Q2

1.

$$
P\left(x_{1}, x_{2}, y\right)
$$

$\mathrm{Y}=$ night			$\mathrm{Y}=$ day		
	$\mathrm{X}_{1}=$ hot	$\mathrm{X}_{1}=$ cold		$\mathrm{X}_{1}=$ hot	$\mathrm{X}_{1}=$ cold
$\mathrm{X}_{2}=$ dry	0.04	0.16	$\mathrm{X}_{2}=$ dry	0.3375	0.0375
$\mathrm{X}_{2}=$ rain	0.06	0.24	$\mathrm{X}_{2}=$ rain	0.1125	0.0125

2.

$$
P\left(x_{1}, x_{2}\right)=\sum_{y} P\left(x_{1}, x_{2}, y\right)
$$

	$\mathrm{X}_{1}=$ hot	$\mathrm{X}_{1}=$ cold
$\mathrm{X}_{2}=$ dry	0.3775	0.1975
$\mathrm{X}_{2}=$ rain	0.1725	0.2525

3.

$$
P\left(y \mid x_{1}, x_{2}\right)=\frac{P\left(x_{1}, x_{2}, y\right)}{P\left(x_{1}, x_{2}\right)}
$$

$\mathrm{Y}=$ night			$\mathrm{Y}=$ day		
	$\mathrm{X}_{1}=$ hot	$\mathrm{X}_{1}=$ cold		$\mathrm{X}_{1}=$ hot	$\mathrm{X}_{1}=$ cold
$\mathrm{X}_{2}=$ dry	0.10596	0.810127	$\mathrm{X}_{2}=$ dry	0.89404	0.189873
$\mathrm{X}_{2}=$ rain	0.347826	0.950495	$\mathrm{X}_{2}=$ rain	0.652174	0.049505

4.

$$
P\left(x_{1}\right)=\sum_{x_{2}} P\left(x_{1}, x_{2}\right)
$$

$\mathrm{X}_{1}=$ hot	$\mathrm{X}_{1}=$ cold
0.55	0.45

5.

$$
P\left(x_{2}\right)=\sum_{x_{1}} P\left(x_{1}, x_{2}\right)
$$

$\mathrm{X}_{2}=$ dry	$\mathrm{X}_{2}=$ rain
0.575	0.425

6.

$$
P\left(x_{1} \mid x_{2}\right)=\frac{P\left(x_{1}, x_{2}\right)}{P\left(x_{2}\right)}
$$

	$\mathrm{X}_{1}=$ hot	$\mathrm{X}_{1}=$ cold
$\mathrm{X}_{2}=$ dry	0.656522	0.343478
$\mathrm{X}_{2}=$ rain	0.405882	0.594118

7.

$$
P\left(x_{2} \mid x_{1}\right)=\frac{P\left(x_{1}, x_{2}\right)}{P\left(x_{1}\right)}
$$

	$\mathrm{X}_{1}=$ hot	$\mathrm{x}_{1}=$ cold
$\mathrm{x}_{2}=$ dry	0.686364	0.438889
$\mathrm{X}_{2}=$ rain	0.313636	0.561111

8.

$$
P\left(x_{1} \mid x_{2}, y\right)=\frac{P\left(x_{1}, x_{2}, y\right)}{P\left(x_{2}, y\right)}=\frac{P(y) P\left(x_{1} \mid y\right) P\left(x_{2} \mid y\right)}{P(y) P\left(x_{2} \mid y\right)}=P\left(x_{1} \mid y\right)
$$

$\mathrm{Y}=$ night			$\mathrm{Y}=$ day		
	$\mathrm{X}_{1}=$ hot	$\mathrm{X}_{1}=$ cold		$\mathrm{X}_{1}=$ hot	$\mathrm{X}_{1}=$ cold
$\mathrm{X}_{2}=$ dry	0.2	0.8	$\mathrm{X}_{2}=$ dry	0.9	0.1
$\mathrm{X}_{2}=$ rain	0.2	0.8	$\mathrm{X}_{2}=$ rain	0.9	0.1

9.

$$
P\left(x_{2} \mid x_{1}, y\right)=\frac{P\left(x_{1}, x_{2}, y\right)}{P\left(x_{1}, y\right)}=\frac{P(y) P\left(x_{1} \mid y\right) P\left(x_{2} \mid y\right)}{P(y) P\left(x_{1} \mid y\right)}=P\left(x_{2} \mid y\right)
$$

$\mathrm{Y}=$ night			$\mathrm{Y}=$ day		
	$\mathrm{X}_{1}=$ hot	$\mathrm{X}_{1}=$ cold		$\mathrm{X}_{1}=$ hot	$\mathrm{X}_{1}=$ cold
$\mathrm{X}_{2}=$ dry	0.4	0.4	$\mathrm{X}_{2}=$ dry	0.75	0.75
$\mathrm{X}_{2}=$ rain	0.6	0.6	$\mathrm{X}_{2}=$ rain	0.25	0.25

The variables X_{1} and X_{2} are conditionally independent given Y. Indeed,

$$
P\left(x_{1}, x_{2} \mid y\right)=\frac{P\left(x_{1}, x_{2}, y\right)}{P(y)}=\frac{P(y) P\left(x_{1} \mid y\right) P\left(x_{2} \mid y\right)}{P(y)}=P\left(x_{1} \mid y\right) P\left(x_{2} \mid y\right)
$$

But they are not marginally independent integrating over Y.
$P\left(X_{1}=\right.$ hot,$X_{2}=$ dry $)=0.6864 \neq 0.31625=P\left(X_{1}=\right.$ hot $) P\left(X_{2}=\right.$ dry $)$

