CS 340 Lec. 16: Logistic Regression

AD

March 2011

Introduction

- Assume you are given some training data $\left\{\mathbf{x}^{i}, y^{i}\right\}_{i=1}^{N}$ where $\mathbf{x}^{i} \in \mathbb{R}^{d}$ and y^{i} can take C different values.
- Given an input test data \mathbf{x}, you want to predict/estimate the output y associated to \mathbf{x}.
- Previously we have followed a probabilistic approach

$$
p(y=k \mid \mathbf{x})=\frac{p(\mathbf{x} \mid y=k) p(y=k)}{\sum_{j=0}^{C-1} p(\mathbf{x} \mid y=j) p(y=j)}
$$

- This requires modelling and learning the parameters of the class conditional density of features $p(\mathbf{x} \mid y=k)$.

Logistic Regression

- Discriminative model: we model and learn directly $p(y=k \mid \mathbf{x})$ and bypassing the introduction of $p(\mathbf{x} \mid y=k)$.
- Consider the following model for $C=2$ (binary classification)

$$
\begin{aligned}
p(y=1 \mid \mathbf{x}, \mathbf{w}) & =1-p(y=0 \mid \mathbf{x}, \mathbf{w}) \\
& =g\left(\mathbf{w}^{\top} \mathbf{x}\right)
\end{aligned}
$$

where $\mathbf{w}=\left(\begin{array}{lll}w_{0} & \cdots & w_{d}\end{array}\right)^{\top}, \mathbf{x}=\left(\begin{array}{lll}x_{0} & \cdots & x_{d}\end{array}\right)^{\top}$ so

$$
z=\mathbf{w}^{\top} \mathbf{x}=w_{0}+\sum_{j=1}^{d} w_{j} x_{j}
$$

and g is a "squashing" function: $g: \mathbb{R} \rightarrow[0,1]$.

- Logistic regression corresponds to

$$
g(z)=\frac{1}{1+\exp (-z)}=\frac{\exp (z)}{1+\exp (z)}
$$

Logistic Function

(Left) logistic or sigmoid function (Right) logistic regression for $x=$ SAT score and $y=$ pass/fail class (solid black dots are the data), open red circles are predicted probabilities.

Logistic Regression

- The log odds ratio satisfies

$$
\operatorname{LOR}(\mathbf{x})=\log \frac{p(y=1 \mid \mathbf{x}, \mathbf{w})}{p(y=0 \mid \mathbf{x}, \mathbf{w})}=\mathbf{w}^{\top} \mathbf{x}
$$

so the logistic parameters are easily interpretable.

- If $w_{j}>0$, then increasing x_{j} makes $y=1$ more likely while decreasing x_{j} makes $y=0$ more likely (and opposite if $w_{j}=0$). $w_{j}=0$ means x_{j} has no impact on the outcome.
- Logistic regression partitions the input space into two regions whose decision boundary is $\{\mathbf{x}: \operatorname{LOR}(\mathbf{x})=0\}=\left\{\mathbf{x}: \mathbf{w}^{\top} \mathbf{x}=0\right\}$
- Simple model of a neuron: it forms a weighted sum of its inputs and the "fires" an output pulse if this sum exceeds a threshold. Logistic regression mimics this as you can sort of think of it as a process which "fires" if $p(y=1 \mid \mathbf{x}, \mathbf{w})>p(y=0 \mid \mathbf{x}, \mathbf{w})$ equivalently if $\operatorname{LOR}(\mathbf{x})>0$.

Logistic Function in Two Dimensions

Plots of $p\left(y=1 \mid w_{1} x_{1}+w_{2} x_{2}\right)$. Here $\mathbf{w}=\left(w_{1}, w_{2}\right)$ define the normal to the decision boundary. Points to the right have $\mathbf{w}^{\top} \mathbf{x}>0$ and to the left have $\mathbf{w}^{\top} \mathbf{x}<0$.

MLE Parameter Learning for Logistic Regression

- To learn the parameters \mathbf{w}, we can maximize w.r.t \mathbf{w} the (conditional) log-likelihood function

$$
\begin{aligned}
I(\mathbf{w}) & =\log p\left(\left\{y^{i}\right\}_{i=1}^{N} \mid\left\{\mathbf{x}^{i}\right\}_{i=1}^{N}, \mathbf{w}\right)=\log \prod_{i=1}^{N} p\left(y^{i} \mid \mathbf{x}^{i}, \mathbf{w}\right) \\
& =\sum_{i=1}^{N} \log p\left(y^{i} \mid \mathbf{x}^{i}, \mathbf{w}\right)
\end{aligned}
$$

