CS 340 Lec. 14: Bayesian Statistics

AD

February 2011

A Bayesian Approach

- In a Bayesian approach, the unknown parameter θ is assumed random with an associated prior distribution $p(\theta)$.
- Given data $\left\{\mathbf{x}^{i}\right\}_{i=1}^{N}$ distributed according to $p\left(\mathbf{x}_{1: N} \mid \theta\right)$, inference about θ is based on the posterior distribution

$$
p\left(\theta \mid \mathbf{x}_{1: N}\right)=\frac{p\left(\mathbf{x}_{1: N} \mid \theta\right) p(\theta)}{p\left(\mathbf{x}_{1: N}\right)}
$$

- From this posterior, we can obtain various point estimates of θ.

Bernoulli and Binomial Models

- Assume independent $\left\{x^{i}\right\}$ where $x^{i} \in\{0,1\}(=\{$ Tail, Head $\})$ with

$$
p(x \mid \theta)=\theta^{\mathbb{I}(x=1)}(1-\theta)^{\mathbb{I}(x=0)}
$$

so

$$
p\left(x_{1: N} \mid \theta\right)=\theta^{n_{1}}(1-\theta)^{N-n_{1}}
$$

where $n_{1}=\sum_{i=1}^{n} \mathbb{I}\left(y^{i}=1\right)$ and $\widehat{\theta}_{M L E}=n_{1} / N$.

- n_{1} is the number of "success" among N trials, it follows a Binomial distribution

$$
p\left(n_{1} \mid \theta\right)=\operatorname{Bin}\left(n_{1} ; \theta, N\right)=\binom{N}{n_{1}} \theta^{n_{1}}(1-\theta)^{N-n_{1}}
$$

- In a Bayesian framework, we set a prior density $p(\theta)$ on $\theta \in[0,1]$.
- If you know nothing about θ a reasonable prior is the uniform density

$$
p(\theta)=1_{[0,1]}(\theta)
$$

Conjugate Priors

- For simplicity, we will mostly focus on a special kind of prior which has nice mathematical properties.
- A prior $p(\theta)$ is said to be conjugate to a likelihood $p\left(x_{1: N} \mid \theta\right)$ (equivalently $p\left(n_{1} \mid \theta\right)$) if the corresponding posterior $p\left(\theta \mid x_{1: N}\right)=p\left(\theta \mid n_{1}\right)$ has the same functional form as $p(\theta)$.
- This means the prior family is closed under Bayesian updating.
- So we can recursively apply the rule to update our beliefs as data streams in (online learning).

Beta Prior

- Let us introduce the class of Beta densities defined for $\alpha, \beta>0$

$$
\operatorname{Beta}(\theta ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1} 1_{[0,1]}(\theta)
$$

where $\Gamma(u)=\int_{0}^{\infty} t^{u-1} e^{-t} d t$. Note that $\Gamma(u)=(u-1)$! for $u \in \mathbb{N}$.

- Be careful: (α, β) are fixed quantities. To distinguish them from θ, we call them hyperparameters. For $\alpha=\beta=1$, the Beta density corresponds to the uniform density.
- The Beta prior is such that

$$
\mathbb{E}(\theta)=\frac{\alpha}{\alpha+\beta}, \mathbb{V}(\theta)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}
$$

Beta Prior

Bayesian Inference with the Binomial-Beta Model

- We obtain

$$
\begin{align*}
p\left(\theta \mid n_{1}\right) & =\frac{p\left(n_{1} \mid \theta\right) p(\theta)}{p\left(n_{1}\right)} \\
& \propto p\left(n_{1} \mid \theta\right) p(\theta) \\
& \propto \theta^{n_{1}}(1-\theta)^{N-n_{1}} \theta^{\alpha-1}(1-\theta)^{\beta-1} 1_{[0,1]}(\theta) \\
& =\theta^{n_{1}+\alpha-1}(1-\theta)^{N-n_{1}+\beta-1} 1_{[0,1]}(\theta)
\end{align*}
$$

- This implies necessarily that $p\left(\theta \mid x_{1: N}\right)=\operatorname{Beta}\left(\theta ; n_{1}+\alpha, N-n_{1}+\beta\right)$.
- The prior on θ can be conveniently reinterpreted as an imaginary initial sample of size $(\alpha+\beta-2)$ with $\alpha-1$ observations " 1 " and $\beta-1$ observations " 0 ". Provided that $(\alpha+\beta-2)$ is small with respect to n, the information carried by the data is prominent.

