CS 340 Lec. 13: Maximum Likelihood

AD

February 2011

Problem

- You are given data $\left\{\mathbf{x}^{i}\right\}_{i=1}^{N}\left(\left\{\mathbf{x}^{i}, y^{i}\right\}_{i=1}^{N}\right.$ in the supervised learning case).
- You have a probabilistic model for the data; i.e. typically in most learning problem

$$
p\left(\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{N} \mid \theta\right)=\prod_{i=1}^{N} p\left(\mathbf{x}^{i} \mid \theta\right)
$$

- Aim: you want to pick the best $\theta \in \Theta$.
- Two main approaches considered here: Maximum Likelihood and Bayesian.

Maximum Likelihood Parameter Estimation

- The most standard approach consists of selecting

$$
\begin{aligned}
\widehat{\theta}_{M L E} & =\underset{\theta \in \Theta}{\arg \max } p\left(\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{N} \mid \theta\right) \\
& =\underset{\theta \in \Theta}{\arg \max } \log p\left(\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{N} \mid \theta\right)
\end{aligned}
$$

- You select the value of $\theta \in \Theta$ that maximizes the probability of observing ($\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{N}$).
- Example: Assume independent $\left\{\mathbf{x}^{i}\right\}$ where $\mathbf{x}^{i}=x_{1}^{i}=x^{i}$ with

$$
p(x \mid \theta)=\theta^{\mathbb{I}(x=1)}(1-\theta)^{\mathbb{I}(x=0)}
$$

then $\widehat{\theta}_{M L E}=\sum_{i=1}^{N} \mathbb{I}\left(x^{i}=1\right) / N$.

Maximum Likelihood for Poisson Data

- Example: Assume you have independent Poisson observations $\left\{x^{i}\right\}_{i=1}^{N}$ such that

$$
p(x \mid \theta)=e^{-\theta} \frac{\theta^{x}}{x!}
$$

for $\theta>0$ and $x=0,1,2, \ldots$

- In this case, we have

$$
\begin{aligned}
I(\theta) & =\log p\left(x^{1: N} \mid \theta\right) \\
& =-N \theta+\log \theta \sum_{i=1}^{N} x^{i}-\sum_{i=1}^{N} \log x^{i}!
\end{aligned}
$$

- By setting $\frac{\partial I(\theta)}{\partial \theta}=0$, we obtain

$$
\widehat{\theta}_{M L E}=\frac{\sum_{i=1}^{N} x^{i}}{N}
$$

Maximum Likelihood for Gaussian Data

- Example: Assume you independent observations $\left\{x^{i}\right\}_{i=1}^{N}$ such that

$$
p(x \mid \theta)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

where $\theta=\left(\sigma^{2}, \mu\right)$.

- We have

$$
\begin{aligned}
I(\theta) & =\log p\left(x^{1: N} \mid \theta\right) \\
& =-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(x^{i}-\mu\right)^{2}
\end{aligned}
$$

- By setting $\frac{\partial l(\theta)}{\partial \mu}=0$ and $\frac{\partial l(\theta)}{\partial \sigma^{2}}=0$, we obtain

$$
\widehat{\mu}_{M L E}=\frac{1}{N} \sum_{i=1}^{N} x^{i}, \widehat{\sigma^{2}} M L E=\frac{1}{N} \sum_{i=1}^{N}\left(x^{i}-\widehat{\mu}_{M L E}\right)^{2}
$$

Maximum Likelihood for Multinomial Data

- Example: Assume you have independent observations $\left\{\mathbf{x}^{i}\right\}_{i=1}^{N}$ such that

$$
p(\mathbf{x} \mid \theta)=\frac{P!}{\prod_{i=1}^{d} x_{k}!} \prod_{k=1}^{d} \theta_{k}^{x_{k}}
$$

for $\theta_{k}>0, \sum_{k=1}^{d} \theta_{k}=1$ and $x_{k}=0,1,2, \ldots, P$ with $\sum_{k} x_{k}=P$.

- In this case, we have

$$
\begin{aligned}
I(\theta) & =\log p\left(\mathbf{x}^{1: N} \mid \theta\right) \\
& =\sum_{i=1}^{N} \log \left(\frac{P!}{\prod x_{k}^{i}!}\right)+\sum_{k=1}^{d}\left(\sum_{i=1}^{N} x_{k}^{i}\right) \log \theta_{k}
\end{aligned}
$$

- Be careful: It is a constrained optimization problem as $\sum_{k=1}^{d} \theta_{k}=1$.

