CS 340 Lec. 12: Naive Bayes Classifiers

AD

February 2011

Classification

- We have training data $\left\{x^{k}, y^{k}\right\}_{k=1}^{N}$.
- \mathbf{x} corresponds to a vector of features.
- $Y \in\{1,2, \ldots, C\}$ is a class label.
- Aim: Given $\left\{\mathbf{x}^{k}, y^{k}\right\}_{k=1}^{N}$, we want to learn a probabilistic model $p_{\mathbf{X}, Y}(\mathbf{x}, y)$ to compute given a new input \mathbf{x}

$$
p(Y=c \mid \mathbf{X}=\mathbf{x})=p_{Y \mid \mathbf{X}}(c \mid \mathbf{x})
$$

- We will often use a non-rigorous notation: $p(y=c \mid \mathbf{x})$.

Document Classification

- Assume you want to classify emails into 3 classes: $Y \in\{$ spam,urgent, normal $\}$.
- We use a dictionary with d prespecified words and $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$ are binary features where

$$
X_{i}=\mathbb{I}(\text { word } i \text { is present in message }) ;
$$

this is called a bag-of-words model.

- Example: Consider the following dictionary

	1	2	3	4	5	6	7
Words	John	Mary	sex	money	send	meeting	"unknown"

For the following sentence "John sent money to Mary after the meeting about money", we obtain

$$
\mathbf{x}=(1,1,0,1,0,1,1)
$$

Bayes Rule for Classifiers

- We have

$$
p(y=c \mid \mathbf{x})=\frac{p(\mathbf{x} \mid y=c) p(y=c)}{p(\mathbf{x})}
$$

where

$$
p(\mathbf{x})=\sum_{j=1}^{C} p(\mathbf{x} \mid y=j) p(y=j)
$$

- $p(y=c \mid \mathbf{x})$ is the class posterior.
- $p(y=c)$ is the prior.
- $p(\mathbf{x} \mid y=c)$ is the class conditional distribution of the features.
- $p(\mathbf{x})$ is the (unconditional) distribution of the features.

Naive Bayes Assumption

- What is the probability of generating a d-dimensional feature vector for each possible class $\{1,2, \ldots, C\}$? It requires specifying $p(\mathbf{x} \mid y=c)$.
- Naive Bayes assumes that

$$
p(\mathbf{x} \mid y=c)=\prod_{i=1}^{d} p\left(x_{i} \mid y=c\right)
$$

- E.g. proba of seeing "send" is assumed to be independent of seeing "money" given that we know this is a spam email.
- We can simply model $p\left(x_{i} \mid y=c\right)$ using the Bernoulli distribution of parameter $\theta_{i, c} \in[0,1]$; i.e.

$$
\begin{aligned}
p\left(x_{i} \mid y=c\right) & =\theta_{i, c}^{\mathbb{I}\left(x_{i}=1\right)}\left(1-\theta_{i, c}\right)^{\mathbb{I}\left(x_{i}=0\right)} \\
& =\theta_{i, c}^{x_{i}}\left(1-\theta_{i, c}\right)^{1-x_{i}}
\end{aligned}
$$

Estimated class conditional densities $p\left(x_{i}=1 \mid y=c\right)=\widehat{\theta}_{i, c}$ for two document classes, corresponding to "X Windows" and "MS Windows". The spike corresponds to the word "subject" and we use $\widehat{\theta}_{i, c}=\sum_{k=1}^{N} \mathbb{I}\left(x_{i}^{k}=1, y^{k}=c\right) / \sum_{k=1}^{N} \mathbb{I}\left(y^{k}=c\right)$.

Count Features for Document Classification

- Suppose now that we take

$$
X_{i}=\text { Number of occurrences of word } i \text { in message. }
$$

- We have now $X_{i} \in\{0,1,2, \ldots\}$ so the Bernoulli distribution cannot be used to model $p\left(x_{i} \mid y=c\right)$.
- We can use the Poisson distribution

$$
p\left(x_{i} \mid y=c\right)=\exp \left(-\theta_{i, c}\right) \frac{\theta_{i, c}^{x_{i}}}{x_{i}!}
$$

where $\theta_{i, c}^{k}>0$.

