
CS340 Winter 2010: HW5
Out Monday 21st March, due Monday 4th

April

1 Gradient and Hessian of log-likelihood for
logistic regression

1. Let g (z) = (1 + e−z)
−1 be the logistic function. Show that

dg (z)

dz
= g (z) (1− g (z)) .

2. Consider the following logistic regression model where

p (y = 1|x,w) = 1− p (y = 0|x,w)

= g
(
wTΦ (x)

)
with

wTΦ (x) =

m∑
k=1

wkΦk (x) .

Assuming, as always, that the data {xi, yi}Ni=1 are independent, estab-
lish that the gradient

∇L (w) :=

(
∂L (w)

∂w1
· · · ∂L (w)

∂wm

)T
of the conditional log-likelihood

L (w) = log p
({

yi
}N
i=1

∣∣∣ {xi}N
i=1

,w
)
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is given by

∇L (w) =

N∑
i=1

(
yi − g

(
wTΦ

(
xi
)))

Φ
(
xi
)

= ΦT (y − µ)

where [Φ]i,j = Φj (xi), y =
(
y1 · · · yN

)T
andµ =

(
g
(
wTΦ (x1)

)
· · · g

(
wTΦ

(
xN
)))T

.

3. It can be shown that the Hessian matrix ∇2L (w) defined by[
∇2L (w)

]
k,l

=
∂2L (w)

∂wk∂wl
for k, l = 1, ...,m satisfies

∇2L (w) = −ΦTUΦ

with U a diagonal matrix with diagonal element

[U ]i,i = g
(
wTΦ

(
xi
)) [

1− g
(
wTΦ

(
xi
))]

.

Show that ∇2L (w) is negative semi-definite; i.e. for any column vector
v

vT ∇2L (w) v ≤0.

4. Newton’s method is a generic (second order) optimization algorithm
which converges faster than the simple gradient algorithm discussed
in class. Applied to the maximization of the conditional log-likelihood
L (w), Newton’s algorithm proceeds as follows at iteration t

w(t) = w(t−1) −
[
∇2L

(
w(t−1))]−1∇L (w(t−1)) .

Show that Newton’s algorithm can be rewritten as

w(t) =
(
ΦTU (t−1)Φ

)−1
ΦTU (t−1)

(
Φw(t−1) +

[
U (t−1)

]−1 (
y − µ(t−1)

))
where U (t−1) and µ(t−1) corresponds to U and µ computed usingw(t−1).

5. Newton’s algorithm can be unstable when ∇2L (w) is singular or close
to singular. Assume you are introducing a Gaussian prior on the para-
meters w so that

p(w|λ) =
m∏
k=1

p (wk|λ)

where wk follows a Gaussian distribution of mean 0 and variance λ−1.
Establish the expression of the Newton’s algorithm to maximize the
associated log-posterior density of the weights.
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2 Regularizing separate terms in logistic re-
gression

1. Consider the training data in Figure 1. We fit the model p (y = 1|x,w) =
g (w0 + w1x1 + w2x2) where g (·) is the logistic function. Suppose we fit
the model by maximum likelihood. Sketch a possible decision boundary
corresponding to ŵ. Copy the figure first (a rough sketch is enough),
and then superimpose your answer on your copy, since you will need
multiple versions of this figure). Is your answer (decision boundary)
unique? How many classification errors does your method make on the
training set?

Figure 1: Data for logistic regression question.

3 Spam classification using logistic regression
Consider the email spam data set discussed on p300 of [?]. This consists of 4601 email messages, from which 57
features have been extracted. These are as follows:

• 48 features giving the percentage (0 to 100) of words in a given message which match a given word on the list.
The list contains words such as “business”, “free”, “george”, etc. (The data was collected by George Forman,
so his name occurs quite a lot.)

• 6 features giving the percentage (0 to 100) of characters in the email that match a given character on the list.
The characters are ; ( [ ! $ #

• Feature 55: The average length of an uninterrupted sequence of capital letters (max is 40.3, mean is 4.9)

• Feature 56: The length of the longest uninterrupted sequence of capital letters (max is 45.0, mean is 52.6)

• Feature 57: The sum of the lengts of uninterrupted sequence of capital letters (max is 25.6, mean is 282.2)

Load the data from spamData.mat, which contains a training set (of size 3065) and a test set (of size 1536).
One can imagine performing several kinds of preprocessing to this data. Try each of the following separately:

1. Standardize the columns so they all have mean 0 and unit variance.

2. Transform the features using log(xij + 0.1).

3. Binarize the features using I(xij > 0).

For each version of the data, fit a logistic regression model. Use cross validation to choose the strength of the `2
regularizer. Report the mean error rate on the training and test sets. You should get numbers similar to this:

method train test
stnd 0.082 0.079
log 0.052 0.059
binary 0.065 0.072

(The precise values will depend on what regularization value you choose.) Turn in your code and numerical results.

References
[HTF09] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2009. 2nd edition.
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Figure 1: Training Data with Two Possible Classes: cross and circle

2. Now suppose we regularize only the w0 parameter; i.e. we nowminimize

−L (w) + λw20

where L (w) is the conditional log-likelihood. Suppose λ is a very large
number, so we regularize w0 all the way to 0, but all other parameters
are unregularized. Sketch a possible decision boundary. How many
classification errors does your method make on the training set? Hint:
consider the behavior of simple linear regression, w0+w1x1+w2x2 when
x1 = x2 = 0.

3. Now suppose we heavily regularize only the w1 parameter, i.e., we min-
imize

−L (w) + λw21
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Sketch a possible decision boundary. How many classification errors
does your method make on the training set?

4. Now suppose we heavily regularize only the w2 parameter, i.e., we min-
imize

−L (w) + λw22

Sketch a possible decision boundary. How many classification errors does
your method make on the training set?

3 Spam Classification using Logistic Regres-
sion

Consider the email spam data set spamData.mat downloadable on the course
webpage. This consists of 4601 email messages, from which 57 features have
been extracted. These are as follows:

• 48 features giving the percentage (0 to 100) of words in a given message
which match a given word on the list. The list contains words such as
“business”, “free”, “george”, etc. (The data was collected by George
Forman, so his name occurs quite a lot.)

• 6 features giving the percentage (0 to 100) of characters in the email
that match a given character on the list. The characters are ; ( [ ! $ #

• Feature 55: The average length of an uninterrupted sequence of capital
letters.

• Feature 56: The length of the longest uninterrupted sequence of capital
letters.

• Feature 57: The sum of the lengths of uninterrupted sequence of capital
letters.

Load the data from spamData.mat, which contains a training set (of size
3065) and a test set (of size 1536).
One can imagine performing several kinds of preprocessing to this data.

Try each of the following separately:
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1. Standardize the columns so they all have mean 0 and unit variance.

2. Transform the features using xij ←log(xij + 0.1).

3. Binarize the features using xij ← I (xij > 0).

For each version of the data, fit a logistic regression model. Use cross
validation to choose the strength of the Gaussian prior regularizer. Report
the mean error rate on the training and test sets. You should get numbers
similar to this:

method train test
standardized 0.082 0.079
log 0.052 0.059
binary 0.065 0.072

(The precise values will depend on what regularization value you choose.)
Turn in your code and numerical results.
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