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A Bayesian Approach

In a Bayesian approach, the unknown parameter θ is assumed random
with an associated prior distribution p (θ) .

Given data
{
xi
}N
i=1 distributed according to p (x1:N | θ), inference

about θ is based on the posterior distribution

p ( θ| x1:N ) =
p (x1:N | θ) p (θ)

p (x1:N )
.

From this posterior, we can obtain various point estimates of θ.
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Bernoulli and Binomial Models

Assume independent
{
x i
}
where x i ∈ {0, 1} (= {Tail ,Head}) with

p (x | θ) = θI(x=1) (1− θ)I(x=0)

so
p (x1:N | θ) = θn1 (1− θ)N−n1

where n1 = ∑n
i=1 I

(
y i = 1

)
and θ̂MLE = n1/N.

n1 is the number of “success”among N trials, it follows a Binomial
distribution

p (n1| θ) = Bin (n1; θ,N) =
(
N
n1

)
θn1 (1− θ)N−n1

In a Bayesian framework, we set a prior density p (θ) on θ ∈ [0, 1] .
If you know nothing about θ a reasonable prior is the uniform density

p (θ) = 1[0,1] (θ) .

AD () February 2011 3 / 31



Conjugate Priors

For simplicity, we will mostly focus on a special kind of prior which
has nice mathematical properties.

A prior p (θ) is said to be conjugate to a likelihood p (x1:N | θ)
(equivalently p (n1| θ)) if the corresponding posterior
p ( θ| x1:N ) = p ( θ| n1) has the same functional form as p (θ).

This means the prior family is closed under Bayesian updating.

So we can recursively apply the rule to update our beliefs as data
streams in (online learning).
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Beta Prior

Let us introduce the class of Beta densities defined for α, β > 0

Beta (θ; α, β) =
Γ (α+ β)

Γ (α) Γ (β)
θα−1 (1− θ)β−1 1[0,1] (θ)

where Γ (u) =
∫ ∞
0 t

u−1e−tdt. Note that Γ (u) = (u − 1)! for u ∈N.

Be careful: (α, β) are fixed quantities. To distinguish them from θ, we
call them hyperparameters. For α = β = 1, the Beta density
corresponds to the uniform density.

The Beta prior is such that

E (θ) =
α

α+ β
, V (θ) =

αβ

(α+ β)2 (α+ β+ 1)
.
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Beta Prior
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Bayesian Inference with the Binomial-Beta Model

We obtain

p ( θ| n1) =
p (n1| θ) p (θ)

p (n1)
∝ p (n1| θ) p (θ)
∝ θn1 (1− θ)N−n1 θα−1 (1− θ)β−1 1[0,1] (θ)

= θn1+α−1 (1− θ)N−n1+β−1 1[0,1] (θ)

This implies necessarily that
p ( θ| x1:N ) = Beta (θ; n1 + α,N − n1 + β) .

The prior on θ can be conveniently reinterpreted as an imaginary
initial sample of size (α+ β− 2) with α− 1 observations “1”and
β− 1 observations “0”. Provided that (α+ β− 2) is small with
respect to n, the information carried by the data is prominent.
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Sequential Bayesian Inference with the Binomial-Beta
Model

Assume we first observe at ‘time t’nt1 ‘1’among N
t trials where

t = 1, 2, ...

We have
p
(

θ| n11
)
= Beta

(
θ; n11 + α,N1 − n11 + β

)
At time t > 1, we use

p
(

θ| n11 , . . . , nk1
)

∝ p
(
nk1
∣∣∣ θ
)
p
(

θ| n11 , ..., nk−11

)
= Beta

(
θ; α+

k

∑
i=1
ni1, β+

k

∑
i=1

(
N i − ni1

))
;

i.e. the posterior at time k can be computed using as a prior the
posterior at time k − 1 and the likelihood of the observations at time
k.
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Bayesian Inference with the Binomial-Beta Model
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Figure 4.11: (a) Updating a Beta(2,2) prior with a Binomial likelihood with sufficient statistics N1 = 3, N2 = 17 to yield a Beta(5,19)
posterior. Figure generated by binomialBetaPosteriorDemo. (b) Updating a Beta(5,2) prior with a Binomial likelihood with sufficient
statistics N1 = 11,N2 = 13 to yield a Beta(16,15) posterior. (c) Sequentially updating a Beta distribution. We start with a Beta(1,1) prior
and converge to a delta function centered on the MLE. Figure generated by bernoulliBetaSequentialUpdate.

