP ) is the Hessian of the data error. This can be computed exactly in O(W 2) time using a variant of
backpropagation (see [Bis06b, sec 5.4] for details). This is implemented in the NETLAB function mlphess. Alternatively,
if we use a quasi-Newton method to find the mode, we can use its internally computed (low-rank) approximation to H. (Note
that diagonal approximations of H are usually very inaccurate.) In either case, using this quadratic approximation, the posterior
becomes Gaussian:

p(w|α, β,D) ≈ N (w|wMP ,A−1) (16.47)

16.4.1.2 Predictive posterior

The posterior predictive density is given by

p(y|x,D, α, β) =
∫
N (y|f(x,w), 1/β)N (w|wMP ,A−1)dw (16.48)

This is not analytically tractable because of the nonlinearity of f(x,w). Let us therefore construct a first-order Taylor series
approximation around the mode:

f(x,w) ≈ f(x,wMP ) + gT (w −wMP ) (16.49)

where
g = ∇wf(x,w)|w=wMP

(16.50)

We now have a linear-Gaussian model with a Gaussian prior on the weights. From Equation 5.52 we have

p(y|x,D, α, β) ≈ N (y|f(x,wMP ), σ2(x)) (16.51)

where the predictive variance depends on the input x as follows:

σ2(x) = β−1 + gTA−1g (16.52)

The error bars will be larger in regions of input space where we have little training data. See Figure 16.9(a) for an example.
(The hyper-parameters of this model were set using empirical Bayes, as discussed below.)

16.4.2 Classification
Now we turn to binary classification. (The multi-class case is a straightforward extension.)

Machine Learning: a Probabilistic Approach, draft of January 4, 2011

True function (green), y (x,wMAP) (red) and y (x,wMAP)∓ σ (x) (blue)
for an MLP with 3 hidden nodes, trained on 16 data points. (a) Laplace
approximation, after performing empirical Bayes to optimize (α, β). (b)
Samples from y (x,w) where w ∼p (w|D, α, β) obtained using hybrid
Monte Carlo, using the same (α, β) as in (a).
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