
CS340 Winter 2010: HW3
Out Wed. 2nd February, due Friday 11th

February

1 PageRank

You are given in the file adjency.mat a matrixG of size n×n where n = 1000
such that

Gi,j =

{
1 if outbound link from i to j,
0 otherwise.

You will have to construct the associated transition matrix

Ti,j =

{
p× Gi,j/

(∑
j Gi,j

)
+ (1− p)× 1/n if

∑
j Gi,j > 0

1/n otherwise

where p = 0.85.

1. Implement the Power method in Matlab to compute the rank vector
associated to T . Write also a Matlab script that plots

log ‖vk − vk−1‖

as a function of the iteration index k = 1, 2, ..., 100. This allows us to see
how the algorithm is converging and to determine how many iterations
are necessary. Hand in the code and plot. Label the axes appropriately.
Give the indexes of the three Webpages having the highest ranks.

2. Using (
TT
)k
v0 = a1π+

n∑
i=2

aiλ
k
iui
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where u1 = π,u2, ....,un are the orthonormal eigenvectors associated
to the eigenvalues λ1 = 1 > |λ2| ≥ · · · ≥ |λn| and the definition of vk,
show that for k large enough

‖vk − vk−1‖ ≈
∣∣∣∣a2a1 (λ2 − 1)

∣∣∣∣ |λ2|k−1 .
Explain whether the plot obtained in part 1 is in agreement with this
result. If it is not, provide an explanation for the possible discrepancy
you have observed. Finally suggest a method to estimate λ2 from the
plot.

2 Analysis of A Naive Bayes Classifier

The first question asks you to analyse the following naive Bayes model that
describes the weather in an imaginary country. We have

Y ∈ {night, day}, X1 ∈ {cold,hot}, X2 ∈ {rain,dry}

and
P (x1, x2, y) = P (y)P (x1| y)P (x2| y)

with P (Y = day) = 0.5, P (X1 = hot |Y = day) = 0.9, P (X1 = hot |Y = night) =
0.2, P (X2 = dry |Y = day) = 0.75 and P (X2 = dry |Y = night) = 0.4.
For each of the following formulae except the first, write an equation

which defines it in terms of formulae that appear earlier in the list. (For
example, you should give a formula for P (x1, x2) in terms of P (x1, x2, y)).
Then given the model above, calculate and write out the value of the formula
for possible each combination of values of the variables that appear in it.

1. P (x1, x2, y).

2. P (x1, x2) .

3. P (y|x1, x2).

4. P (x1) .

5. P (x2) .

6. P (x1|x2) .
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7. P (x2|x1) .

8. P (x1|x2, y) .

9. P (x2|x1, y) .

Are X1 and X2 conditionally independent given Y ? Are X1 and X2

marginally independent, integrating over Y ? Provide a short proof for both
answers.

3 Bayes Classifier for Gaussian Data

Consider the following training set of heights x (in inches) and gender y
(male/female) of some college students.

x 67 79 71 68 67 60
y m m m f f f

1. Fit a Bayes classifier to this data, i.e. estimate the parameters of the
class conditional densities

p (x| y = c) =
1√
2πσ2c

exp

(
−(x− µc)

2

2σ2c

)

and the class prior
p (y = c) = πc

using Maximum Likelihood (ML) estimation for c =m,f. What are your
ML estimate θ̂ of θ =

(
µm, σm, πm, µf , σf , πf

)
?

2. Compute p
(
y = m|x = 72, θ̂

)
.

3. What would be a simple way to extend this technique if you had multi-
ple attributes per person, such as height and weight? Write down your
proposed model as an equation.
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4 Maximum Likelihood

The next question asks you to devise ML and Bayesian MAP estimators for
a simple model of an uncalibrated sensor. Let the sensor output, X, be a
random variable that ranges over the real numbers. We assume that, when
tested over a range of environments, its outputs are uniformly distributed on
some unknown interval (0, θ), so that

p (x| θ) =
{

1
θ
for x ∈ (0, θ)

0 otherwise.

We denote this distribution by X ∼Unif(0, θ). To characterize the sensor’s
sensitivity, we would like to infer θ.

1. GivenN independent observations x1:N = (x1, x2, ..., xN) whereXi ∼Unif(0, θ),
what is the likelihood function L (θ) = p (x1:N | θ)? What is the maxi-
mum likelihood (ML) estimate of θ? Give an informal proof that your
estimator is in fact the ML estimator.