Sequential Bayesian Inference with the Binomial-Beta Model

- Assume we first observe at 'time $t^{\prime} n_{1}^{t}$ ' 1 ' among N^{t} trials where $t=1,2, \ldots$
- We have

$$
p\left(\theta \mid n_{1}^{1}\right)=\operatorname{Beta}\left(\theta ; n_{1}^{1}+\alpha, N^{1}-n_{1}^{1}+\beta\right)
$$

- At time $t>1$, we use

$$
\begin{aligned}
p\left(\theta \mid n_{1}^{1}, \ldots, n_{1}^{k}\right) & \propto p\left(n_{1}^{k} \mid \theta\right) p\left(\theta \mid n_{1}^{1}, \ldots, n_{1}^{k-1}\right) \\
& =\operatorname{Beta}\left(\theta ; \alpha+\sum_{i=1}^{k} n_{1}^{i}, \beta+\sum_{i=1}^{k}\left(N^{i}-n_{1}^{i}\right)\right)
\end{aligned}
$$

i.e. the posterior at time k can be computed using as a prior the posterior at time $k-1$ and the likelihood of the observations at time k.

Bayesian Inference with the Binomial-Beta Model

(left) Updating a Beta(2,2) prior with a Binomial likelihood with $n_{1}=3$, $n_{0}=17$ to yield a Beta(5,19); (center) Updating a Beta $(5,2)$ prior with a Binomial likelihood with $n_{1}=11, n_{0}=13$ to yield a $\operatorname{Beta}(16,15)$ posterior. (c) Sequentially updating a Beta distribution starting with a Beta $(1,1)$ and converge to a delta function centered on the true value.

Bayesian Inference with the Binomial-Beta Model

- We have

$$
\mathbb{E}\left(\theta \mid n_{1}\right)=\frac{n_{1}+\alpha}{n_{1}+\alpha+n_{0}+\beta}=\frac{n_{1}+\alpha}{N+\alpha+\beta}
$$

- The posterior means behave asymptotically like n_{1} / n (the 'frequentist' estimator) and converge to θ^{*}, the 'true' value of θ^{*}.
- We have

$$
\begin{aligned}
\mathbb{V}\left(\theta \mid n_{1}\right) & =\frac{\left(n_{1}+\alpha\right)\left(n_{0}+\beta\right)}{\left(n_{1}+\alpha+n_{0}+\beta\right)^{2}\left(n_{1}+\alpha+n_{0}+\beta+1\right)} \\
& \approx \frac{\widehat{\theta}_{M L E}\left(1-\widehat{\theta}_{M L E}\right)}{N} \text { for large } N
\end{aligned}
$$

- The posterior variance decreases to zero as $n \rightarrow \infty$, at rate n^{-1} : the information you get on θ gets more and more precise.
- For n large enough, the prior is washed out by the data. For a small n, the prior can have a huge impact.

