CS 340 Lec. 10: Probability

AD

January 2011

Sample Space and Events

- Definition. The sample space S of an experiment (whose outcome is uncertain) is the set of all possible outcomes of the experiment.
- Example (ranking movies): Assume Mr. X has been asked to rank 3 movies: "Karate Kid", "The Bounty Hunter" and "Citizen Kane". The outcome of the experiment is a ranking and
$S=\{$ all 3! permut. of "Karate Kid", "Bounty Hunter" \& "Citizen Kane" $\}$.
- Definition. Any subset E of the sample space S is known as an event; i.e. an event is a set consisting of possible outcomes of the experiment.
- Example (ranking movies): The event $E=\{$ all rankings in S starting with "Citizen Kane" $\}$ is the event that Mr. X puts "Citizen Kane" at the top of his ranking.

Union and Intersection of Events

- Given events E and $F, E \cup F$ is the set of all outcomes either in E or F and in both E and F. $E \cup F$ occurs if either E or F occurs. $E \cup F$ is the union of events E and F
- Example (ranking movies): If we have
$E=\{$ all outcomes in S starting with "Citizen Kane" $\}$,
$F=\{$ all outcomes in S finishing with "Karate Kid" $\}$
then $E \cup F$ is the event that Mr. X put "Citizen Kane" at the top OR "Karate Kid" at the bottom.
- Given events E and $F, E \cap F$ is the set of all outcomes which are both in E and $F . E \cap F$ is also denoted $E F$ or E, F
- Example (ranking movies): $E \cap F$ is the event that at the top your ranking you put "Citizen Kane" at the top and "Karate Kid" at the bottom.

Axioms of Probability

- Consider an experiment with sample space S. For each event E, we assume that a number $P(E)$, the probability of the event E, is defined and satisfies the following 3 axioms.
- Axiom 1

$$
0 \leq P(E) \leq 1
$$

- Axiom 2

$$
P(S)=1
$$

- Axiom 3. For any sequence of mutually exclusive events $\left\{E_{i}\right\}_{i \geq 1}$, i.e. $E_{i} \cap E_{j}=\varnothing$ when $i \neq j$, then

$$
P\left(\cup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

Interpretation of Probability

- Consider an event E of the sample space S. Assume you replicate the experiment n times, then it is tempting to define "practically"

$$
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n}
$$

where $n(E)$ is the number of times the event E occurred in the n experiments.

- This is known as the frequentist approach: you should repeat an infinite number of times an experiment and the probabilities corresponds to the limiting frequencies.
- Problem. This kind of approach makes sense if you toss a coin but you cannot ask Mr. X one million times to rank these three movies.
- In many scenarios, probabilities are measures of the individual's degree of belief: this is subjective.
- This does not have any impact on the mathematical "machinery" as long as you define the axioms 1,2 and 3 are satisfied.

Conditional Probabilities and Independence

- Conditional Probability. Consider an experiment with sample space S. Let E and F be two events, then the conditional probability of E given F is denoted by $P(E \mid F)$ and satisfies if $P(F)>0$

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{P(E, F)}{P(F)}
$$

- Intuition: If F has occured, then, in order for E to occur, it is necessary that the occurence be a point both in E and F, hence it must be in $E \cap F$. Once F has occured, F is the new sample space.
- Independence: Two events E and F are said to be independent if

$$
P(E, F)=P(E) P(F)
$$

which implies

$$
P(E \mid F)=P(E)
$$

- Example (ranking movies): $E=\{$ "Karate Kid" top movie for Mr. X $\}$ and $F=\{\mathrm{Mr} . \mathrm{X}$ is a fan of martial arts $\}$ then you definitely want a probability model such that $P(E \mid F) \neq P(E)$.

Bayes Formula

- Bayes Formula. We have directly by symmetry

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F)}
$$

where

$$
P(F)=P(F \mid E) P(E)+P\left(F \mid E^{c}\right) P\left(E^{c}\right)
$$

- In many practical machine learning problems, you "build" $P(E, F)$ either from

$$
P(E, F)=P(F \mid E) P(E)
$$

or

$$
P(E, F)=P(E \mid F) P(F)
$$

Conditional Independence

- We say that the events E and F are conditionally independent given G if

$$
P(E, F \mid G)=P(E \mid G) P(F \mid G)
$$

- Example: Kevin separately phones two students, Alice and Bob. To each, he tells the same number; i.e. event $G=\{$ Kevin said '7' to Alice and bob $\}$. Due to the noise in the phone, Alice and Bob each imperfectly (and independently) draw a conclusion about what number Kevin said. Let us define the events $E=\{$ Alice heard number 7$\}$ and $F=\{$ Bob heard number 7$\}$ respectively then E and F are conditionally independent given G as

$$
P(E, F \mid G)=P(E \mid G, F) P(F \mid G)=P(E \mid G) P(F \mid G)
$$

but we definitely expect

$$
P(E \mid F)>P(E)
$$

so the events E and F are not (marginally) independent.