- We have $\mathbb{E}\left(X_{i}\right)=\mathbb{V}\left(X_{i}\right)=\theta_{i, c}$.
- We could estimate $\theta_{i, c}$ through
$\widehat{\theta}_{i, c}=\sum_{k=1}^{N} x_{i}^{k} \mathbb{I}\left(y^{k}=c\right) / \sum_{k=1}^{N} \mathbb{I}\left(y^{k}=c\right)$.

Count Features for Document Classification

- An alternative model is

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{d} \mid y=c\right) & =\binom{P}{x_{1} x_{2} \cdots x_{d}} \prod_{i=1}^{d} \theta_{i, c}^{x_{i}} \\
& =P!\prod_{i=1}^{d} \frac{\theta_{i, c}^{x_{i}}}{x_{i}!}
\end{aligned}
$$

where $P=\sum_{i=1}^{d} x_{i}=$ number of words in document, $\theta_{i, c} \geq 0$, $\sum_{i=1}^{d} \theta_{i, c}=1$.

- This is a multinomial distribution of parameters $\left(\theta_{1, c}, \ldots, \theta_{d, c}, P\right)$.
- Interpretation: In class c, we have a population with $\theta_{i, c} \%$ of words i and $p\left(x_{1}, \ldots, x_{d} \mid y=c\right)$ is the probability of observing x_{1} words 1 , x_{2} words $2, \ldots, x_{d}$ words d.
- In this model we have $p\left(x_{1}, \ldots, x_{d} \mid y=c\right) \neq \prod_{i=1}^{d} p\left(x_{i} \mid y=c\right)$.
- We could estimate $\theta_{i, c}$ through

$$
\widehat{\theta}_{i, c}=\frac{\sum_{k=1}^{N} \frac{x_{i}^{k}}{\left(\sum_{j=1}^{d} x_{j}^{k}\right)} \mathbb{I}\left(y^{k}=c\right)}{\sum_{k=1}^{N} \mathbb{I}\left(y^{k}=c\right)}
$$

or through

$$
\widehat{\theta}_{i, c}=\frac{\sum_{k=1: y^{k}=c}^{N} x_{i}^{k}}{\sum_{k=1: y^{k}=c}^{N}\left(\sum_{j=1}^{d} x_{j}^{k}\right)} .
$$

- What is the "best" estimate intuitively?

Which Class-Conditional Density?

- For document classification, the multinomial model is found to work best. For sake of simplicity, we will mostly focus on the multivariate Bernoulli (binary features) model.
- We can easily handle features of different types; e.g. $x_{1} \in\{0,1\}$, $x_{2} \in \mathbb{R}, x_{3} \in \mathbb{R}^{+}, x_{4} \in\{0,1,2,3, \ldots\}$.
- We can use Gaussians, Gamma, Bernoulli etc.

Class Prior

- To encode $Y \in\{1,2, \ldots, C\}$, we simply use

$$
p(y)=\prod_{i=1}^{C} \pi_{i}^{\mathbb{I}(y=i)}
$$

- We can alternatively use C binary variables $\left(Y_{1}, Y_{2}, \ldots, Y_{C}\right) \in\{0,1\}^{C}$ such that $\sum_{i=1}^{C} Y_{i}=1$; i.e. $Y=2 \Leftrightarrow\left(Y_{1}, Y_{2}, Y_{3}\right)=(0,1,0)$ for $C=3$ so

$$
p\left(y_{1}, \ldots, y_{C}\right)=\prod_{i=1}^{C} \pi_{i}^{y_{i}}
$$

where $\pi_{i} \geq 0, \sum_{i=1}^{C} \pi_{i}=1$. This is a multinomial distribution of parameters $\left(\pi_{1}, \ldots, \pi_{C}, 1\right)$ also known as a multinoulli distribution of parameters $\left(\pi_{1}, \ldots, \pi_{C}\right)$.