Bayesian Inference with the Bernoulli-Beta Model

- We can compute things like

$$
\operatorname{Pr}\left(\theta \in[0.3,0.7] \mid n_{1}\right)=\int_{0.3}^{0.7} p\left(\theta \mid n_{1}\right) d \theta
$$

- Be careful: This has absolutely nothing to do with confidence intervals.
- In classical statistics, and for an univariate problem, the confidence interval at level α is of the form $\left[\widehat{\theta}-z_{\alpha / 2} \widehat{\sigma}, \widehat{\theta}+z_{\alpha / 2} \widehat{\sigma}\right]$ where $\widehat{\theta}$ is the classical estimator (say MLE) and $\widehat{\sigma}$ is an estimate of its standard deviation.
- In this frequentist perspective, the true value of the parameter is fixed, and the confidence interval is random, having a probability of $(1-\alpha)$ to actually contain this true value (when we repeat the same experiment a great number of times) and it is not possible to interpret $(1-\alpha)$ as the probability that the parameter lies in the confidence interval for the considered experiment.

Bayesian Inference with the Bernoulli-Beta Model

- We can also find the maximum a posterior (MAP)

$$
\begin{aligned}
\widehat{\theta}_{M A P} & =\arg \max p\left(\theta \mid n_{1}\right) \\
& =\arg \max \log p\left(\theta \mid n_{1}\right) \\
& =\arg \max \log p\left(n_{1} \mid \theta\right)+\log p(\theta) \\
& =\frac{n_{1}+\alpha-1}{n_{1}+\alpha-1+n_{0}+\beta-1}=\frac{n_{1}+\alpha-1}{N+\alpha+\beta-2} .
\end{aligned}
$$

- $\widehat{\theta}_{\text {MAP }}=\widehat{\theta}_{\text {MLE }}$ when $\alpha=\beta=1$ as then $\log p(\theta)$ is constant over $[0,1]$.

Prediction: Classical vs Bayesian Approaches

- Assume you have observed n_{1} successes among N trials, we want to use these data to come up with the distribution of the outcome of the next trial.
- Using a Maximum Likelihood approach, we would use the plug-in prediction

$$
p\left(x=1 \mid \widehat{\theta}_{M L E}\right)=\widehat{\theta}_{M L E}=\frac{n_{1}}{N}
$$

This does not account whatsoever for the uncertainty about $\widehat{\theta}_{\text {MLE }}$ (and suffer from Black Swan problem)

- In a Bayesian approach, we will use the predictive distribution

$$
\begin{aligned}
p\left(x=1 \mid n_{1}\right) & =\int p(x=1 \mid \theta) p\left(\theta \mid n_{1}\right) d \theta \\
& =\int \theta p\left(\theta \mid n_{1}\right) d \theta=\frac{n_{1}+\alpha}{N+\alpha+\beta}
\end{aligned}
$$

so even if $n_{1}=0$ then $p\left(x=1 \mid x_{1: N}\right)>0$ and our prediction takes into account the uncertainty about θ.

Prediction: Classical vs Bayesian Approaches

- Suppose now we want to predict the number m_{1} of heads in M future trials.
- The standard MLE approach would give use

$$
p\left(m_{1} \mid \hat{\theta}_{M L E}\right)=\operatorname{Bin}\left(m_{1} ; \hat{\theta}_{M L E}, M\right)=\binom{M}{m_{1}} \hat{\theta}_{M L E}^{m_{1}}\left(1-\hat{\theta}_{M L E}^{n}\right)^{M-m_{1}}
$$

- The Bayesian approach yields

$$
\begin{aligned}
& p\left(m_{1} \mid n_{1}\right)=\int p\left(m_{1} \mid \theta\right) p\left(\theta \mid n_{1}\right) d \theta \\
& =\binom{M}{m_{1}} \frac{\Gamma(N+\alpha+\beta)}{\Gamma\left(n_{1}+\alpha\right) \Gamma\left(N-n_{1}+\beta\right)} \int \theta^{m_{1}+n_{1}-1}(1-\theta)^{N+M-m_{1}-n_{1}-1} d \theta \\
& =\binom{M}{m_{1}} \frac{\Gamma(N+\alpha+\beta)}{\Gamma\left(n_{1}+\alpha\right) \Gamma\left(N-n_{1}+\beta\right)} \frac{\Gamma\left(m_{1}+n_{1}+\alpha\right) \Gamma\left(N+M-m_{1}-n_{1}+\beta\right)}{\Gamma(N+M+\alpha+\beta)}
\end{aligned}
$$

Prediction: Classical vs Bayesian Approaches

(left) Prior predictive dist. for a Binomial likelihood with $M=10$ and a Beta(2,2) prior. (center) Posterior predictive after having seen $n_{1}=3, N=20$. (right) Plug-in approximation using $\widehat{\theta}_{M L E}$).