Random Variables and Discrete Random Variables

- In many scenarios, we are interested in a function of the outcome as opposed to the actual outcome; e.g. we are interested in the sum of two dice and not in the separate values of each die or simply as it is easier to encode. Real-valued functions defined on the sample space are random variables; e.g. your score at the SAT test etc.
- A discrete r.v. X takes value in an at most countable set \mathcal{X} and is defined by its p.m.f.

$$
p_{X}(x)=P(X=x)
$$

where

$$
p_{X}(x) \geq 0 \text { and } \sum_{x \in \mathcal{X}} p_{X}(x)=1
$$

- Expected value/mean and Variance

$$
\begin{aligned}
\mu & =\mathbb{E}(X)=\sum_{x \in \mathcal{X}} x p_{X}(x) \\
\mathbb{V} \operatorname{ar}(X) & =\mathbb{E}\left((X-\mu)^{2}\right)=\mathbb{E}\left(X^{2}\right)-\mu^{2}
\end{aligned}
$$

Conditional Distributions: Discrete Case

- Assume X, Y are discrete-valued r.v. and take values in $\mathcal{X} \times \mathcal{Y}$ with a joint p.m.f. $p(x, y)$ then the conditional p.m.f. of X given $Y=y$ is

$$
P(X=x \mid Y=y)=p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}=\frac{p_{Y \mid X}(y \mid x) p_{X}(x)}{p_{Y}(y)}
$$

where

$$
p_{Y}(y)=\sum_{x \in \mathcal{X}} p_{X, Y}(x, y)
$$

- Example: $X \in\{0,1,2, \ldots, 9\}$ is a digit, Y is a 16×16 image where each pixel can take 256 values.
- Example: $X \in\{0,1\}$ corresponding to spam/non spam and $Y \in\{0,1\}^{n}$ is a vector of n binary variables indicating whether some prespecified words, e.g. "viagra", "money", "huge" appear in an email.

Independence and Conditional Independence of Random Variables

- Consider r.v. $X_{1}, X_{2}, \ldots, X_{n}$ with a joint p.m.f. $p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, X_{n}\right)$ then these variables are called independent if and only if

$$
p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p_{X_{i}}\left(x_{i}\right) .
$$

- Consider r.v. $X_{1}, X_{2}, \ldots, X_{n}$ with a joint p.m.f. $p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)$ then these variables are called independent upon Y if and only if

$$
p_{X_{1}, \ldots, X_{n} \mid Y}\left(x_{1}, \ldots, x_{n} \mid y\right)=\prod_{i=1}^{n} p_{X_{i} \mid Y}\left(x_{i} \mid y\right)
$$

- Example: $Y \in\{0,1\}$ indicates spam/non spam and $X_{i} \in\{0,1\}$ indicates whether a prespecified word appears in the email.

Markov Chains

- Consider r.v. $X_{1}, X_{2}, \ldots, X_{n}$ with a joint p.m.f. $p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)$ then we always have

$$
p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=p_{X_{1}}\left(x_{1}\right) \prod_{i=2}^{n} p_{X_{i} \mid X_{1}, \ldots, X_{i-1}}\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right) .
$$

- A sequence of r.v. $\left\{X_{k}\right\}_{k \geq 1}$ is said to have the Markov property if and only if

$$
p_{X_{i} \mid X_{1}, \ldots, X_{i-1}}\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)=p_{X_{i} \mid X_{i-1}}\left(x_{i} \mid x_{i-1}\right) ;
$$

i.e. the conditional distribution of X_{i} only depends on $\left(X_{1}, X_{2}, \ldots, X_{i-1}\right)$ through X_{i-1}.

- Markov models are ubiquitous models for time series in Machine learning, EE, Finance etc.