We see that the posterior has the same functional form (beta) as the prior (beta), since it is conjugate. In particular, the posterior
is obtained by adding the prior hyper-parameters αk to the empirical counts Nk. For this reason, the αk hyper-parameters are
known as pseudo counts. The strength of the prior, also known as the effective sample size of the prior, is the sum of the
pseudo counts, α1 + α2; this plays a role analogous to the data set size, N1 +N2 = N .

Figure 4.11(a) gives an example where we update a weak Beta(2,2) prior with a peaked likelihood function; we see that the
posterior is essentially identical to the likelihood. Figure 4.11(b) gives an example where we update a strong Beta(5,2) prior
with a peaked likelihood function; we see that the posterior is a “compromise” between the prior and likelihood. Compare these
to the analogous pictures for combining a Gaussian prior with a Gaussian likelihood in Figure 5.4.

Figure 4.11(c) shows what happens as the number of samples goes to infinity. Initially (for N = 5), the posterior has a
skewed shape, but then it becomes more Gaussian-like, and eventually it becomes a delta function centered at the MLE.

Note that updating the posterior sequentially is equivalent to updating in a single batch. To see this, suppose we have two
data sets D1 and D2 with sufficient statistics Na

1 , N
a
2 and N b

1 , N
b
2 . Let N1 = Na

1 + N b
1 , N2 = Na

2 + N b
2 and N = N1 + N2.

In batch mode we have

p(θ|D1,D2) ∝ Bin(θ|N1, N1 +N2)Beta(θ|α1, α2) ∝ Beta(θ|N1 + α1, N2 + α2) (4.34)

In sequential mode, we have

p(θ|D1,D2) ∝ p(D2|θ)p(θ|D1) (4.35)
∝ Bin(θ|N b

1 , N
b
1 +N b

2)Beta(θ|Na
1 + α1, N

a
2 + α2) (4.36)

∝ Beta(θ| Na
1 +N b

1 + α1, N
a
2 +N b

2 + α2) (4.37)

This makes Bayesian inference particularly well-suited to online learning, as we will see later.

4.5.1.4 Posterior mean and mode

It is simple to show that the posterior mode, or MAP estimate, is given by

θ̂MAP =
α1 +N1 − 1

α1 + α2 +N − 2
(4.38)

By contrast, the posterior mean is given by,

θ =
α1 +N1

α1 + α2 +N
(4.39)

If we use a uniform prior, αk = 1, then the MAP estimate reduces to the MLE, but the posterior mean estimate does not. We
will exploit this fact below.

We will now show that the posterior mean is convex combination of the prior mean and the MLE. Let the prior mean be
m = (m1,m2), where m1 = α1/α0 and m2 = α2/α0; α0 = α1 + α2 controls the strength of the prior. Then the posterior
mean is

E [θ|D] =
α0m1 +N1

N + α0
=

α0

N + α0
m1 +

N

N + α0

N1

N
= λm1 + (1− λ)θ̂ML (4.40)

where
λ =

α0

N + α0
(4.41)
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(left) Updating a Beta(2,2) prior with a Binomial likelihood with n1 = 3,
n0 = 17 to yield a Beta(5,19); (center) Updating a Beta(5,2) prior with a
Binomial likelihood with n1 = 11, n0 = 13 to yield a Beta(16,15)
posterior. (c) Sequentially updating a Beta distribution starting with a
Beta(1,1) and converge to a delta function centered on the true value.
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Bayesian Inference with the Binomial-Beta Model

We have

E ( θ| n1) =
n1 + α

n1 + α+ n0 + β
=

n1 + α

N + α+ β

The posterior means behave asymptotically like n1/n (the
‘frequentist’estimator) and converge to θ∗, the ‘true’value of θ∗.
We have