From Coins to Dice: Multinomial

- Assume you have independent observations $\left\{\mathbf{x}^{i}\right\}_{i=1}^{M}$ such that

$$
p(\mathbf{x} \mid \theta)=\frac{P!}{\prod_{i=1}^{d} x_{k}!} \prod_{k=1}^{d} \theta_{k}^{x_{k}}
$$

for $\theta_{k}>0, \sum_{k=1}^{d} \theta_{k}=1$ and $x_{k}=0,1,2, \ldots, P$ with $\sum_{k} x_{k}=P$.

- We have seen that

$$
\widehat{\theta}_{k, M L E}=\frac{\sum_{i=1}^{M} x_{k}^{i}}{\sum_{i=1}^{M} \sum_{k=1}^{d} x_{k}^{i}}=\frac{N_{k}}{N}
$$

- We want now to perform a Bayesian analysis

$$
p\left(\theta \mid \mathbf{x}^{1: M}\right)=\frac{p\left(\mathbf{x}^{1: M} \mid \theta\right) p(\theta)}{p\left(\mathbf{x}^{1: M}\right)}
$$

Dirichlet Prior

- The Dirichlet density is given by

$$
\operatorname{Dir}\left(\theta ;\left(\alpha_{1}, \ldots, \alpha_{d}\right)\right)=\frac{\Gamma\left(\sum_{k=1}^{d} \alpha_{k}\right)}{\prod_{k=1}^{d} \Gamma\left(\alpha_{k}\right)} \prod_{k=1}^{d} \theta_{k}^{\alpha_{k}-1}
$$

for $\alpha_{k}>0$ and corresponds to a Beta density for $d=2$. It is defined on $\left\{\theta: \theta_{k}>0\right.$ and $\left.\sum_{k=1}^{d} \theta_{k}=1\right\}$.

- $\alpha_{0}=\sum_{k=1}^{d} \alpha_{k}$ controls how peaky the distribution is and the α_{k} controls where the peak is located.
- We have

$$
\mathbb{E}\left(\theta_{k}\right)=\frac{\alpha_{k}}{\alpha_{0}}, \operatorname{mode}\left(\theta_{k}\right)=\frac{\alpha_{k}-1}{\alpha_{0}-d}, \mathbb{V}\left(\theta_{k}\right)=\frac{\alpha_{k}\left(\alpha_{0}-\alpha_{k}\right)}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)}
$$

Dirichlet Prior

(left) Support of the Dirichlet density for $d=3$ (center) Dirichlet density for $\alpha_{k}=10$ (right) Dirichlet density for $\alpha_{k}=0.1$.

Dirichlet Prior

Samples from a Dirichlet distribution for $d=5$ when $\alpha_{k}=\alpha_{l}$ for $k \neq 1$.

Bayesian Inference with the Multinomial-Dirichlet Model

- We obtain

$$
\begin{aligned}
p\left(\theta \mid \mathbf{x}^{1: M}\right) & =\frac{p\left(\mathbf{x}^{1: M} \mid \theta\right) p(\theta)}{p\left(\mathbf{x}^{1: M}\right)} \\
& \propto \prod_{k=1}^{d} \theta_{k}^{N_{k}} \prod_{k=1}^{d} \theta_{k}^{\alpha_{k}-1} \\
& \propto \prod_{k=1}^{d} \theta_{k}^{\alpha_{k}+N_{k}-1}
\end{aligned}
$$

