# CS340 Winter 2010: HW2 <br> Out Mon. 24th January, due Wed. 2nd February 

## 1 PCA Image Visualization

In this homework, you need to implement the image visualization PCA tool discussed in class. Your task is to modify the following piece of code. Whenever you encounter a ??? sign, replace it with the appropriate code.
load twosfours;
X = data';
$\% \mathrm{X}$ has 30 columns corresponding to $3016 \times 16$ images.
$\%$ The first 20 columns correspond to images of 2 s and the last
$\% 10$ columns to images of 4's
[d N] = size(???);
\% Compute mean of each row of X and center data by substracting each row mean

XMean = mean(???)'; \% vector of size $d * 1$, compute mean for each row

Xc=X-repmat (???, $1, \mathrm{~N}$ );
\% Find eigendecomposition
[W D]=eig(???);
\% compute principal components associated to the two largest eigenvectors
WReduced=W(: ,???) ;
$\mathrm{pc}=$ WReduced' $* \mathrm{Xc}$;
figure (1)
\% Plot principal components.
clf;
plot (pc (1, 1:20), pc (2, 1:20), 'or', ???, ???,'*b');
grid;
print -deps pcavisual1
\% Plot images on a background of size 120 by 250.
$I=\operatorname{zeros}(200,250)$;
$\% \mathrm{I}$ is the background image on which small images are placed.
\% now we scale the components to be integers for indexing:
$\operatorname{pc}(1,:)=\mathrm{pc}(1,:)+6 * \operatorname{ones}(1, N)$;
$\operatorname{pc}(2,:)=\mathrm{pc}(2,:)+9 * \operatorname{ones}(1, N)$;
$\mathrm{pc}=$ round $(10 * \mathrm{pc})$;
\% now we add the individual images to the background image:
for $i=1: N$
$I(p c(1, i): p c(1, i)+15, p c(2, i): p c(2, i)+15)=r e s h a p e(? ? ?, ? ? ?, 16)$;
end
figure(2)
\% Visualization:
clf;
colormap('gray')
imagesc (I)
print -deps pcavisual2
Plot your answers. They should look like this.



Hand in the completed code.

## 2 Image Compression

Repeat the image compression example presented in class. However, this time you should use your own photo. Initially you should use any image package to generate a jpg colour image of yourself that is 512 by 512 pixels. Then load this image to matlab using the command imread. Convert the image from rgb colour space to gray-scale using rgb2gray. Convert the grayscale image to double precision using the command double. To compute the PCA, I want you to use the matlab function eig. Important: always center the data before applying PCA (as in Question 1) but do not rescale them. Hand in all your code.

1. In the first application of the PCA, use the columns of the image as data points. Generate a figure similar to figure 1 (except it should be your own picture!) which displays $\mathbf{X}$ in the upper left corner and then $\widehat{\mathbf{X}}$ for $k=1,5,10,20,25,30,35,40$ (Note: the matlab command subplot will be useful). What is the compression gain $\frac{d N}{d k+k N}$ achieved as a function of $k$ ? What is the average squared reconstruction error $\frac{1}{N}\|\mathbf{X}-\widehat{\mathbf{X}}\|^{2}$ as a function of $k$ ?
2. In the second application of the PCA, partition the image in nonoverlapping smaller images of $8 \times 8$ pixels and use these small images as data points. (Note: in matlab a matrix $\mathbf{A}$ is converted into a column vector $\mathbf{a}$ by means of the command $\mathbf{a}=\mathbf{A}(:)$. You can reconstruct $\mathbf{A}$ from a by means of the command reshape). Generate a figure similar to figure 2 (except it should be your own picture!) which displays the original image in the upper left corner and then its approximation obtained for $k=1,2,3,4,5,6,7,8$. What is the compression gain achieved as a function of $k$ ? What is the average squared reconstruction error $\frac{1}{N}\|\mathbf{X}-\widehat{\mathbf{X}}\|^{2}$ as a function of $k ?$
3. We have seen in class than when $d \gg N$ an alternative approach to compute the eigenvectors $\mathbf{u}_{i}$ of $\widehat{\Sigma}=\frac{1}{N} \mathbf{X} \mathbf{X}^{\mathrm{T}}$ consists of computing the eigenvectors $\mathbf{v}_{i}$ of the Gram matrix $\mathbf{X}^{\mathrm{T}} \mathbf{X}$. Prove that if $\mathbf{v}_{i}$ is an eigenvector of $\mathbf{X}^{\mathrm{T}} \mathbf{X}$ associated to the eigenvalue $\lambda_{i}$ such that $\left\|\mathbf{v}_{i}\right\|=1$ then $\mathbf{u}_{i}=\lambda_{i}^{-1 / 2}\left(\mathbf{X} \mathbf{v}_{i}\right)$ is an eigenvector of $\widehat{\Sigma}$ associated to the eigenvalue $\lambda_{i} / N$ and that it satisfies $\left\|\mathbf{u}_{i}\right\|=1$. Use this result to


