CS 340 Lec. 16: Logistic Regression

AD

March 2011

- Assume you are given some training data $\{\mathbf{x}^i, y^i\}_{i=1}^N$ where $\mathbf{x}^i \in \mathbb{R}^d$ and y^i can take C different values.
- Given an input test data **x**, you want to predict/estimate the output y associated to **x**.
- Previously we have followed a probabilistic approach

$$p(y = k | \mathbf{x}) = \frac{p(\mathbf{x} | y = k) p(y = k)}{\sum_{j=0}^{C-1} p(\mathbf{x} | y = j) p(y = j)}.$$

• This requires modelling and learning the parameters of the class conditional density of features $p(\mathbf{x} | y = k)$.

Logistic Regression

- Discriminative model: we model and learn directly $p(y = k | \mathbf{x})$ and bypassing the introduction of $p(\mathbf{x} | y = k)$.
- Consider the following model for C = 2 (binary classification)

$$p(y = 1 | \mathbf{x}, \mathbf{w}) = 1 - p(y = 0 | \mathbf{x}, \mathbf{w})$$
$$= g(\mathbf{w}^{\mathsf{T}} \mathbf{x})$$

where $\mathbf{w} = (w_0 \cdots w_d)^{\mathsf{T}}$, $\mathbf{x} = (x_0 \cdots x_d)^{\mathsf{T}}$ so

$$z = \mathbf{w}^\mathsf{T} \mathbf{x} = w_0 + \sum_{j=1}^d w_j x_j$$

and g is a "squashing" function: $g : \mathbb{R} \to [0, 1]$. • Logistic regression corresponds to

$$g\left(z\right) = \frac{1}{1 + \exp\left(-z\right)} = \frac{\exp\left(z\right)}{1 + \exp\left(z\right)}.$$

Logistic Function

(Left) logistic or sigmoid function (Right) logistic regression for x=SAT score and y=pass/fail class (solid black dots are the data), open red circles are predicted probabilities.

Logistic Regression

• The log odds ratio satisfies

$$LOR(\mathbf{x}) = \log \frac{p(y=1|\mathbf{x}, \mathbf{w})}{p(y=0|\mathbf{x}, \mathbf{w})} = \mathbf{w}^{\mathsf{T}}\mathbf{x}$$

so the logistic parameters are easily interpretable.

- If $w_j > 0$, then increasing x_j makes y = 1 more likely while decreasing x_j makes y = 0 more likely (and opposite if $w_j = 0$). $w_j = 0$ means x_j has no impact on the outcome.
- Logistic regression partitions the input space into two regions whose decision boundary is $\{\mathbf{x} : LOR(\mathbf{x}) = 0\} = \{\mathbf{x} : \mathbf{w}^{\mathsf{T}}\mathbf{x} = 0\}$
- Simple model of a neuron: it forms a weighted sum of its inputs and the "fires" an output pulse if this sum exceeds a threshold. Logistic regression mimics this as you can sort of think of it as a process which "fires" if $p(y = 1 | \mathbf{x}, \mathbf{w}) > p(y = 0 | \mathbf{x}, \mathbf{w})$ equivalently if $LOR(\mathbf{x}) > 0$.

Logistic Function in Two Dimensions

Plots of $p(y = 1 | w_1x_1 + w_2x_2)$. Here $\mathbf{w} = (w_1, w_2)$ define the normal to the decision boundary. Points to the right have $\mathbf{w}^T \mathbf{x} > 0$ and to the left have $\mathbf{w}^T \mathbf{x} < 0$.

MLE Parameter Learning for Logistic Regression

 To learn the parameters w, we can maximize w.r.t w the (conditional) log-likelihood function

$$\begin{aligned} \mathbf{(w)} &= \log p\left(\left\{y^{i}\right\}_{i=1}^{N} \middle| \left\{\mathbf{x}^{i}\right\}_{i=1}^{N}, \mathbf{w}\right) = \log \prod_{i=1}^{N} p\left(y^{i} \middle| \mathbf{x}^{i}, \mathbf{w}\right) \\ &= \sum_{i=1}^{N} \log p\left(y^{i} \middle| \mathbf{x}^{i}, \mathbf{w}\right) \end{aligned}$$

We have

$$I(\mathbf{w}) = \sum_{i=1}^{N} y^{i} \log p(y^{i} = 1 | \mathbf{x}^{i}, \mathbf{w}) + (1 - y^{i}) \log p(y^{i} = 0 | \mathbf{x}^{i}, \mathbf{w})$$
$$= -\sum_{i=1}^{N} (1 - y^{i}) \mathbf{w}^{\mathsf{T}} \mathbf{x}^{i} - \sum_{i=1}^{N} \log (1 + \exp(-\mathbf{w}^{\mathsf{T}} \mathbf{x}^{i}))$$

• Good news: *I*(w) is concave so there is no local maxima.