- This implies necessarily that

$$
p\left(\theta \mid x_{1: M}\right)=\operatorname{Dir}\left(\theta ; \alpha_{1}+N_{1}, \ldots, \alpha_{d}+N_{d}\right) .
$$

Predictive Distribution with the Multinomial-Dirichlet Model

- We have for a single categorical variable

$$
\begin{aligned}
\operatorname{Pr}\left(x=k \mid \mathbf{x}^{1: M}\right) & =\int \operatorname{Pr}(x=k \mid \theta) p\left(\theta \mid \mathbf{x}^{1: M}\right) d \theta \\
& =\int \theta_{k} p\left(\theta \mid \mathbf{x}^{1: M}\right) d \theta \\
& =\int \theta_{k} p\left(\theta_{k} \mid \mathbf{x}^{1: M}\right) d \theta_{k} \\
& =\frac{\alpha_{k}+N_{k}}{\alpha_{0}+N}
\end{aligned}
$$

- Once more this avoids the black-swan problem.

Bayesian Naive Bayes for Multinomial Data

- We assume that we have M data $\left(\mathbf{x}^{i}, y^{i}\right) \in \mathbb{N}^{d} \times\{0,1\}^{C}$ and we use the model

$$
p(\mathbf{x}, y=c \mid \theta)=\pi_{c} \frac{P!}{\prod_{i=1}^{d} x_{k}!} \prod_{k=1}^{d} \theta_{k, c}^{x_{k}}
$$

where $\left(\pi_{1}, \ldots, \pi_{C}, \theta_{1,1}, \ldots, \theta_{d, 1}, \cdots, \theta_{1, C}, \ldots, \theta_{d, C}\right)$ are the unknown parameters.

- If we do MLE, then

$$
\widehat{\pi}_{c, M L E}=\frac{M_{c}}{M}, \widehat{\theta}_{k, c, M L E}=\frac{N_{k, c}}{N_{c}}
$$

where $M_{c}=\mathrm{nb}$. documents class $c, N_{k, c}=\mathrm{nb}$. occurrences word k in class $c, M=\sum_{k=1}^{C} M_{c}, N_{c}=\sum_{k=1}^{d} N_{k, c}$.

Bayesian Naive Bayes for Multinomial Data

- In a Bayesian context, we can set independent Dirichlet priors

$$
\begin{aligned}
p(\pi) & =\operatorname{Dir}\left(\left(\pi_{1}, \ldots, \pi_{C}\right) ; \beta_{1}, \ldots, \beta_{C}\right) \\
p\left(\theta_{c}\right) & =\operatorname{Dir}\left(\left(\theta_{1, c}, \ldots, \theta_{d, c}\right) ; \alpha_{1, c}, \ldots, \alpha_{d, c}\right), c=1, \ldots, C
\end{aligned}
$$

and obtain

$$
\begin{aligned}
p\left(\pi_{1}, \ldots, \pi_{c} \mid D\right) & =\operatorname{Dir}\left(\left(\pi_{1}, \ldots, \pi_{C}\right) ; \beta_{1}+M_{1}, \ldots, \beta_{C}+M_{C}\right) \\
p\left(\theta_{c} \mid D\right) & =\operatorname{Dir}\left(\left(\theta_{1, c}, \ldots, \theta_{d, c}\right) ; \alpha_{1, c}+N_{1, c}, \ldots, \alpha_{d, c}+N_{d, c}\right) .
\end{aligned}
$$

- From this posterior, you can compute $\widehat{\pi}_{M A P}, \widehat{\theta}_{c, M A P}$ or $\widehat{\pi}_{M M S E}=\mathbb{E}\left(\pi_{M} \mid D\right), \widehat{\theta}_{c, M M S E}=\mathbb{E}\left(\theta_{c} \mid D\right)$ and use

$$
p(y=c \mid \mathbf{x}, \widehat{\pi}, \widehat{\theta}) \propto p(y=c \mid \widehat{\pi}) p(\mathbf{x} \mid y=c, \widehat{\theta})
$$