2. Suppose that we place the following prior distribution on θ:

p (θ) = αβαθ−α−1I(β,∞) (θ)

This is known as a Pareto distribution. We denote it by θ ∼Pareto(α, β).
Plot the three prior probability densities corresponding to the following
three hyperparameter choices: (α, β) = (0.1, 0.1) , (α, β) = (2.0, 0.1)
and (α, β) = (1.0, 1.0).

3. If θ ∼Pareto(α, β) and we observeN independent observationsXi ∼Unif(0, θ),
derive the posterior distribution p (θ|x1:N ). Is this a member of any
standard family?

4. For the posterior derived in part 3, what is the corresponding MAP
estimate of θ? How does this compare to the ML estimate?

5. Recall that the quadratic loss is defined as L
(
θ, θ̂
)
=
(
θ − θ̂

)2
. For

the posterior derived in part 3, what estimator θ̂ of θ minimizes the
posterior expected quadratic loss? Simplify your answer as much as
possible.
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6. Suppose that we observe three observations x1:3 = (0.7, 1.3, 1.9). De-
termine the posterior distribution of θ for each of the priors (α, β) in
part 2, and plot the corresponding posterior densities.

5 Naive Bayes Classifier Implementation

The Nursery database records a series of admission decisions to a nursery in
Ljubljana, Slovenia. These data were downloaded from
http://archive.ics.uci.edu/ml/datasets/Nursery. The database contains one
tuple for each admission decision. The features or attributes include financial
status of the parents, the number of other children in the house, etc. See
http://archive.ics.uci.edu/ml/machine-learning-databases/nursery/nursery.names
for more information about these features. The first three tuples in the
dataset are as follows:
usual,proper,complete,1,convenient,convenient,nonprob,recommended,recommend
usual,proper,complete,1,convenient,convenient,nonprob,priority,priority
usual,proper,complete,1,convenient,convenient,nonprob,not_recom,not_recom
where the first 8 values are features or attributes and the 9th value is the

class assigned (i.e., the admission decision recommendation).
Your job is to build a Naive Bayes classifier that will make admission

recommendations. The data have been prepared for you by Marcos and can
be downloaded from the course Webpage. All of the symbols have been
replaced with identifying integers.
The first three rows of this matrix are:
>> load nursery.mat;
>> nursery(1:3,:)
ans =
1 1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 2 4
1 1 1 1 1 1 1 3 1
You should divide this data into equal-sized training and testing data

sets as follows (the reset ensures that we will ll all use the same training/test
split).
load nursery.mat;
reset(RandStream.getDefaultStream)
nursery = nursery(randperm(size(nursery,1)),:);
train = nursery(1:size(nursery,1)/2,:);
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test = nursery(size(nursery,1)/2+1:end,:);

1. Estimate a Naive Bayes model using Maximum Likelihood (ML) on
train and use it to predict the y labels of the test data. To model the
class conditional distribution of each feature xi (i = 1, ..., 8) and the
class distribution, use multinomial/multinoulli distributions. Report
the accuracy of your classifier, and submit your code.

2. Modify the Nursery data by duplicating the last attribute 20 more
times. You can do this by executing

nursery = [nursery(:,1:end-1),repmat(nursery(:,end-1),1,20),nursery(:,end)];

before splitting into train and test. Then run your ML Naive Bayes
estimator on the new training data, and evaluate it on the new testing
data. Explain in words why you see the change in accuracy that you
observe.

3. Using the original data and the model you estimated in part 1, calculate
the (joint) log-likelihood

∑
i logP (x

i, yi) of the training data. Using
this model, is it possible to calculate the (joint) log likelihood of the
test data? Explain your answer.

4. Now use Bayesian MAP estimators using Dirichlet priors having all
their hyperparameters set to αk = 2 to estimate all of the multino-
mial/multinoulli distributions parameters in your Naive Bayes model
from the original training data. What accuracy do you obtain on the
test data using this model? Calculate the (joint) likelihood of the train-
ing data under the MAPmodel. Is it higher or lower than the likelihood
of the training data under the ML model? Explain your answer. Now
calculate the likelihood of the test data under the MAP model. Explain
why you don’t run into the same problems.
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