
CS340 Winter 2010: HW4
Out Wednesday 2nd March, due Wednesday

16th March

1 Naive Bayes Classifier Implementation

The Nursery database records a series of admission decisions to a nursery in
Ljubljana, Slovenia. These data were downloaded from
http://archive.ics.uci.edu/ml/datasets/Nursery. The database contains one
tuple for each admission decision. The features or attributes include financial
status of the parents, the number of other children in the house, etc. See
http://archive.ics.uci.edu/ml/machine-learning-databases/nursery/nursery.names
for more information about these features. The first three tuples in the
dataset are as follows:
usual,proper,complete,1,convenient,convenient,nonprob,recommended,recommend
usual,proper,complete,1,convenient,convenient,nonprob,priority,priority
usual,proper,complete,1,convenient,convenient,nonprob,not_recom,not_recom
where the first 8 values are features or attributes and the 9th value is the

class assigned (i.e., the admission decision recommendation).
Your job is to build a Naive Bayes classifier that will make admission

recommendations. The data have been prepared for you by Marcos and can
be downloaded from the course Webpage. All of the symbols have been
replaced with identifying integers.
The first three rows of this matrix are:
>> load nursery.mat;
>> nursery(1:3,:)
ans =
1 1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 2 4
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1 1 1 1 1 1 1 3 1
You should divide this data into equal-sized training and testing data

sets as follows (the reset ensures that we will ll all use the same training/test
split).
load nursery.mat;
reset(RandStream.getDefaultStream)
nursery = nursery(randperm(size(nursery,1)),:);
train = nursery(1:size(nursery,1)/2,:);
test = nursery(size(nursery,1)/2+1:end,:);

1. Estimate a Naive Bayes model using Maximum Likelihood (ML) on
train and use it to predict the y labels of the test data. To model the
class conditional distribution of each feature xi (i = 1, ..., 8) and the
class distribution, use multinomial/multinoulli distributions. Report
the accuracy of your classifier, and submit your code.

2. Modify the Nursery data by duplicating the last attribute 20 more
times. You can do this by executing

nursery = [nursery(:,1:end-1),repmat(nursery(:,end-1),1,20),nursery(:,end)];

before splitting into train and test. Then run your ML Naive Bayes
estimator on the new training data, and evaluate it on the new testing
data. Explain in words why you see the change in accuracy that you
observe.

3. Using the original data and the model you estimated in part 1, calculate
the (joint) log-likelihood

∑
i logP (xi, yi) of the training data. Using

this model, is it possible to calculate the (joint) log likelihood of the
test data? Explain your answer.

4. Now use Bayesian MAP estimators using Dirichlet priors having all
their hyperparameters set to αk = 2 to estimate all of the multino-
mial/multinoulli distributions parameters in your Naive Bayes model
from the original training data. What accuracy do you obtain on the
test data using this model? Calculate the (joint) likelihood of the train-
ing data under the MAPmodel. Is it higher or lower than the likelihood
of the training data under the ML model? Explain your answer. Now
calculate the likelihood of the test data under the MAP model. Explain
why you don’t run into the same problems.
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5. Using Dirichlet priors having all their hyperparameters set to αk = 2,
you can also compute P (y|x, D) where D are the training data by
integrating out the parameters of the model following the approach
discussed in Section 4.5.3 of the textbook (and in the slides of the
Bayesian statistics lecture (page 24)). What accuracy do you obtain
on the test data using this approach?

2 Linear Regression

We study here different approaches to linear regression using a one dimen-
sional dataset collected from a simulated motorcycle accident. The input
variable, x, is the time in milliseconds since impact. The output variable,
y, is the recorded head acceleration. The dataset motor.mat is available on
the webpage. We have divided the full dataset into 40 training examples
(variables Xtrain and Ytrain), and 53 test examples (variables Xtest and
Ytest).
When fitting polynomial functions, as explored below, numerical prob-

lems can arise when the input variables take even moderate values. To min-
imize these, the input variables should be scaled to lie in the interval [-1,+1]
before fitting. Use

x← 2

(
x− xmin

xmax − xmin

)
− 1

where xmin and xmax are respectively the minimum and maximum values of
the inputs {xi} over the training data set. Note that the same scaling must
then be applied to the test data.
Submit your Matlab code for all the questions.

1. Consider a polynomial basis, with functions φj (x) = xj. Write a mat-
lab function which evaluates these polynomial functions at a vector of
points xi ∈ R. In a single figure, plot φj (x) for −1 ≤ x ≤ 1, and
j = 0, 1, 2, ..., 19.

Hint: To create a dense regular grid of points at which to evaluate and
plot these functions, use the linspace command.