V ( θ| n1) =
(n1 + α) (n0 + β)

(n1 + α+ n0 + β)2 (n1 + α+ n0 + β+ 1)

≈
θ̂MLE

(
1− θ̂MLE

)
N

for large N

The posterior variance decreases to zero as n→ ∞, at rate n−1: the
information you get on θ gets more and more precise.
For n large enough, the prior is washed out by the data. For a small
n, the prior can have a huge impact.
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Bayesian Inference with the Bernoulli-Beta Model

We can compute things like

Pr ( θ ∈ [0.3, 0.7]| n1) =
∫ 0.7

0.3
p ( θ| n1) dθ

Be careful: This has absolutely nothing to do with confidence
intervals.
In classical statistics, and for an univariate problem, the confidence
interval at level α is of the form

[
θ̂ − zα/2σ̂, θ̂ + zα/2σ̂

]
where θ̂ is the

classical estimator (say MLE) and σ̂ is an estimate of its standard
deviation.
In this frequentist perspective, the true value of the parameter is
fixed, and the confidence interval is random, having a probability of
(1− α) to actually contain this true value (when we repeat the same
experiment a great number of times) and it is not possible to
interpret (1− α) as the probability that the parameter lies in the
confidence interval for the considered experiment.
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Bayesian Inference with the Bernoulli-Beta Model

We can also find the maximum a posterior (MAP)

θ̂MAP = argmax p ( θ| n1)
= argmax log p ( θ| n1)
= argmax log p (n1| θ) + log p (θ)

=
n1 + α− 1

n1 + α− 1+ n0 + β− 1 =
n1 + α− 1

N + α+ β− 2 .

θ̂MAP = θ̂MLE when α = β = 1 as then log p (θ) is constant over
[0, 1] .

AD () February 2011 12 / 31



Prediction: Classical vs Bayesian Approaches

Assume you have observed n1 successes among N trials, we want to
use these data to come up with the distribution of the outcome of the
next trial.
Using a Maximum Likelihood approach, we would use the plug-in
prediction

p
(
x = 1| θ̂MLE

)
= θ̂MLE =

n1
N

This does not account whatsoever for the uncertainty about θ̂MLE
(and suffer from Black Swan problem)
In a Bayesian approach, we will use the predictive distribution

p (x = 1| n1) =
∫
p (x = 1| θ) p ( θ| n1) dθ

=
∫

θp ( θ| n1) dθ =
n1 + α

N + α+ β

so even if n1 = 0 then p (x = 1| x1:N ) > 0 and our prediction takes
into account the uncertainty about θ.
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Prediction: Classical vs Bayesian Approaches

Suppose now we want to predict the number m1 of heads in M future
trials.

The standard MLE approach would give use

p
(
m1| θ̂MLE

)
= Bin(m1; θ̂MLE ,M) =

(
M
m1

)
θ̂
m1
MLE

(
1− θ̂

n
MLE

)M−m1
.

The Bayesian approach yields

p (m1| n1) =
∫
p (m1| θ) p ( θ| n1) dθ

=

(
M
m1

)
Γ(N+α+β)

Γ(n1+α)Γ(N−n1+β)

∫
θm1+n1−1 (1− θ)N+M−m1−n1−1 dθ

=

(
M
m1

)
Γ(N+α+β)

Γ(n1+α)Γ(N−n1+β)
Γ(m1+n1+α)Γ(N+M−m1−n1+β)

Γ(N+M+α+β)
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Prediction: Classical vs Bayesian Approaches
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Figure 4.12: (a) Prior predictive distribution for a Binomial likelihood withM = 10 trials, and a Beta(2,2) prior on θ. (b) Posterior predictive
distributions after seeing N1 = 3, N2 = 17. (c) Plugin approximation. Figure generated by betaBinomPostPredDemo.