- We have

$$
\begin{aligned}
I(\mathbf{w}) & =\sum_{i=1}^{N} y^{i} \log p\left(y^{i}=1 \mid \mathbf{x}^{i}, \mathbf{w}\right)+\left(1-y^{i}\right) \log p\left(y^{i}=0 \mid \mathbf{x}^{i}, \mathbf{w}\right) \\
& =-\sum_{i=1}^{N}\left(1-y^{i}\right) \mathbf{w}^{\top} \mathbf{x}^{i}-\sum_{i=1}^{N} \log \left(1+\exp \left(-\mathbf{w}^{\top} \mathbf{x}^{i}\right)\right)
\end{aligned}
$$

- Good news: $I(\mathbf{w})$ is concave so there is no local maxima.
- Bad news: there is no-closed form solution for $\widehat{\mathbf{w}}_{\text {MLE }}$.

Gradient Ascent

- Gradient ascent is one of the most basic method to maximize a function.
- It is an iterative procedure such that at iteration t :

$$
\mathbf{w}^{(t)}=\mathbf{w}^{(t-1)}+\eta \quad \nabla_{\mathbf{w}} /\left.(\mathbf{w})\right|_{\mathbf{w}^{(t-1)}}
$$

where the gradient is

$$
\nabla_{\mathbf{w}} /(\mathbf{w})=\left[\begin{array}{lll}
\frac{\partial l(\mathbf{w})}{\partial w_{0}} & \cdots & \frac{\partial l(\mathbf{w})}{\partial w_{d}}
\end{array}\right]^{\top}
$$

and $\eta>0$ is the learning rate.

- To minimize a function $f(\mathbf{w})$, simply use the gradient descent

$$
\mathbf{w}^{(t)}=\mathbf{w}^{(t-1)}-\left.\eta \nabla_{\mathbf{w}} f(\mathbf{w})\right|_{\mathbf{w}^{(t-1)}}
$$

Gradient Descent Example

Gradient descent on a simple function, starting from $(0,0)$ for 20 steps using $\eta=0.1$ (left) and $\eta=0.6$ (right)

Gradient Ascent for Logistic Regression

- We have

$$
\frac{\partial I(\mathbf{w})}{\partial w_{k}}=-\sum_{i=1}^{N}\left(1-y^{i}\right) x_{k}^{i}+\sum_{i=1}^{N} x_{k}^{i} \frac{\exp \left(-\mathbf{w}^{\top} \mathbf{x}^{i}\right)}{1+\exp \left(-\mathbf{w}^{\top} \mathbf{x}^{i}\right)}
$$

- Hence we have

$$
\begin{aligned}
\frac{\partial I(\mathbf{w})}{\partial w_{k}} & =\sum_{i=1}^{N} x_{k}^{i}\left\{p\left(y^{i}=0 \mid \mathbf{x}^{i}, \mathbf{w}\right)-\left(1-y^{i}\right)\right\} \\
& =\sum_{i=1}^{N} x_{k}^{i}\left\{y^{i}-p\left(y^{i}=1 \mid \mathbf{x}^{i}, \mathbf{w}\right)\right\}
\end{aligned}
$$

- So in vector-form, we will do

$$
\begin{aligned}
\mathbf{w}^{(t)} & =\mathbf{w}^{(t-1)}+\eta \nabla_{\mathbf{w}} /\left.(\mathbf{w})\right|_{\mathbf{w}^{(t-1)}} \\
& =\mathbf{w}^{(t-1)}+\eta \sum_{i=1}^{N}\left\{y^{i}-p\left(y^{i}=1 \mid \mathbf{x}^{i}, \mathbf{w}^{(t-1)}\right)\right\} \mathbf{x}^{i}
\end{aligned}
$$

Regularized Logistic Regression

- Similarly to regression, we can regularize the solution by assigning a Gaussian prior to w

$$
p(\mathbf{w})=\prod_{j=0}^{d} p\left(w_{j}\right)=\prod_{j=0}^{d} \mathcal{N}\left(w_{j} ; 0, \lambda\right)
$$

- This pushes the parameters \mathbf{w} towards zero and can prevent overfitting. In this case, we have

$$
\begin{aligned}
\widehat{\mathbf{w}}_{M A P} & =\arg \max p\left(\mathbf{w} \mid\left\{\mathbf{x}^{i}, y^{i}\right\}_{i=1}^{N}\right) \\
& =\arg \max I(\mathbf{w})-\frac{\mathbf{w}^{\top} \mathbf{w}}{2 \lambda}
\end{aligned}
$$