• **Bad news:** there is no-closed form solution for $\widehat{\mathbf{w}}_{MLE}$.

AD ()

Gradient Ascent

- Gradient ascent is one of the most basic method to maximize a function.
- It is an iterative procedure such that at iteration t :

$$\mathbf{w}^{(t)} = \mathbf{w}^{(t-1)} + \eta \ \nabla_{\mathbf{w}} I(\mathbf{w})|_{\mathbf{w}^{(t-1)}}$$

where the gradient is

$$abla_{\mathbf{w}} I(\mathbf{w}) = \begin{bmatrix} \frac{\partial I(\mathbf{w})}{\partial w_0} & \cdots & \frac{\partial I(\mathbf{w})}{\partial w_d} \end{bmatrix}^{\mathsf{T}}$$

and $\eta > 0$ is the learning rate.

• To minimize a function $f(\mathbf{w})$, simply use the gradient descent

$$\mathbf{w}^{(t)} = \mathbf{w}^{(t-1)} - \eta \ \nabla_{\mathbf{w}} f(\mathbf{w})|_{\mathbf{w}^{(t-1)}}$$

Gradient Descent Example

Gradient descent on a simple function, starting from (0,0) for 20 steps using $\eta = 0.1$ (left) and $\eta = 0.6$ (right)

Gradient Ascent for Logistic Regression

• We have

$$\frac{\partial l\left(\mathbf{w}\right)}{\partial w_{k}} = -\sum_{i=1}^{N} \left(1 - y^{i}\right) x_{k}^{i} + \sum_{i=1}^{N} x_{k}^{i} \frac{\exp\left(-\mathbf{w}^{\mathsf{T}} \mathbf{x}^{i}\right)}{1 + \exp\left(-\mathbf{w}^{\mathsf{T}} \mathbf{x}^{i}\right)}$$

• Hence we have

$$\frac{\partial l\left(\mathbf{w}\right)}{\partial w_{k}} = \sum_{i=1}^{N} x_{k}^{i} \left\{ p\left(y^{i}=0 \mid \mathbf{x}^{i}, \mathbf{w}\right) - \left(1-y^{i}\right) \right\}$$
$$= \sum_{i=1}^{N} x_{k}^{i} \left\{ y^{i}-p\left(y^{i}=1 \mid \mathbf{x}^{i}, \mathbf{w}\right) \right\}$$

• So in vector-form, we will do

$$\mathbf{w}^{(t)} = \mathbf{w}^{(t-1)} + \eta \ \nabla_{\mathbf{w}} I(\mathbf{w})|_{\mathbf{w}^{(t-1)}}$$

= $\mathbf{w}^{(t-1)} + \eta \ \sum_{i=1}^{N} \left\{ y^{i} - p\left(y^{i} = 1 | \mathbf{x}^{i}, \mathbf{w}^{(t-1)} \right) \right\} \mathbf{x}^{i}$

Regularized Logistic Regression

 Similarly to regression, we can regularize the solution by assigning a Gaussian prior to w

$$p(\mathbf{w}) = \prod_{j=0}^{d} p(w_j) = \prod_{j=0}^{d} \mathcal{N}(w_j; 0, \lambda)$$

• This pushes the parameters **w** towards zero and can prevent overfitting. In this case, we have

$$\begin{split} \widehat{\mathbf{w}}_{MAP} &= \arg \max \ p\left(\mathbf{w} | \left\{\mathbf{x}^{i}, y^{i}\right\}_{i=1}^{N}\right) \\ &= \arg \max \ l\left(\mathbf{w}\right) - \frac{\mathbf{w}^{\mathsf{T}}\mathbf{w}}{2\lambda}. \end{split}$$