2. Consider the standard linear regression model, in which observations yi

follow a Gaussian distribution of meanwTΦ (xi) and variance σ2.Define
a family of regression models, each of which contains all polynomials
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φj (x) of order j ≤ M , that is Φ (x) = [φ0 (x) φ1 (x) · · · φM (x)]T =[
1 x · · · xM

]T
andw = [w0 · · · wM ]T whereM is a parameter control-

ling model complexity. Using the training data, compute the maximum
likelihood (ML) estimate ŵ of the regression parameters for models of
order M = 0, 1, 2, ..., 19. Plot, as a function of x, the mean prediction
ŵTΦ (x) for models of order M = 0, 1, 3, 5, 19.

Hint: To compute u = A−1v in Matlab, rather than explicitly calling
the inv command, use the following command to improve numerical
stability:

>> x = A \ b;

3. Consider the following so-called RMSE (root mean square error) which
is defined for any set of N points (xi, yi) by

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŵTΦ (xi))2.

What is the relationship between RMSE and the ML estimate of σ2?
Evaluate and plot RMSE as a function of the model order M for the
training examples. Also do this for the test examples. Which model
has the smallest training error, and which has the smallest test error?
Together with the test data, plot the mean prediction ŵTΦ (x) for both
of these models.

4. We now consider radial basis function basis of the form

Φj (x) = exp

(
−
(
x− µj

)2
2σ2

)
for j = 1, ...,M. For any model order M , we space the basis function
centers µj evenly between -1 and 1. In Matlab, this can be done with
the following command:

>> mu = linspace(-1,1,M);

We then set the bandwidth to triple the distance between basis centers,
σ = 3 (µ2 − µ1). Finally, for any M , we also include a constant bias
term Φ0 (x) = 1. In three figures, plot these basis functions for −1 ≤
x ≤ 1 for models of order M = 5, 10, 15.
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5. Repeat part 2 and part 3 for the radial basis function basis of part 4,
and models of order M = 5, 10, 15, 20, 25, 30. Which basis performs
better for this data?

In the previous question, you may have noticed that the ML estimates can
become unstable for large model orders, M . We now consider an alternative,
Bayesian approach in which the regression coeffi cients are assigned Gaussian
priors

p(w|α) =
M∏
j=0

p (wj|α)

where wj follows a Gaussian distribution of mean 0 and variance α−1. [For
sake of simplicity, I have here also introduced a prior on w0].

6. What is the MAP estimate of w under the Gaussian prior above, and
observation model of part 2? Consider polynomial and radial basis
functions of order M = 100. For each of these two models, determine
the MAP estimate ŵ assuming hyperparameter values of σ2 = 400 and
α = 0.01. Plot the mean prediction ŵTΦ (x) for both of these models.
Would it be possible to compute ML estimates for models of order
M = 100?

7. Fix σ2 = 400, and consider 100 candidate values for the regularization
parameter α, logarithmically spaced between 10−8 and 100 = 1.0:

>> alpha = logspace(-8,0,100);

Using the semilogx command, plot the RMSE defined in part 3 versus
α for both the training and test datasets, and both basis families. Then
plot the mean prediction ŵTΦ (x) for the models which minimize the
training and test error, for each basis family.

In the previous questions, we compared the accuracy of various models
on test data, but did not provide a mechanism for choosing among models

5



given solely training data. Cross validation methods provide one popular, but
computationally intensive, solution to this problem. The following question
instead explores a Bayesian approach to model selection.

8. The marginal likelihood of the training data is given by

p
({

yi
}N
i=1

∣∣∣ {xi}N
i=1

, σ2, α
)

=

∫
p
({

yi
}N
i=1

∣∣∣ {xi}N
i=1

,w,σ2
)
p (w|α) dw

It can be shown that the marginal log-likelihood of the training data is
equal to

log p
({

yi
}N
i=1

∣∣∣ {xi}N
i=1

, σ2, α
)

=
M + 1

2
logα− N

2
log
(
2πσ2

)
+

1

2
log |Σ| − α

2
mTm− 1

2σ2

N∑
i=1

(
yi − ŵTΦ

(
xi
))2

where m and Σ are given by

Σ−1 = σ−2ΦTΦ+α IM+1

m = σ−2Σ ΦTy

where Φ is the N × (M + 1) matrix associated to the training data
where

[Φ]i,j = Φj

(
xi
)
,

y =
(
y1 · · · yN

)T
and IM+1 is the (M + 1)× (M + 1) identity matrix

of dimension.

Plot this quantity as a function of α, for the pair of basis families and
range of hyperparameter values considered in part 7.

Hint: To avoid numerical underflow when computing the marginal log-
likelihood above, you can exploit the following identity:

log |Σ| =
M+1∑
j=0

log λj

where λj are the eigenvalues of Σ.

9. For each model family (polynomial and radial basis function), what is
the test accuracy for the hyperparameters which maximize the marginal
likelihood of the training data? How do these compare to the models
which actually performed best in part 7?
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