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Abstract Two-filter smoothing is a principled approach for performing optimal
smoothing in non-linear non-Gaussian state–space models where the smoothing dis-
tributions are computed through the combination of ‘forward’ and ‘backward’ time
filters. The ‘forward’ filter is the standard Bayesian filter but the ‘backward’ filter,
generally referred to as the backward information filter, is not a probability measure
on the space of the hidden Markov process. In cases where the backward information
filter can be computed in closed form, this technical point is not important. However,
for general state–space models where there is no closed form expression, this prohibits
the use of flexible numerical techniques such as Sequential Monte Carlo (SMC) to
approximate the two-filter smoothing formula. We propose here a generalised two-
filter smoothing formula which only requires approximating probability distributions
and applies to any state–space model, removing the need to make restrictive assump-
tions used in previous approaches to this problem. SMC algorithms are developed to
implement this generalised recursion and we illustrate their performance on various
problems.
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62 M. Briers et al.

1 Introduction and motivation

1.1 General state–space models

State–space models are ubiquitous in statistics but also in econometrics, signal
processing and robotics; see Doucet et al. (2001) for numerous applications. Formally
a state–space model is defined as follows: Let {Xt }t∈N be a discrete-time X -valued
Markov process defined by its initial probability density X1 ∼ µ(·) and for t ≥ 2

Xt | (Xt−1 = xt−1) ∼ f (·|xt−1). (1)

We do not have direct access to this (hidden) process {Xt }t∈N but only to the
Y-valued observation process {Yt }t∈N which is such that, conditional upon {Xt }t∈N,
the observations are statistically independent and distributed according to

Yt | (Xt = xt ) ∼ g(·|xt ). (2)

We assume that µ(·), f (·|xt−1) and g(·|xt ) are probability densities with respect to
some dominating measure (e.g. Lebesgue).

We are interested in the optimal estimation of the states given a sequence of
observations. For any general sequence {zk} we write zi : j = (

zi , zi+1, . . . , z j
)
. Recur-

sively computing (in time) the sequence of posterior densities {p(xt |y1:t )} is known
as the filtering problem and has generated a huge literature over the past 40 years.
A related and important problem addressed within this paper is the fixed-interval
smoothing problem, which consists of computing the sequence of posterior densities
{p(xt |y1:T )} for t ∈ {1, . . . , T }. We provide novel computational methods to solve the
fixed-interval smoothing problem, and to provide realizations from the joint smoothing
density p(x1:T |y1:T ).

1.2 Filtering and smoothing recursions

Using (1) and (2) the joint posterior density p(x1:t |y1:t ) is simply given by

p(x1:t |y1:t ) ∝ µ(x1)

t∏

k=2

f (xk |xk−1)

t∏

k=1

g(yk |xk) (3)

where ‘∝’ stands for ‘proportional to’. To obtain the (marginal) filtering density
p(xt |y1:t ) one can simply marginalize this expression over x1:t−1. Similarly, to obtain
the (marginal) smoothing density p(xt |y1:T ), one can also marginalize p(x1:T |y1:T )

over x1:t−1 and xt+1:T , with p(x1:T |y1:T ) being defined using an expression similar
to (3).

However, it is often algorithmically more convenient to consider operations that
result in sequential (in time) computations. For example, determination of the filtering
density can be performed through the following prediction-update recursion
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p(xt |y1:t−1) =
∫

f (xt |xt−1)p(xt−1|y1:t−1)dxt−1, (4)

p(xt |y1:t ) ∝ g(yt |xt )p(xt |y1:t−1). (5)

Likewise, algorithmically appealing recursions exist for calculating the smoothing
density. One such technique is the forward filtering-backward smoothing recursion
presented in Kitagawa (1987). This recursion shows that, once we have computed all
the predicted and filtered densities {p(xt |y1:t−1)} and {p(xt |y1:t )} over the interval
{1, . . . , T }, then it is possible to execute a backward recursion to obtain {p(xt |y1:T )}
using

p(xt |y1:T ) = p(xt |y1:t )
∫

p(xt+1|y1:T ) f (xt+1|xt )

p(xt+1|y1:t )
dxt+1. (6)