Bayesian Naive Bayes for Multinomial Data

- A better way to do it is to
- Given a new input \mathbf{x}, we compute using

$$
p(y=c \mid \mathbf{x}, D) \propto p(y=c \mid D) p(\mathbf{x} \mid y=c, D)
$$

where

$$
\begin{aligned}
p(y=c \mid D) & =\int \underbrace{p(y=c \mid D, \pi)}_{=\pi_{c}} p(\pi \mid D) d \pi=\frac{\beta_{c}+M_{c}+1}{\beta_{0}+M+1}, \\
p(\mathbf{x} \mid y=c, D) & =\int p\left(\mathbf{x} \mid D, \theta_{c}\right) p\left(\theta_{c} \mid D\right) d \theta_{c}=\ldots
\end{aligned}
$$

Bayesian Inference for Normal Data

- Assume you have independent data $\left\{x^{i}\right\}_{i=1}^{N}$ such that

$$
p(x \mid \theta)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

where $\theta=\left(\mu, \sigma^{2}\right)$.

- We have seen that

$$
\widehat{\mu}_{M L}=\frac{1}{N} \sum_{i=1}^{N} x^{i}, \widehat{\sigma^{2}} M L=\frac{1}{N} \sum_{i=1}^{N}\left(x^{i}-\widehat{\mu}_{M L}\right)^{2} .
$$

Bayesian Inference for Normal Data

- In a Bayesian framework, the conjugate prior is

$$
p\left(\mu, \sigma^{2}\right)=p\left(\mu \mid \sigma^{2}\right) p\left(\sigma^{2}\right) \text { where }
$$

$$
\begin{aligned}
& p\left(\mu \mid \sigma^{2}\right)=\mathcal{N}\left(\mu ; \mu_{0}, \frac{\sigma^{2}}{\kappa_{0}}\right)=\frac{1}{\sqrt{2 \pi\left(\sigma^{2} / \kappa_{0}\right)}} \exp \left(-\frac{\kappa_{0}\left(\mu-\mu_{0}\right)^{2}}{2 \sigma^{2}}\right) \\
& p\left(\sigma^{2}\right)=\mathcal{I} \mathcal{G}\left(\sigma^{2} ; \alpha, \beta\right)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}\left(\sigma^{2}\right)^{-\alpha-1} \exp \left(-\beta / \sigma^{2}\right) 1_{(0, \infty)}\left(\sigma^{2}\right)
\end{aligned}
$$

- The posterior is given by $p\left(\theta \mid x^{1: n}\right)=p\left(\sigma^{2} \mid x^{1: n}\right) p\left(\mu \mid x^{1: n}, \sigma^{2}\right)$ where

$$
p\left(\mu \mid x^{1: N}, \sigma^{2}\right)=\mathcal{N}\left(\mu ; \frac{\kappa_{0} \mu_{0}+N \hat{\mu}_{M L}}{\kappa_{0}+N}, \frac{\sigma^{2}}{\kappa_{0}+N}\right)
$$

$p\left(\sigma^{2} \mid x_{1: N}\right)=\mathcal{I} \mathcal{G}\left(\sigma^{2} ; \alpha+N / 2, \beta+\frac{N}{2} \widehat{\sigma^{2}} M L+\frac{N \kappa_{0}}{2\left(N+\kappa_{0}\right)}\left(\widehat{\mu}_{M L}-\mu_{0}\right)^{2}\right)$

- Once more we see clearly the influence of the prior on the posterior and, as $N \rightarrow \infty$, the posterior concentrates around $\widehat{\mu}_{M L}$ and $\widehat{\sigma^{2}} M L$.