This distribution has the following mean and variance

E [x] = M
α1

α1 + α2
(4.52)

var [x] =
Mα1α2

(α1 + α2)2

(α1 + α2 +M)
α1 + α2 + 1

(4.53)

If M = 1, and hence x ∈ {0, 1}, we see that the mean becomes

E [x|D] = p(x = 1|D) =
α1

α1 + α2
(4.54)

which is consistent with Equation 4.46.
This process is illustrated in Figure 4.12, where we plot prior predictive density, p(x), under a Beta(2,2) prior, as well as

the posterior predictive density after seeing N1 = 3 heads and N2 = 17 tails. Figure 4.12(c) plots a plug-in approximation
using a MAP estimate. We see that the Bayesian prediction has longer tails, spreading its probablity mass more widely, and is
therefore less prone to overfitting and black-swan type paradoxes.

4.5.2 The Dirichlet-multinomial model
We can generalize the above results from coins to dice in a straightforward fashion, as we now show.

4.5.2.1 Likelihood

From Section 3.2.3, the likelihood has the form

p(D|θ) =
K∏
k=1

θNkk (4.55)

where Nk =
∑N
i=1 I(yi = k) is the number of times event k occured.

4.5.2.2 Prior

The conjugate prior is the Dirichlet distribution4, which is the natural generalization of the beta distribution to multiple
dimensions. The pdf is defined as follows:

Dir(θ|α) :=
1

B(α)

K∏
k=1

θαk−1
k I(x ∈ SK) (4.56)

where SK is the K-dimensional probability simplex, which is the set of vectors such that 0 ≤ θk ≤ 1 and
∑K
k=1 θk = 1. In

addition, B(α1, . . . , αK) is the natural generalization of the beta function to K variables:

B(α) :=
∏K
i=1 Γ(αi)
Γ(α0)

(4.57)

4Johann Dirichlet was a German mathematician, 1805–1859.

Machine Learning: a Probabilistic Approach, draft of January 4, 2011

(left) Prior predictive dist. for a Binomial likelihood with M = 10 and a
Beta(2,2) prior. (center) Posterior predictive after having seen
n1 = 3,N = 20. (right) Plug-in approximation using θ̂MLE ).
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From Coins to Dice: Multinomial

Assume you have independent observations
{
xi
}M
i=1 such that

p (x| θ) = P !
d

∏
i=1
xk !

d

∏
k=1

θxkk

for θk > 0, ∑d
k=1 θk = 1 and xk = 0, 1, 2, ...,P with ∑k xk = P.

We have seen that

θ̂k ,MLE =
∑M
i=1 x

i
k

∑M
i=1 ∑d

k=1 x
i
k

=
Nk
N

We want now to perform a Bayesian analysis

p
(

θ| x1:M
)
=
p
(
x1:M

∣∣ θ
)
p (θ)

p (x1:M )
.
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Dirichlet Prior

The Dirichlet density is given by

Dir (θ; (α1, . . . , αd )) =
Γ
(

∑d
k=1 αk

)
d

∏
k=1

Γ (αk )

d

∏
k=1

θαk−1
k

for αk > 0 and corresponds to a Beta density for d = 2. It is defined
on
{

θ : θk > 0 and ∑d
k=1 θk = 1

}
.

α0 = ∑d
k=1 αk controls how peaky the distribution is and the αk

controls where the peak is located.

We have

E (θk ) =
αk
α0
, mode (θk ) =

αk − 1
α0 − d

, V (θk ) =
αk (α0 − αk )

α20 (α0 + 1)
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Dirichlet Prior
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Figure 4.13: (a) The Dirichlet distribution when K = 3 defines a distribution over the simplex, which can be represented by the triangular
surface. Points on this surface satisfy 0 ≤ θk ≤ 1 and

∑3
k=1 θk = 1. (b) Plot of the Dirichlet density when αk = 10. (c) Plot of the Dirichlet

density when αk = 0.1. (The comb-like structure on the edges is a plotting artefact.) Based on Figure 2.5 of [Bis06b]. Figure generated by
dirichlet3dPlot. (See also visDirichletGui by Jonathan Huang.)
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Figure 4.14: Samples from a 5-dimensional symmetric Dirichlet distribution for different parameter values. Figure generated by
dirichletHistogramDemo.

where α0 :=
∑K
k=1 αk.