- $\widehat{\mathbf{w}}_{\text {MAP }}$ can be computed iteratively using

$$
\begin{aligned}
& \mathbf{w}^{(t)}=\mathbf{w}^{(t-1)}+\left.\eta \nabla_{\mathbf{w}}\left(I(\mathbf{w})-\frac{\mathbf{w}^{\top} \mathbf{w}}{2 \lambda}\right)\right|_{\mathbf{w}^{(t-1)}} \\
& =\mathbf{w}^{(t-1)}+\eta\left\{-\lambda^{-1} \mathbf{w}+\sum_{i=1}^{N}\left\{y^{i}-p\left(y^{i}=1 \mid \mathbf{x}^{i}, \mathbf{w}^{(t-1)}\right)\right\} \mathbf{x}^{i}\right\}
\end{aligned}
$$

Using Basis Functions for Logistic Regression

- Similarly to regression, we can use basis functions; i.e.

$$
p(y=1 \mid \mathbf{x}, \mathbf{w})=g\left(\mathbf{w}^{\top} \Phi(\mathbf{x})\right)
$$

where $\mathbf{w}=\left(w_{1} \cdots w_{m}\right)^{\top}, \Phi(\mathbf{x})=\left(\Phi_{1}(\mathbf{x}) \cdots \Phi_{m}(\mathbf{x})\right)^{\top}$.

- For example, if $\mathbf{x} \in \mathbb{R}$ then we can pick

$$
\Phi(\mathbf{x})=\left(1, x, \ldots, x^{m}\right)
$$

- For $\mathbf{x} \in \mathbb{R}^{d}$, we can pick some radial basis functions

$$
\Phi_{j}(\mathbf{x})=\exp \left(-\frac{\left(\mathbf{x}-\boldsymbol{\mu}_{j}\right)^{\top}\left(\mathbf{x}-\boldsymbol{\mu}_{j}\right)}{2 \sigma^{2}}\right)
$$

Example

(left) Logistic regression in the original feature space $\mathbf{x}=\left(x_{1}, x_{2}\right)$. (right) Logistic regression obtained after performing a 2 nd degree poly expansion $\Phi(\mathbf{x})=\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}\right)$.

Example

(left) Logistic regression for $\Phi(\mathbf{x})=\left(1, x_{1}, x_{2}, \ldots, x_{1}^{10}, x_{2}^{10}\right)$. (right) Logistic regression using 4 radial basis functions with centers μ_{j} specified by black crosses.

Multinomial Logistic Regression

- Consider now the case where $C>2$. We could consider the following generalization

$$
p\left(y=c \mid \mathbf{x},\left\{\mathbf{w}_{c}\right\}_{c=1}^{c}\right)=\frac{\exp \left(\mathbf{w}_{c}^{\top} \mathbf{x}\right)}{\sum_{k=1}^{C} \exp \left(\mathbf{w}_{k}^{\top} \mathbf{x}\right)} \text { for } c=1, \ldots, C
$$

but this is not identifiable as

$$
p\left(y=c \mid \mathbf{x},\left\{\mathbf{w}_{c}+\mathbf{w}^{\prime}\right\}_{c=1}^{C}\right)=p\left(y=c \mid \mathbf{x},\left\{\mathbf{w}_{c}\right\}_{c=1}^{c}\right) \text {. }
$$

- Hence we set $\mathbf{w}_{C}=(0 \cdots 0)^{\top}$ to obtain

$$
\begin{aligned}
& p\left(y=c \mid \mathbf{x},\left\{\mathbf{w}_{c}\right\}_{c=1}^{C-1}\right)=\frac{\exp \left(\mathbf{w}_{c}^{\top} \mathbf{x}\right)}{1+\sum_{k=1}^{C-1} \exp \left(\mathbf{w}_{k}^{\top} \mathbf{x}\right)} \text { for } c=1, \ldots, C-1 \\
& p\left(y=C \mid \mathbf{x},\left\{\mathbf{w}_{c}\right\}_{c=1}^{C-1}\right)=\frac{1}{1+\sum_{k=1}^{C-1} \exp \left(\mathbf{w}_{k}^{\top} \mathbf{x}\right)}
\end{aligned}
$$

- The (conditional) log-likelihood is concave w.r.t $\left\{\mathbf{w}_{c}\right\}_{c=1}^{C-1}$ so MLE estimates can be computed using gradient.

Example

(left) Some 5 class data in 2d (center) Multinomial logistic regression in the original feature space $\mathbf{x}=\left(x_{1}, x_{2}\right)$ (right) RBF basis functions with bandwidth 1 using $m=1+N$. We use all the data points as centers.

