
CPSC340: Additional Exercises

Exercise 1. The following short questions should be answered with at most
two sentences, and/or a picture. For the (true/false) questions, answer true or false.
If you answer true, provide a short justification, if false explain why or provide a
small counterexample.

• In one sentence, characterize the differences between classification and regres-
sion.

Answer : Classification maps inputs to discrete outputs whereas regression maps
inputs to continuous outputs.

• Your billionaire friend needs your help. She needs to classify job applications
into good/bad categories, and also to detect job applicants who lie in their
applications using density estimation to detect outliers. To meet these needs,
do you recommend using a discriminative (e.g. logistic) or generative classifier?
Why?

Answer : If you want to use density estimation to detect outliers in the applications
(e.g. input xi) then you need probabilistic models on the input, so you need a
generative classifier.

• Your billionaire friend also wants to classify software applications to detect
bug-prone applications using features of the source code. This pilot project
only has a few applications to be used as training data, though. To create the
most accurate classifier, do you recommend using a discriminative or generative
classifier? Why?

Answer : Discriminative as there are too few data to learn reliably the class con-
ditional densities of the training data.

• Finally, your billionaire friend also wants to classify companies to decide which
one to acquire. This project has lots of training data based on several decades
of research. To create the most accurate classifier, do you recommend using a
discriminative or generative classifier? Why?

Answer : Generative as a lot of traning data are available so we can expect to
learn properly the class conditional densities of the training data.

• Assume that we are using some classifier of fixed complexity. How will the
test error and cross-validation error typically behave as the number of training
examples increase?

Answer : They will be typically decreasing and then stabilize.
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• Both PCA and linear regression can be thought of as algorithms for minimiz-
ing a sum of squared errors. Explain which error is being minimized in each
algorithm.

Answer : PCA minimizes
N∑
i=1

‖xi − x̂i‖2

where x̂i =
∑k
j=1

(
xTi uj

)
uj whereas linear regression minimizes

N∑
i=1

∥∥yi −wTxi∥∥2
• Consider a real-valued random variable X admitting a continuous probability
density function f (x). Is the probability that X = x equal to f (x)?

Answer : False. The probability that X = x is equal to zero.

• Besides EM, is it possible to use gradient descent to perform inference or learn-
ing on a Gaussian mixture model?

Answer : It is entirely possible to use gradient descent.
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Figure 1: K-means

Exercise 2. Consider the data plotted in Figure 2a, which consist of two rows
of equally spaced points. If K-means clustering (K =2) is initialised with the two
points whose coordinates are (9, 3) and (11, 3), indicate the final clusters obtained
(after the algorithm converges).

Answer is given in the graph.
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Exercise 3. Consider a regression problem where the two dimensional input
points x = (x1 x2)

T are constrained to lie within the unit square: xi ∈ [−1, 1] ,
i = 1, 2. The training and test input points x are sampled uniformly at random
within the unit square. The target outputs y are governed by the following model

y ∼ N
(
x31x

5
2 − 10x1x2 + 7x21 + 5x2 − 3, 1

)
.

In other words, the outputs are normally distributed with mean given by

x31x
5
2 − 10x1x2 + 7x21 + 5x2 − 3

and variance 1.
We learn to predict y given x using linear regression models with 1st through 10th

order polynomial features. The models are nested in the sense that the higher order
models will include all the lower order features. The estimation criterion is the mean
squared error. We first train a 1st, 2nd, 8th, and 10th order model using N = 20
training points, and then test the predictions on a large number of independently
sampled points.

Select all the appropriate model(s) for each column. If you think the highest, or
lowest, error would be shared among several models, be sure to list all models.

Lowest Training error Highest Training error Lower test error (typically)
1st order
2nd order
8th order
10th order

Answer. We have

Lowest Training error Highest Training error Lower test error (typically)
1st order X
2nd order X
8th order X
10th order X

The 10th order regression model would seriously overfit when presented only
with N = 20 training points. The second order model on the other hand might find
some useful structure in the data based only on 20 points. The true model is also
dominated by the second order terms. Since xi ∈ [−1, 1] for i = 1, 2 any higher order
terms without large coeffi cients are vanishingly small.
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Figure 2: Labeled training set, where blue crosses resp. red circles corresponds to
class y = 1 resp. y = 0

Exercise 4. We consider here generative and discriminative approaches for
solving the classification problem illustrated in the following figure. Specifically, we
will use a mixture of Gaussians model and regularized logistic regression models.