Figure 4.13 shows some plots of the Dirichlet when K = 3, and Figure 4.14 for some sampled probability vectors. We
see that α0 =

∑K
k=1 αk controls the strength of the distribution (how peaked it is), and the αk control where the peak oc-

curs. For example, Dir(1, 1, 1) is a uniform distribution, Dir(2, 2, 2) is a broad distribution centered at (1/3, 1/3, 1/3), and
Dir(20, 20, 20) is a narrow distribution centered at (1/3, 1/3, 1/3). If αk < 1 for all k, we get “spikes” at the corner of the
simplex.

The distribution has these properties

E [θk] =
αk
α0

(4.58)

mode [θk] =
αk − 1
α0 −K

(4.59)

var [θk] =
αk(α0 − αk)
α2

0(α0 + 1)
(4.60)

where α0 =
∑K
k=1 αk. Often we use a symmetric Dirichlet prior of the form αk = α/K. In this case, the mean becomes

1/K, and the variance becomes var [θk] = K−1
K2(α+1) . So increasing α increases the precision (decreases the variance) of the

distribution.
Note that marginals of a Dirichlet are Dirichlet (Exercise 2.16). For example, if

(θ1, . . . , θK) ∼ Dir(α1, . . . , αK) (4.61)

then we have

(θ1 + θ2, . . . , θK) ∼ Dir(α1 + α2, α3, . . . , αK) (4.62)
(θ1 + θ2 + · · ·+ θK−1, θK) ∼ Beta(α1 + α2 + · · ·+ αK−1, αK) (4.63)

This is called the agglomerative property of Dirichlet distributions.

c© Kevin P. Murphy. Draft — not for circulation.

(left) Support of the Dirichlet density for d = 3 (center) Dirichlet density
for αk = 10 (right) Dirichlet density for αk = 0.1.
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Figure 4.13: (a) The Dirichlet distribution when K = 3 defines a distribution over the simplex, which can be represented by the triangular
surface. Points on this surface satisfy 0 ≤ θk ≤ 1 and

∑3
k=1 θk = 1. (b) Plot of the Dirichlet density when αk = 10. (c) Plot of the Dirichlet

density when αk = 0.1. (The comb-like structure on the edges is a plotting artefact.) Based on Figure 2.5 of [Bis06b]. Figure generated by
dirichlet3dPlot. (See also visDirichletGui by Jonathan Huang.)
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Figure 4.14: Samples from a 5-dimensional symmetric Dirichlet distribution for different parameter values. Figure generated by
dirichletHistogramDemo.

where α0 :=
∑K
k=1 αk.

Figure 4.13 shows some plots of the Dirichlet when K = 3, and Figure 4.14 for some sampled probability vectors. We
see that α0 =

∑K
k=1 αk controls the strength of the distribution (how peaked it is), and the αk control where the peak oc-

curs. For example, Dir(1, 1, 1) is a uniform distribution, Dir(2, 2, 2) is a broad distribution centered at (1/3, 1/3, 1/3), and
Dir(20, 20, 20) is a narrow distribution centered at (1/3, 1/3, 1/3). If αk < 1 for all k, we get “spikes” at the corner of the
simplex.

The distribution has these properties

E [θk] =
αk
α0

(4.58)

mode [θk] =
αk − 1
α0 −K

(4.59)

var [θk] =
αk(α0 − αk)
α2

0(α0 + 1)
(4.60)

where α0 =
∑K
k=1 αk. Often we use a symmetric Dirichlet prior of the form αk = α/K. In this case, the mean becomes

1/K, and the variance becomes var [θk] = K−1
K2(α+1) . So increasing α increases the precision (decreases the variance) of the

distribution.
Note that marginals of a Dirichlet are Dirichlet (Exercise 2.16). For example, if

(θ1, . . . , θK) ∼ Dir(α1, . . . , αK) (4.61)

then we have

(θ1 + θ2, . . . , θK) ∼ Dir(α1 + α2, α3, . . . , αK) (4.62)
(θ1 + θ2 + · · ·+ θK−1, θK) ∼ Beta(α1 + α2 + · · ·+ αK−1, αK) (4.63)

This is called the agglomerative property of Dirichlet distributions.

c© Kevin P. Murphy. Draft — not for circulation.