Bayesian Model Selection

- Suppose we have K different models for the data D; each model being associated to some parameters θ_{i}.
- Using a Bayesian approach, we can compte

$$
p(M=i \mid D)=\frac{p(M=i) p(D \mid M=i)}{P(D)}
$$

where

$$
p(D)=\sum_{i=1}^{K} p(M=i) p(D \mid M=i)
$$

- The marginal likelihood or evidence $p(D \mid M=i)$ is given by

$$
p(D \mid M=i)=\int p\left(D \mid \theta_{i}\right) p\left(\theta_{i}\right) d \theta_{i}
$$

which is the normalizing constant of

$$
p\left(\theta_{i} \mid D\right)=\frac{p\left(\theta_{i}\right) p\left(D \mid \theta_{i}\right)}{p(D)}
$$

Bayes Factors

- To compare two models, we can use posterior odds of Bayes factors

$$
\underbrace{\frac{p(M=i \mid D)}{p(M=j \mid D)}}_{\text {posterior odds }}=\underbrace{\frac{p(D \mid M=i)}{p(D \mid M=j)} \frac{p(M=i)}{p(M=j)}}_{\text {Bayes factor }}
$$

- The Bayes factor is a Bayesian version of a likelihood ratio test, that can be used to compare models of different complexity.
- Bayes factors and posterior odds tell you whether one should prefer $M=i$ to $M=j$: it does NOT tell you whether these models are sensible!

Example: Is the Euro coin biased?

- Suppose we toss a coin $N=250$ times and observe $n_{1}=141$ heads and $n_{0}=109$ tails:

$$
p\left(x^{1: N} \mid \theta\right)=\theta^{n_{1}}(1-\theta)^{n_{0}}
$$

- Consider two models/hypotheses: $M_{1}=$ coin unbiased, that is $\theta_{1}=0.5$ and $M_{2}=\mathrm{coin}$ biased and $p\left(\theta_{2}\right)=\operatorname{Beta}\left(\theta_{2} ; \alpha_{1}, \alpha_{0}\right)$.
- We have

$$
p\left(D \mid M_{1}\right)=0.5^{n_{1}}(1-0.5)^{n_{0}}=0.5^{N}
$$

and

$$
p\left(D \mid M_{2}\right)=\frac{\Gamma\left(\alpha_{0}+n_{0}\right) \Gamma\left(\alpha_{1}+n_{1}\right)}{\Gamma\left(\alpha_{0}+\alpha_{1}+N\right)} \frac{\Gamma\left(\alpha_{0}+\alpha_{1}\right)}{\Gamma\left(\alpha_{0}\right) \Gamma\left(\alpha_{1}\right)}
$$

so

$$
\frac{p\left(D \mid M_{2}\right)}{p\left(D \mid M_{1}\right)}=\frac{\Gamma\left(\alpha_{0}+n_{0}\right) \Gamma\left(\alpha_{1}+n_{1}\right)}{\Gamma\left(\alpha_{0}+\alpha_{1}+N\right)} \frac{\Gamma\left(\alpha_{0}+\alpha_{1}\right)}{\Gamma\left(\alpha_{0}\right) \Gamma\left(\alpha_{1}\right)} 0.5^{-N}
$$

Computation of Bayes Factors

- Let $\alpha=\alpha_{0}=\alpha_{1}$ varying over 0 to 1000 .

Bayes factor $p\left(D \mid M_{2}\right) / p\left(D \mid M_{1}\right)$ as a function of α.

- The largest BF in favor of M_{2} (biased coin) is only 2.0 , which is very weak evidence of bias.

Bayesian Computation

- For complex Bayesian models, we cannot compute the posterior and marginal likelihood analytically.
- In such cases, analytical (Laplace, variational) and Monte Carlo methods approximations are necessary.
- For example, a crude approximation of the marginal likelihood is provided by the Bayesian Information Criterion

$$
\log p\left(D \mid M_{i}\right)=\log p\left(D \mid \theta_{i}^{M L E}\right)-\frac{d}{2} \log n
$$

where n is the number of data and d is the dimension/number of free parameters