Figure 1: Original picture and its PCA approximations when data correspond to columns.
repeat the previous question when the image is now partitioned in nonoverlapping smaller images of $64 \times 64$ pixels and use these small images as data points. Compare visually the reconstructed image for $k=1$ obtained in this question ( $64 \times 64$ pixels) and in the previous question ( $8 \times 8$ pixels). Could you provide an intuitive explanation for these results?

## 3 Text Retrieval

This exercise teaches you how to build a simple text search engine and text compression scheme. The file matrix. dat contains a matrix of documents by words for the $N=9$ documents that appear in the file documents.pdf. The list of the $d=460$ words (in order) appears in the file literals.dat; that is we have $\mathbf{X}=$ matrix $^{T}$ using the notation used in the lectures. Center the data before applying the PCA (as in Question 1) but do not rescale them.

1. Compute and plot the eigenvalues associated to $\widehat{\Sigma}=\frac{1}{N} \mathbf{X}_{c} \mathbf{X}_{c}^{\mathrm{T}}$ where $\mathbf{X}_{c}$ is obtained by centering the data.


Figure 2: Original picture and its PCA approximations when data correspond to non-overlapping blocks.
2. Compute the PCA approximation $\widehat{\mathbf{X}}$ of $\mathbf{X}$ using $k=3$. Create a plot with 2 subplots using the matlab command subplot. In the first subplot do image (X). In the second subplot, plot the image $\widehat{\mathbf{X}}$. What do you conclude from comparing the two plots? What is the compression gain? what is the average squared reconstruction error $\frac{1}{N}\|\mathbf{X}-\widehat{\mathbf{X}}\|^{2}$ ?
3. What are the angles, in degrees, between the first document projected in 3 D (that is the approximation $\widehat{\mathbf{x}}_{1}$ of $\mathbf{x}_{1}$ for $k=3$ ) and the 8 remaining projected documents? By looking at the documents, can you explain these results?

## 4 Probability: Conditioning and marginalisation:

A band called Radiohead is inspired by an old band called The Beatles. $50 \%$ of music critics think the beatles was a great (G) band, $40 \%$ that it
was moderate (M) and $10 \%$ that it was awful (A). These critics have also compiled the following table:

$$
\begin{array}{cl} 
& \\
& \\
& \\
& \mathrm{G} \\
B_{1} & B_{2} \\
\mathrm{~B} \\
& \mathrm{M} \\
\mathrm{~A}
\end{array}\left(\begin{array}{lll}
\mathrm{M} & \mathrm{~A} \\
0.8 & 0.1 & 0.1 \\
0.1 & 0.9 & 0 \\
0.2 & 0.3 & 0.5
\end{array}\right)
$$

The table says that the probability of a new band $\left(B_{2}\right)$ being great given that the inspiring band $\left(B_{1}\right)$ was great is $P\left(B_{2}=G \mid B_{1}=G\right)=0.8$. Similarly, $P\left(B_{2}=G \mid B_{1}=M\right)=0.1, P\left(B_{2}=M \mid B_{1}=A\right)=0.3$, and so on. Note that the numbers in the rows add up to 1 , so the table is a probability transition matrix.

1. Given what the critics think of the Beatles and the fact that the Beatles inspired Radiohead, what is the probability that Radiohead is a great band?
2. What is $P\left(B_{1}=G \mid B_{2}=G\right)$ ?
