## 4 Maximum likelihood

## 4.1

The likelihood of the set of iid observations is

$$
\begin{equation*}
p\left(x_{1: N} \mid \theta\right)=\prod_{i=1}^{N} \frac{1}{\theta} \mathbb{I}\left(x_{i}<\theta\right) \tag{1}
\end{equation*}
$$

We ignore the lower bound on $x_{i}$ for notational simplicity, it does not affect our selection of $\theta$.

For the following, we use $\mathbb{I}(a<\theta) \times \mathbb{I}(b<\theta)=\mathbb{I}(\max \{a, b\}<\theta)$.

$$
\begin{align*}
\hat{\theta}_{M L E} & =\underset{\theta}{\operatorname{argmax}} p\left(x_{1: N} \mid \theta\right)  \tag{2}\\
& =\underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{N} \frac{1}{\theta} \mathbb{I}\left(x_{i}<\theta\right)  \tag{3}\\
& =\underset{\theta}{\operatorname{argmax}} \frac{1}{\theta^{N}} \mathbb{I}\left(\max x_{1: N}<\theta\right)  \tag{4}\\
& =\max x_{1: N} \tag{5}
\end{align*}
$$

If $\hat{\theta}_{M L E}$ were any lower than $\max x_{1: N}$, then there would be an $x_{i}$ with a zero likelihood. Any greater, and the $\frac{1}{\theta^{N}}$ term would decrease, giving a lower likelihood.

## 4.2

See figures at end of document.

## 4.3

$$
\begin{align*}
p\left(\theta \mid x_{1: N}\right) & =\frac{p\left(x_{1: N} \mid \theta\right) p(\theta)}{p\left(x_{1: N}\right)}  \tag{6}\\
& \propto p\left(x_{1: N} \mid \theta\right) p(\theta)  \tag{7}\\
& \propto\left[\frac{1}{\theta^{N}} \mathbb{I}\left(\max x_{1: N}<\theta\right)\right] \times\left[\alpha \beta^{\alpha} \theta^{-\alpha-1} \mathbb{I}(\beta<\theta)\right]  \tag{8}\\
& \propto\left[\frac{1}{\theta^{N}} \mathbb{I}\left(\max x_{1: N}<\theta\right)\right] \times\left[\theta^{-\alpha-1} \mathbb{I}(\beta<\theta)\right]  \tag{9}\\
& \propto \theta^{-N-\alpha-1} \mathbb{I}\left(\max \left\{\beta, x_{1: N}\right\}<\theta\right) \tag{10}
\end{align*}
$$

This has the same form as the Pareto distribution, with updated parameters:

$$
\begin{align*}
\alpha^{\prime} & =\alpha+N  \tag{11}\\
\beta^{\prime} & =\max \left\{\beta, x_{1: N}\right\} \tag{12}
\end{align*}
$$

## 4.4

$$
\begin{align*}
\hat{\theta}_{M A P} & =\underset{\theta}{\operatorname{argmax}} \operatorname{Pareto}\left(x \mid \alpha^{\prime}, \beta^{\prime}\right)  \tag{13}\\
& =\underset{\theta}{\operatorname{argmax}} \alpha^{\prime} \beta^{\prime \alpha^{\prime}} \theta^{-\alpha^{\prime}-1} \mathbb{I}\left(\beta^{\prime}<\theta\right)  \tag{14}\\
& =\underset{\theta}{\operatorname{argmax}} \theta^{-\alpha^{\prime}-1} \mathbb{I}\left(\beta^{\prime}<\theta\right)  \tag{15}\\
& =\beta^{\prime} \tag{16}
\end{align*}
$$

The posterior is of the same form as the expression for the likelihood in question 4.1, therefore we can use the same argument for finding the maximum.

## 4.5

Not required.

## 4.6

Here we use the expressions we found in question 4.3 for the posterior parameters. $N=3$ and $\max x_{1: N}=1.9$.

### 4.6.1

$$
\begin{align*}
(\alpha, \beta) & =(0.1,0.1)  \tag{17}\\
\left(\alpha^{\prime}, \beta^{\prime}\right) & =(3.1,1.9) \tag{18}
\end{align*}
$$

4.6.2

$$
\begin{align*}
(\alpha, \beta) & =(2.0,0.1)  \tag{19}\\
\left(\alpha^{\prime}, \beta^{\prime}\right) & =(5.0,1.9) \tag{20}
\end{align*}
$$

### 4.6.3

$$
\begin{align*}
(\alpha, \beta) & =(1.0,0.1)  \tag{21}\\
\left(\alpha^{\prime}, \beta^{\prime}\right) & =(4.0,1.9) \tag{22}
\end{align*}
$$