Maximum Likelihood for Multinomial Data

- We introduce a Lagrange multiplier λ and propose to maximize instead w.r.t θ and λ

$$
I(\theta, \lambda)=I(\theta)+\lambda\left(1-\sum_{k=1}^{d} \theta_{k}\right)
$$

- Setting $\frac{\partial l(\theta, \lambda)}{\partial \lambda}=0 \Rightarrow \sum_{k=1}^{d} \theta_{k}=1$ and setting

$$
\frac{\partial I(\theta, \lambda)}{\partial \theta_{i}}=0 \Rightarrow \frac{\sum_{i=1}^{N} x_{k}^{i}}{\theta_{k}}-\lambda=0 \Leftrightarrow \lambda \theta_{k}=\sum_{i=1}^{N} x_{k}^{i}
$$

- It follows that, as $\sum_{k=1}^{d} \theta_{k}=1$, then $\lambda=\left(\sum_{k=1}^{d} \sum_{i=1}^{N} x_{k}^{i}\right)$

$$
\widehat{\theta_{k, M L E}}=\frac{\sum_{i=1}^{N} x_{k}^{i}}{\lambda}=\frac{\sum_{i=1}^{N} x_{k}^{i}}{\sum_{i=1}^{N} \sum_{k=1}^{d} x_{k}^{i}}
$$

Application to Naive Bayes

- We assume that we have N data $\left(\mathbf{x}^{i}, y^{i}\right) \in \mathbb{N}^{d} \times\{0,1\}^{C}$ and we use the model

$$
p(\mathbf{x}, y=c \mid \theta)=\pi_{c} \frac{P!}{\prod_{i=1}^{d} x_{k}!} \prod_{k=1}^{d} \theta_{k, c}^{x_{k}}
$$

where $\theta=\left(\pi_{1}, \ldots, \pi_{C}, \theta_{1,1}, \ldots, \theta_{d, 1}, \cdots, \theta_{1, C}, \ldots, \theta_{d, C}\right)$.

- We have

$$
\begin{aligned}
& I(\theta)=\sum_{k=1}^{n} \log p\left(\mathbf{x}^{i}, y^{i} \mid \theta\right) \\
& =\sum_{c=1}^{C}\left(\sum_{k=1}^{N} \mathbb{I}\left(y_{k}^{i}=c\right)\right)\left\{\log \pi_{c}+\sum_{k=1}^{d} x_{k}^{i} \log \theta_{k, c}+\text { Cste }\right\}
\end{aligned}
$$

yields with $N_{c}=\sum_{k=1}^{N} \mathbb{I}\left(y_{k}^{i}=c\right)$

$$
\widehat{\pi}_{c, M L E}=\frac{N_{c}}{N}, \quad \widehat{\theta}_{k, c, M L E}=\frac{\sum_{i=1}^{N} x_{k}^{i} \mathbb{I}\left(y_{k}^{i}=c\right)}{\sum_{k=1}^{d} \sum_{i=1}^{N} x_{k}^{i} \mathbb{I}\left(y_{k}^{i}=c\right)} .
$$

Asymptotics of Maximum Likelihood Estimate

- Assume you have independent data $\left\{\mathbf{x}^{i}\right\}_{i=1}^{N}$ distributed according to $p\left(\mathbf{x} \mid \theta^{*}\right)$; i.e. θ^{*} is the true parameter. Under regularity assumptions, we have $\widehat{\theta}_{M L E} \rightarrow \theta^{*}$ as $N \rightarrow \infty$.
- This follows from the fact that first

$$
\frac{I(\theta)}{N}=\frac{1}{N} \sum_{i=1}^{N} \log p\left(\mathbf{x}^{i} \mid \theta\right) \underset{N \rightarrow \infty}{\rightarrow} \bar{I}(\theta)=\int p\left(\mathbf{x} \mid \theta^{*}\right) \log p(\mathbf{x} \mid \theta) d \mathbf{x}
$$

- Second, the average log-likelihood $\bar{l}(\theta)$ is maximized θ^{*}; for any $\theta \in \Theta$ as

$$
\begin{aligned}
\bar{l}(\theta)-\bar{l}\left(\theta^{*}\right) & =\int p\left(\mathbf{x} \mid \theta^{*}\right) \log \frac{p(\mathbf{x} \mid \theta)}{p\left(\mathbf{x} \mid \theta^{*}\right)} d \mathbf{x} \\
& \leq \log \left(\int p\left(\mathbf{x} \mid \theta^{*}\right) \frac{p(\mathbf{x} \mid \theta)}{p\left(\mathbf{x} \mid \theta^{*}\right)} d \mathbf{x}\right) \\
& \leq 0
\end{aligned}
$$

Limitations of Maximum Likelihood

- Maximum likelihood estimation overfits!
- Suppose we are N Bernoulli data such that $\widehat{\theta}_{M L E}=\sum_{i=1}^{N} x^{i} / N=0$ then we have

$$
p\left(x=1 \mid \widehat{\theta}_{M L E}\right)=0
$$

- Similarly, suppose we have N multinomial data such that $\widehat{\theta_{k, M L E}}=\sum_{i=1}^{N} x_{k}^{i} / \sum_{i=1}^{N} \sum_{k=1}^{d} x_{k}^{i}=0$ then we have

$$
p\left(x_{1}, \ldots, x_{k-1}, x_{k}=1, x_{k+1}, \ldots, x_{d} \mid \widehat{\theta}_{M L E}\right)=0 .
$$

- Hence if we have not observed such events in our training set, we predict that we will never observed them, ever!
- Failing to predict that certain events are possible is analogous to a problem in philosophy called the black swan paradox. This is based on the ancient Western conception that all swans were white. In that context, a black swan was a metaphor for something that could not exist. (Black swans were discovered in Australia by European explorers in the 17th Century.)

