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Problem

You are given data
{
xi
}N
i=1 (

{
xi , y i

}N
i=1 in the supervised learning

case).

You have a probabilistic model for the data; i.e. typically in most
learning problem

p
(
x1, x2, ..., xN

∣∣∣ θ
)
=

N

∏
i=1
p
(
xi
∣∣ θ
)

Aim: you want to pick the best θ ∈ Θ.
Two main approaches considered here: Maximum Likelihood and
Bayesian.
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Maximum Likelihood Parameter Estimation

The most standard approach consists of selecting

θ̂MLE = argmax
θ∈Θ

p
(
x1, x2, ..., xN

∣∣∣ θ
)

= argmax
θ∈Θ

log p
(
x1, x2, ..., xN

∣∣∣ θ
)

You select the value of θ ∈ Θ that maximizes the probability of
observing

(
x1, x2, ..., xN

)
.

Example: Assume independent
{
xi
}
where xi = x i1 = x

i with

p (x | θ) = θI(x=1) (1− θ)I(x=0)

then θ̂MLE = ∑N
i=1 I

(
x i = 1

)
/N.
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Maximum Likelihood for Poisson Data

Example: Assume you have independent Poisson observations{
x i
}N
i=1 such that

p (x | θ) = e−θ θx

x !
for θ > 0 and x = 0, 1, 2, ...
In this case, we have

l (θ) = log p
(
x1:N

∣∣∣ θ
)

= −Nθ + log θ
N

∑
i=1
x i −

N

∑
i=1
log x i !

By setting ∂l(θ)
∂θ = 0, we obtain

θ̂MLE =
∑N
i=1 x

i

N
.
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Maximum Likelihood for Gaussian Data

Example: Assume you independent observations
{
x i
}N
i=1 such that

p (x | θ) = 1√
2πσ2

exp
(
− 1
2σ2

(x − µ)2
)

where θ =
(
σ2, µ

)
.

We have

l (θ) = log p
(
x1:N

∣∣∣ θ
)

= −N
2
log
(
2πσ2

)
− 1
2σ2

N

∑
i=1

(
x i − µ

)2
By setting ∂l(θ)

∂µ = 0 and ∂l(θ)
∂σ2

= 0, we obtain

µ̂MLE =
1
N

N

∑
i=1
x i , σ̂2MLE =

1
N

N

∑
i=1

(
x i − µ̂MLE

)2
.
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Maximum Likelihood for Multinomial Data

Example: Assume you have independent observations
{
xi
}N
i=1 such

that

p (x| θ) = P !
d

∏
i=1
xk !

d

∏
k=1

θxkk

for θk > 0, ∑d
k=1 θk = 1 and xk = 0, 1, 2, ...,P with ∑k xk = P.

In this case, we have

l (θ) = log p
(
x1:N

∣∣∣ θ
)

=
N

∑
i=1
log

(
P !

∏ x ik !

)
+

d

∑
k=1

(
N

∑
i=1
x ik

)
log θk

Be careful: It is a constrained optimization problem as ∑d
k=1 θk = 1.
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Maximum Likelihood for Multinomial Data

We introduce a Lagrange multiplier λ and propose to maximize
instead w.r.t θ and λ

l (θ,λ) = l (θ) + λ

(
1−

d

∑
k=1

θk

)
.

Setting ∂l(θ,λ)
∂λ = 0⇒ ∑d

k=1 θk = 1 and setting

∂l (θ,λ)
∂θi

= 0⇒ ∑N
i=1 x

i
k

θk
− λ = 0⇔ λθk =

N

∑
i=1
x ik

It follows that, as ∑d
k=1 θk = 1, then λ =

(
∑d
k=1 ∑N

i=1 x
i
k

)
θ̂k ,MLE =

∑N
i=1 x

i
k

λ
=

∑N
i=1 x

i
k

∑N
i=1 ∑d

k=1 x
i
k

.
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Application to Naive Bayes

We assume that we have N data
(
xi , y i

)
∈Nd × {0, 1}C and we use

the model

p (x, y = c | θ) = πc
P !
d

∏
i=1
xk !

d

∏
k=1

θxkk ,c

where θ = (π1, ...,πC , θ1,1, ..., θd ,1, · · · , θ1,C , ..., θd ,C ) .
We have

l (θ) = ∑n
k=1 log p

(
xi , y i

∣∣ θ
)

= ∑C
c=1

(
∑N
k=1 I

(
y ik = c

)) {
logπc +∑d

k=1 x
i
k log θk ,c + Cste

}
yields with Nc = ∑N

k=1 I
(
y ik = c

)
π̂c ,MLE =

Nc
N
, θ̂k ,c ,MLE =

∑N
i=1 x

i
kI
(
y ik = c

)
∑d
k=1 ∑N

i=1 x
i
kI
(
y ik = c

) .
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Asymptotics of Maximum Likelihood Estimate

Assume you have independent data
{
xi
}N
i=1 distributed according to

p (x| θ∗); i.e. θ∗ is the true parameter. Under regularity assumptions,
we have θ̂MLE → θ∗ as N → ∞.
This follows from the fact that first

l (θ)
N

=
1
N

N

∑
i=1
log p

(
xi
∣∣ θ
)
→
N→∞

l (θ) =
∫
p (x| θ∗) log p (x| θ) dx.

Second, the average log-likelihood l (θ) is maximized θ∗; for any
θ ∈ Θ as

l (θ)− l (θ∗) =
∫
p (x| θ∗) log p (x| θ)

p (x| θ∗)dx

≤ log
(∫

p (x| θ∗) p (x| θ)
p (x| θ∗)dx

)
(Jensen’s inequality)

≤ 0.
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Limitations of Maximum Likelihood

Maximum likelihood estimation overfits!
Suppose we are N Bernoulli data such that θ̂MLE = ∑N

i=1 x
i/N = 0

then we have
p
(
x = 1| θ̂MLE

)
= 0.

Similarly, suppose we have N multinomial data such that
θ̂k ,MLE = ∑N

i=1 x
i
k/ ∑N

i=1 ∑d
k=1 x

i
k = 0 then we have

p
(
x1, ..., xk−1, xk = 1, xk+1, ..., xd | θ̂MLE

)
= 0.

Hence if we have not observed such events in our training set, we
predict that we will never observed them, ever!
Failing to predict that certain events are possible is analogous to a
problem in philosophy called the black swan paradox. This is based on
the ancient Western conception that all swans were white. In that
context, a black swan was a metaphor for something that could not
exist. (Black swans were discovered in Australia by European
explorers in the 17th Century.)
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