Samples from a Dirichlet distribution for d = 5 when αk = αl for k 6= l .
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Bayesian Inference with the Multinomial-Dirichlet Model

We obtain

p
(

θ| x1:M
)
=

p
(
x1:M

∣∣ θ
)
p (θ)

p (x1:M )

∝
d

∏
k=1

θNkk

d

∏
k=1

θαk−1
k

∝
d

∏
k=1

θαk+Nk−1
k

This implies necessarily that
p ( θ| x1:M ) =Dir(θ; α1 +N1, . . . , αd +Nd ) .
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Predictive Distribution with the Multinomial-Dirichlet
Model

We have for a single categorical variable

Pr
(
x = k | x1:M

)
=

∫
Pr (x = k | θ) p

(
θ| x1:M

)
dθ

=
∫

θkp
(

θ| x1:M
)
dθ

=
∫

θkp
(

θk | x1:M
)
dθk

=
αk +Nk
α0 +N

.

Once more this avoids the black-swan problem.
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Bayesian Naive Bayes for Multinomial Data

We assume that we have M data
(
xi , y i

)
∈Nd × {0, 1}C and we use

the model

p (x, y = c | θ) = πc
P !
d

∏
i=1
xk !

d

∏
k=1

θxkk ,c

where (π1, ...,πC , θ1,1, ..., θd ,1, · · · , θ1,C , ..., θd ,C ) are the unknown
parameters.

If we do MLE, then

π̂c ,MLE =
Mc

M
, θ̂k ,c ,MLE =

Nk ,c
Nc

where Mc =nb. documents class c , Nk ,c =nb. occurrences word k in
class c , M = ∑C

k=1Mc , Nc = ∑d
k=1 Nk ,c .
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Bayesian Naive Bayes for Multinomial Data

In a Bayesian context, we can set independent Dirichlet priors

p (π) = Dir ((π1, ...,πC ) ; β1, ..., βC ) ,

p (θc ) = Dir ((θ1,c , ..., θd ,c ) ; α1,c , ..., αd ,c ) , c = 1, ...,C

and obtain

p (π1, ...,πC |D) = Dir ((π1, ...,πC ) ; β1 +M1, ..., βC +MC ) ,

p ( θc |D) = Dir ((θ1,c , ..., θd ,c ) ; α1,c +N1,c , ..., αd ,c +Nd ,c ) .

From this posterior, you can compute π̂MAP , θ̂c ,MAP or
π̂MMSE = E (πM |D) , θ̂c ,MMSE = E ( θc |D) and use

p
(
y = c | x,π̂, θ̂

)
∝ p (y = c | π̂) p

(
x| y = c , θ̂

)
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Bayesian Naive Bayes for Multinomial Data

A better way to do it is to

Given a new input x, we compute using

p (y = c | x,D) ∝ p (y = c |D) p (x| y = c ,D)

where

p (y = c |D) =
∫
p (y = c |D,π)︸ ︷︷ ︸

=πc

p (π|D) dπ =
βc +Mc + 1
β0 +M + 1

,

p (x| y = c ,D) =
∫
p (x|D, θc ) p ( θc |D) dθc = ...
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Bayesian Inference for Normal Data

Assume you have independent data
{
x i
}N
i=1 such that

p (x | θ) = 1√
2πσ2

exp

(
− (x − µ)2

2σ2

)

where θ =
(
µ, σ2

)
.