An alternative approach that allows one to compute {p(xt |y1:T )} is through the
two-filter smoothing formula; see Bresler (1986) or Kitagawa (1994). In this approach,
one combines the output of two (independent) filters: the standard (forward) filter given
by (4)–(5) and the so-called backward information filter calculating p(yt :T |xt ). This
information filter satisfies

p(yt :T |xt ) =
∫

p(yt , yt+1:T , xt+1|xt )dxt+1

=
∫

p(yt+1:T |xt+1) f (xt+1|xt )g(yt |xt )dxt+1. (7)

The prediction and the backward information filter are then combined to give the
required density p(xt |y1:T ) using

p(xt |y1:T ) ∝ p(xt |y1:t−1)p(yt :T |xt ). (8)

1.3 Motivation

Except for very simple cases (for example, a finite state–space HMM or a linear
Gaussian state–space model), it is impossible to compute a closed-form expression for
the filtering and smoothing densities. This has seriously limited the use of
general state–space models for many years. However, the recent introduction of Seq-
uential Monte Carlo (SMC) methods (also known as particle filtering methods) provide
numerical solutions to filtering problems using non-linear and non-Gaussian state–
space models; see Doucet et al. (2001) for a review. Broadly speaking, SMC methods
are a class of importance sampling and resampling methods to approximate the joint
posterior densities {p(x1:t |y1:t )}. This provides approximations of the form

p̂ (dx1:t |y1:t ) =
N∑

i=1

W (i)
t δ

X (i)
1:t

(dx1:t ) (9)
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where δx0 (dx) denotes the Dirac delta mass located at x0, W (i)
t > 0,

∑N
i=1 W (i)

t = 1

and {X (i)
1:t } are N random samples, named particles. The main advantages of these

popular techniques are that they do not rely on any functional approximation of the
posterior distributions of interest, and are guaranteed to converge as N → ∞ towards
the distributions of interest under minimal assumptions; see Del Moral (2004). At
time T , we obtain a Monte Carlo approximation of p (x1:T |y1:T ) of the form (9) from
which we can easily approximate the marginals p (xt |y1:T ). However the performance
of this direct method is extremely poor as soon as T is large because of the so-called
degeneracy problem discussed in Doucet et al. (2000). Roughly speaking, because of
the successive resampling steps of the SMC algorithm, the marginals p (xt |y1:T ) are
approximated by one unique particle as soon as T − t is large; only the marginals for
which T − t is ‘small’, say less than 20–50 for a reasonable number of particles, will
be well approximated. Consequently, alternative techniques have been developed to
solve the fixed-interval smoothing problem which we review briefly here.

The simplest possible approach proposed in Kitagawa and Sato (2001) relies on the
fact that, for hidden Markov models with “good” forgetting properties, we have

p ( x1:t | y1:T ) ≈ p
(

x1:t | y1:min(t+�,T )

)
(10)

for � large enough; that is observations collected at times k > t + � do not bring
any additional information about the states X1:t . This suggests a very simple scheme
—simply do not update the estimate of Xt after time t +�. This algorithm is trivial to
implement but the main practical problem is that we typically do not know �. Hence
we need to replace � with an estimate of it denoted L . If we select L < �, then
p( x1:t | y1:min(t+L ,T )) is a poor approximation of p (x1:t | y1:T ). If we select a large
values of L to ensure that L ≥ � then the degeneracy problem remains substantial.
Unfortunately, automatic selection of L is difficult (and, of course, for some poorly
mixing models � is so large that this approach is impractical).