• $\widehat{\mathbf{w}}_{MAP}$ can be computed iteratively using

$$\begin{split} \mathbf{w}^{(t)} &= \mathbf{w}^{(t-1)} + \eta \left[\nabla_{\mathbf{w}} \left(I\left(\mathbf{w}\right) - \frac{\mathbf{w}^{\mathsf{T}}\mathbf{w}}{2\lambda} \right) \right]_{\mathbf{w}^{(t-1)}} \\ &= \mathbf{w}^{(t-1)} + \eta \left\{ -\lambda^{-1}\mathbf{w} + \sum_{i=1}^{N} \left\{ y^{i} - p\left(y^{i} = 1 \right| \mathbf{x}^{i}, \mathbf{w}^{(t-1)} \right) \right\} \mathbf{x}^{i} \end{split}$$

Using Basis Functions for Logistic Regression

• Similarly to regression, we can use basis functions; i.e.

$$p\left(\left| y=1
ight| \mathbf{x}, \mathbf{w}
ight) = g\left(\mathbf{w}^{\mathsf{T}} \Phi \left(\mathbf{x}
ight)
ight)$$

where $\mathbf{w} = (w_1 \cdots w_m)^{\mathsf{T}}$, $\Phi(\mathbf{x}) = (\Phi_1(\mathbf{x}) \cdots \Phi_m(\mathbf{x}))^{\mathsf{T}}$.

• For example, if $\mathbf{x} \in \mathbb{R}$ then we can pick

$$\Phi(\mathbf{x}) = (1, x, \dots, x^m)$$

• For $\mathbf{x} \in \mathbb{R}^d$, we can pick some radial basis functions

$$\Phi_{j}\left(\mathbf{x}\right) = \exp\left(-\frac{\left(\mathbf{x} - \boldsymbol{\mu}_{j}\right)^{\mathsf{T}}\left(\mathbf{x} - \boldsymbol{\mu}_{j}\right)}{2\sigma^{2}}\right)$$

Example

(left) Logistic regression in the original feature space $\mathbf{x} = (x_1, x_2)$. (right) Logistic regression obtained after performing a 2nd degree poly expansion $\Phi(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_2^2)$.

(left) Logistic regression for $\Phi(\mathbf{x}) = (1, x_1, x_2, ..., x_1^{10}, x_2^{10})$. (right) Logistic regression using 4 radial basis functions with centers μ_j specified by black crosses.

Multinomial Logistic Regression

• Consider now the case where C > 2. We could consider the following generalization

$$p\left(y=c | \mathbf{x}, \{\mathbf{w}_{c}\}_{c=1}^{C}\right) = \frac{\exp\left(\mathbf{w}_{c}^{\mathsf{T}}\mathbf{x}\right)}{\sum_{k=1}^{C}\exp\left(\mathbf{w}_{k}^{\mathsf{T}}\mathbf{x}\right)} \text{ for } c=1, ..., C$$

but this is not identifiable as $p\left(y=c | \mathbf{x}, \{\mathbf{w}_{c}+\mathbf{w}'\}_{c=1}^{C}\right) = p\left(y=c | \mathbf{x}, \{\mathbf{w}_{c}\}_{c=1}^{C}\right).$

 \bullet Hence we set $\boldsymbol{w}_{\mathcal{C}} = \begin{pmatrix} 0 \ \cdots \ 0 \end{pmatrix}^{\mathsf{T}}$ to obtain

$$p\left(y=c \mid \mathbf{x}, \{\mathbf{w}_{c}\}_{c=1}^{C-1}\right) = \frac{\exp\left(\mathbf{w}_{c}^{\mathsf{T}}\mathbf{x}\right)}{1+\sum_{k=1}^{C-1}\exp\left(\mathbf{w}_{k}^{\mathsf{T}}\mathbf{x}\right)} \text{ for } c=1, ..., C-1$$
$$p\left(y=C \mid \mathbf{x}, \{\mathbf{w}_{c}\}_{c=1}^{C-1}\right) = \frac{1}{1+\sum_{k=1}^{C-1}\exp\left(\mathbf{w}_{k}^{\mathsf{T}}\mathbf{x}\right)}.$$

The (conditional) log-likelihood is concave w.r.t {w_c}^{C-1}_{c=1} so MLE estimates can be computed using gradient.

Example

(left) Some 5 class data in 2d (center) Multinomial logistic regression in the original feature space $\mathbf{x} = (x_1, x_2)$ (right) RBF basis functions with bandwidth 1 using m = 1 + N. We use all the data points as centers.