We have seen that

µ̂ML =
1
N

N

∑
i=1
x i , σ̂2ML =

1
N

N

∑
i=1

(
x i − µ̂ML

)2
.
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Bayesian Inference for Normal Data

In a Bayesian framework, the conjugate prior is
p
(
µ, σ2

)
= p

(
µ| σ2

)
p
(
σ2
)
where

p
(

µ| σ2
)
= N

(
µ; µ0,

σ2

κ0

)
= 1√

2π(σ2/κ0)
exp

(
− κ0(µ−µ0)

2

2σ2

)
p
(
σ2
)
= IG

(
σ2; α, β

)
= βα

Γ(α)

(
σ2
)−α−1 exp

(
−β/σ2

)
1(0,∞)

(
σ2
)
.

The posterior is given by p ( θ| x 1:n ) = p
(

σ2
∣∣ x 1:n

)
p
(

µ| x 1:n , σ2
)

where

p
(

µ| x 1:N , σ2
)
= N

(
µ;

κ0µ0+N µ̂ML
κ0+N

, σ2

κ0+N

)
p
(

σ2
∣∣ x1:N

)
= IG

(
σ2; α+N/2, β+ N

2 σ̂2ML +
Nκ0

2(N+κ0)
(µ̂ML − µ0)

2
)

Once more we see clearly the influence of the prior on the posterior
and, as N → ∞, the posterior concentrates around µ̂ML and σ̂2ML.
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Bayesian Model Selection

Suppose we have K different models for the data D; each model
being associated to some parameters θi .

Using a Bayesian approach, we can compte

p (M = i |D) = p (M = i) p (D |M = i)
P (D)

where

p (D) =
K

∑
i=1
p (M = i) p (D |M = i)

The marginal likelihood or evidence p (D |M = i) is given by

p (D |M = i) =
∫
p (D | θi ) p (θi ) dθi

which is the normalizing constant of

p ( θi |D) =
p (θi ) p (D | θi )

p (D)
.
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Bayes Factors

To compare two models, we can use posterior odds of Bayes factors

p (M = i |D)
p (M = j |D)︸ ︷︷ ︸
posterior odds

=
p (D |M = i)
p (D |M = j)︸ ︷︷ ︸
Bayes factor

p (M = i)
p (M = j)︸ ︷︷ ︸
prior odds

The Bayes factor is a Bayesian version of a likelihood ratio test, that
can be used to compare models of different complexity.

Bayes factors and posterior odds tell you whether one should prefer
M = i to M = j : it does NOT tell you whether these models are
sensible!
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Example: Is the Euro coin biased?

Suppose we toss a coin N = 250 times and observe n1 = 141 heads
and n0 = 109 tails:

p
(
x1:N

∣∣∣ θ
)
= θn1 (1− θ)n0

Consider two models/hypotheses: M1 = coin unbiased, that is
θ1 = 0.5 and M2 =coin biased and p (θ2) = Beta (θ2; α1, α0).
We have

p (D |M1) = 0.5n1 (1− 0.5)n0 = 0.5N

and

p (D |M2) =
Γ (α0 + n0) Γ (α1 + n1)

Γ (α0 + α1 +N)
Γ (α0 + α1)

Γ (α0) Γ (α1)
so

p (D |M2)

p (D |M1)
=

Γ (α0 + n0) Γ (α1 + n1)
Γ (α0 + α1 +N)

Γ (α0 + α1)

Γ (α0) Γ (α1)
0.5−N
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Computation of Bayes Factors

Let α = α0 = α1 varying over 0 to 1000.

16

Bayes factor vs prior strength

• Let α1=α0 range from 0 to 1000.
• The largest BF in favor of H1 (biased coin) is only 

2.0, which is very weak evidence of bias.

α

BF(1,0)

Bayes factor p (D |M2) /p (D |M1) as a function of α.

The largest BF in favor of M2 (biased coin) is only 2.0, which is very
weak evidence of bias.
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Bayesian Computation

For complex Bayesian models, we cannot compute the posterior and
marginal likelihood analytically.

In such cases, analytical (Laplace, variational) and Monte Carlo
methods approximations are necessary.

For example, a crude approximation of the marginal likelihood is
provided by the Bayesian Information Criterion

log p (D |Mi ) = log p
(
D | θMLEi

)
− d
2
log n

where n is the number of data and d is the dimension/number of free
parameters
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