It is also possible to develop a Markov Chain Monte Carlo (MCMC) algorithm to
sample from the joint density p(x1:T |y1:T ) and, hence, from the marginal smoothing
densities {p(xt |y1:T )}. However, the determination of an efficient proposal density for
MCMC is difficult for general state–space models where the target posterior density
can be highly multi-modal; see Godsill et al. (2004) for such examples. An alternative
to the MCMC approach consists of using an SMC implementation of the forward filter-
ing-backward smoothing recursion (6). This has been proposed in Doucet et al. (2000)
to compute {p(xt |y1:T )} by substituting the marginal in xt of the SMC approximation
(9) into (6) to yield

p̂(dxt |y1:T )=
N∑

i=1

W (i)
t

⎡

⎣
N∑

j=1

W ( j)
t+1|T

f
(

X ( j)
t+1|X (i)

t

)

[∑N
l=1 W (l)

t f
(

X (i)
t+1|X (l)

t

)]

⎤

⎦ δ
X (i)

t
(dxt )

=
N∑

i=1

W ( j)
t |T δ

X (i)
t

(dxt ). (11)
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A similar idea was extended in Godsill et al. (2004) to sample from p(x1:T |y1:T ) using
the related forward filtering-backward sampling formula.

Equation (11) yields a consistent approximation as N → ∞ under minimal assump-
tions. This approach is more efficient than the direct SMC appproximation of the
smoothing densities outlined at the beginning of this section but its performance can
still degrade significantly as T increases. The problem of such methods is that it pro-
vides a Monte Carlo approximation of the smoothed distributions which rely on the
same random samples {X (i)

t } used to approximate the filtered distributions; it only
reweights these samples. Hence, if p(xt |y1:t ) and p(xt |y1:T ) have high probability
masses in distinct regions of the space, then the Monte Carlo approximation will have
a high variance for reasonable values of N . Moreover, the subsequent approximations
of p(xk |y1:T ) for k ≤ t will also be poor.

In this paper, we propose a generalised version of the two-filter smoothing
formula which allows us to propose novel SMC algorithms to perform smoothing.
In the generalized two-filter formula, the smoothing density is computed as the com-
bination of two (independent) probability densities on the state–space of the hidden
Markov process: the standard forward-time filter and a modified backward-time filter.
It is possible to employ two ‘standard’ SMC algorithms to approximate these filters
with good practical and theoretical properties under mild assumptions. Consequently,
the resulting approximation does not suffer from poor performance as T increases.
This is demonstrated in the simulation section where very significant performance
improvements over the forward filtering-backward smoothing formula are reported.

1.4 Organization of the paper and contributions

In Sect. 2, we propose a generalised version of the two-filter smoothing formula
where the smoothing densities are computed through a combination of the optimal
filter p(xt |y1:t−1) and an (auxiliary) probability density p̃(xt |yt :T ) in argument xt ,
which is computed backward in time. The main advantage of this generalised for-
mulation over the standard formulation involving p(yt :T |xt ) is that it allows us to use
standard approximation techniques to approximate p̃(xt |yt :T ), a probability density by
construction. The definition of { p̃(xt |y1:T )} relies on the introduction of a sequence
of artificial probability densities {γt (xt )} where t = 1, . . . , T . We discuss several
appealing choices for these densities.

In Sect. 3, we discuss an SMC approximation of the generalised two-filter for-
mula and an SMC algorithm to sample from p(x1:T |y1:T ), which is an alternative to
the forward filtering-backward sampling formula. In Sect. 4, we focus on the impor-
tant class of conditionally linear Gaussian state–space models and present an efficient
Rao-Blackwellized SMC algorithm to perform optimal smoothing. We also discuss an
extension to partially observed linear Gaussian models. Finally, in Sect. 5, we present
various applications of these SMC algorithms to perform smoothing for a non-lin-
ear time series model and a non-linear diffusion process, parameter estimation using
the EM for a stochastic volatility model and blind deconvolution for a seismic signal
model.
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Note that we have deliberately focused on SMC approximations in this article but it
is straightforward to derive functional approximations such as the Extended/Unscented
Kalman filter for the generalised-two filter formula; these algorithms are detailed in
Briers et al. (2004).