Class Posterior

- Bayes rule yields for the multivariate Bernoulli model

$$
\begin{aligned}
p(y=c \mid \mathbf{x}) & =\frac{p(y=c) p(\mathbf{x} \mid y=c)}{p(\mathbf{x})} \\
& =\frac{\pi_{c} \prod_{i=1}^{d} \theta_{i, c}^{\mathbb{I}\left(x_{i}=1\right)}\left(1-\theta_{i, c}\right)^{\mathbb{I}\left(x_{i}=0\right)}}{p(\mathbf{x})}
\end{aligned}
$$

- In practice, numerator and denominator are very small, so need to use logs to avoid underflow; i.e.

$$
\begin{aligned}
\log p(y=c \mid \mathbf{x})=\log \pi_{c}+ & \sum_{i=1}^{d} \mathbb{I}\left(x_{i}=1\right) \log \theta_{i, c} \\
& +\mathbb{I}\left(x_{i}=0\right) \log \left(1-\theta_{i, c}\right)-\log p(\mathbf{x})
\end{aligned}
$$

- How to compute the normalizing constant

$$
\log p(\mathbf{x})=\log \left(\sum_{c=1}^{c} p(\mathbf{x}, y=c)\right)=\log \left(\sum_{c=1}^{c} \pi_{c} f_{c}\right)
$$

Log-sum-exp Trick

- Define

$$
\begin{aligned}
\log p(\mathbf{x}) & =\log \left(\sum_{c=1}^{c} \pi_{c} f_{c}\right) \\
b_{c} & =\log \pi_{c} f_{c}=\log \pi_{c}+\log f_{c} \\
\log p(\mathbf{x}) & =\log \left(\sum_{c=1}^{c} e^{b_{c}}\right)=\log \left(\left(\sum_{c=1}^{c} e^{b_{c}}\right) e^{-B} e^{B}\right) \\
& =\log \left(\sum_{c=1}^{c} e^{b_{c}-B}\right)+B \\
B & =\max _{c} b_{c}
\end{aligned}
$$

e.g.

$$
\log \left(e^{-120}+e^{-121}\right)=\log \left(e^{-120}\left(e^{0}+e^{-1}\right)\right)=\log \left(1+e^{-1}\right)-120
$$

Missing Features

- Suppose the value of x_{1} is unknown.
- We can still use the classifier, just drop the term $p\left(x_{1} \mid c\right)$. Indeed we have

$$
\begin{aligned}
p\left(y=c \mid x_{2: d}\right) & \propto \int p\left(y=c, x_{1: d}\right) d x_{1} \\
& =p(y=c) \int p\left(x_{1: d} \mid y=c\right) d x_{1} \\
& =p(y=c) \int \prod_{i=1}^{d} p\left(x_{i} \mid y=c\right) d x_{1} \\
& =p(y=c) \prod_{i=2}^{d} p\left(x_{i} \mid y=c\right)
\end{aligned}
$$

- This is a big advantage of generative classifiers which specify $p(\mathbf{x} \mid y=c)$ over discriminative classifiers which learn $p(y=c \mid \mathbf{x})$ directly.

Parameter Learning

- So far we have assumed that the parameter of $p(\mathbf{x} \mid y=c)$ and $p(y=c)$ are known.
- Obviously in practice, we are going to have to learn them from the training data $\left\{\mathbf{x}^{k}, y^{k}\right\}_{k=1}^{N}$.
- We have come up with intuitive estimates: e.g. for the multivariate Bernoulli model $p(\mathbf{x} \mid y=c)$ and $p(y=c)$ we took

$$
\begin{aligned}
\hat{\theta}_{i, c} & =\frac{\sum_{k=1}^{N} \mathbb{I}\left(x_{i}^{k}=1, y^{k}=c\right)}{\sum_{k=1}^{N} \mathbb{I}\left(y^{k}=c\right)} \\
\hat{\pi}_{c} & =\frac{\sum_{k=1}^{N} \mathbb{I}\left(y^{k}=c\right)}{N}
\end{aligned}
$$

- Is there any rational for this? Can we do any better?