1. We will first estimate a mixture of Gaussians model, one Gaussian per class,
with the constraint that the covariance matrices are identity matrices. The
mixing proportions (class frequencies) and the means of the two Gaussians are
free parameters.

• Sketch the maximum likelihood estimates of the means of the two class condi-
tional Gaussians. Mark the means as points “x”and label them “0”and “1”
according to the class.

Answer : See graph, the means should be close to the center of mass of the points.

• Draw the decision boundary in the same figure.

Answer : See graph. Since the two classes have the same number of points and
the same covariance matrices, the decision boundary is a line and, moreover, should
be drawn as the orthogonal bisector of the line segment connecting the class means
(see lecture 18, slide 15).

2 We have also trained regularized linear logistic regression models

P (y = 1|x,w) = g(w0 + w1x1 + w2x2)

for the same data; i.e. g is the logistic function. The regularization penal-
ties, used in penalized conditional log-likelihood estimation, were −Cw2i , where
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Figure 3: Training errors as a function of regularization penalty

i = 0, 1, 2. In other words, only one of the parameters were regularized in each
case. Based on the classification data, we generated three plots, one for each
regularized parameter, of the number of misclassified training points as a func-
tion of C (Figure 4.2). The three plots are not identified with the corresponding
parameters, however. Please assign the “top”, “middle”, and “bottom”plots
to the correct parameter, w0, w1, or w2, the parameter that was regularized in
the plot. Provide a brief justification for each assignment.

• What is the “top”?

Answer : “top”= w1. By strongly regularizing w1 we force the boundary to be
horizontal in the figure. The logistic regression model tries to maximize the log-
probability of classifying the data correctly. The highest penalty comes from the
misclassified points and thus the boundary will tend to balance the (worst) errors.
In the figure, this is roughly speaking x2 = 1 line, resulting in 4 errors.

• What is the “middle”?

Answer : “middle”= w0. If we regularize w0, then the boundary will eventually
go through the origin (bias term set to zero). Based on the figure we can find a good
linear boundary through the origin with only one error.

• What is the “bottom”?

Answer : “bottom”= w2. The training error is unaffected if we regularize w2
(constrain the boundary to be vertical); the value of w2 would be small already
without regularization.
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Exercise 5. Each plot above claims to represent prediction errors as a function
of x for a trained regression model based on some dataset. Some of these plots
could potentially be prediction errors for linear or quadratic regression models, while
others couldn’t. The regression models are trained with the least squares estimation
criterion. Please indicate compatible models and plots.

A B C
linear regression
quadratic regression

Answer.

A B C
linear regression x x
quadratic regression x
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Exercise 6. Here we explore a regression model where the noise variance is a
function of the input (variance increases as a function of input). Specifically

y = wx+ ε

where the noise is normally distributed with mean 0 and standard deviation σx. The
value of σ is assumed known and the input x is restricted to the interval [1, 4]. We
can write the model more compactly as

y ∼ N (wx, σ2x2).

If we let x vary within [1, 4] and sample outputs y from this model with some w,
the regression plot might look like the data displayed on this page.

Some potentially useful relations: if z ∼ N (µ, σ2), then az ∼ N (aµ, a2σ2) for a
fixed a. If z1 ∼ N (µ1, σ21) and z2 ∼ N (µ2, σ22) and are independent then V ar (z1 + z2) =
σ21 + σ

2
2.

• What is the probability density function of the ratio y/x for a fixed value of x?

Answer : Since we have y ∼ N (wx, σ2x2) then

y/x ∼ N (w, σ2).

Suppose we now have N independent training data
{(
xi, yi

)}N
i=1

where each xi is
chosen at random from [1, 4] and the corresponding yi is subsequently sampled from
yi ∼ N (w∗xi, σ2

(
xi
)2
) with some true underlying parameter value w∗; the value of

σ2 is the same as in our model.

• What is the maximum likelihood estimate of w∗ as a function of the training
data?
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Answer : We know that y/x ∼ N (w∗, σ2). We can therefore estimate w∗ by
interpreting yi/xi as observations. The MLE of w∗ is simply the mean

ŵ∗ =
1

N

N∑
i=1

yi/xi.

• What is the variance of this estimator due to the noise in the target outputs as
a function of N and σ2 for fixed inputs

{
xi
}N
i=1
?

Answer : The variance of ŵ∗is simply

V ar
[
ŵ∗
]
=

1

N2

N∑
i=1

V ar [yi/xi] (yi are independent)

=
σ2

N