2 Generalized two-filter smoothing recursion

2.1 Artificial distributions

Let us consider a sequence of probability densities {γt (xt )} where t = 1, . . . , T which
are defined such that

if p(yt :T |xt ) > 0 then γt (xt ) > 0. (12)

Define for t = T

p̃(xT |yT ) = γT (xT )g(yT |xT )

p̃(yT )
(13)

with

p̃(yT ) =
∫

γT (xT )g(yT |xT )dxT , (14)

where p̃(xT |yT ) as defined in (13) is a probability density by construction.
Further, let us define the sequence of artificial probability densities for t ∈ {2, . . . ,

T − 1}

p̃(xt :T |yt :T ) = γt (xt )
∏T

k=t+1 f (xk |xk−1)
∏T

k=t g(yk |xk)

p̃(yt :T )
, (15)

where

p̃(yt :T ) =
∫

· · ·
∫

γt (xt )

T∏

k=t+1

f (xk |xk−1)

T∏

k=t

g(yk |xk)dxt :T . (16)

Proposition 1 For any t ∈ {1, . . . , T } we have

p(yt :T |xt ) = p̃(yt :T )
p̃(xt |yt :T )

γt (xt )
(17)

where

p̃(xt |yt :T ) =
∫

· · ·
∫

p̃(xt :T |yt :T )dxt+1:T . (18)
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Proof For t = T the result is obvious from (13). For t ∈ {1, . . . , T − 1} we have:

p(yt :T |xt ) =
∫

· · ·
∫

p(yt :T , xt+1:T |xt )dxt+1:T

=
∫

· · ·
∫

p(xt+1:T |xt )p(yt :T |xt :T )dxt+1:T

=
∫

· · ·
∫ T∏

k=t+1

f (xk |xk−1)

T∏

k=t

g(yk |xk)dxt+1:T

=
∫

· · ·
∫

γt (xt )

γt (xt )

T∏

k=t+1

f (xk |xk−1)

T∏

k=t

g(yk |xk)dxt+1:T

= p̃(yt :T )

∫
· · ·
∫

p̃(xt :T |yt :T )

γt (xt )
dxt+1:T

= p̃(yt :T )
p̃(xt |yt :T )

γt (xt )
. (19)

	


2.2 Backward recursion and generalized two-filter formula

We now present a backward recursion allowing us to compute p̃(xt |yt :T ) from
p̃(xt+1|yt+1:T ). Although this recursion will not be of any direct practical use when
deriving the SMC approximation of p̃(xt |yt :T ), it emphasises the similarities and dif-
ferences with the traditional prediction-update recursion given in (4)–(5). Moreover,
it is useful when deriving functional approximations using the Extended/Unscented
Kalman filter.

Proposition 2 For any t ∈ {1, . . . , T − 1}, the following backward prediction-update
recursion holds

p̃(xt |yt+1:T ) :=
∫

p̃(xt+1|yt+1:T )
f (xt+1|xt )γt (xt )

γt+1(xt+1)
dxt+1, (20)

p̃(xt |yt :T ) = g(yt |xt ) p̃(xt |yt+1:T )
∫

g(yt |xt ) p̃(xt |yt+1:T )dxt
(21)

if
∫

p̃(xt |yt+1:T )dxt < ∞.

Proof The term p̃(xt |yt+1:T ) is defined using (20) so there is nothing to prove. For
the update step, we note that
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g(yt |xt ) p̃(xt |yt+1:T ) = g(yt |xt )

∫
p̃(xt+1|yt+1:T )

f (xt+1|xt )γt (xt )

γt+1(xt+1)
dxt+1

= g(yt |xt )

∫
p̃(xt+1:T |yt+1:T )

f (xt+1|xt )γt (xt )

γt+1(xt+1)
dxt+1:T

= p̃(yt+1:T )

p̃(yt :T )

∫
p̃(xt+1:T |yt+1:T )

p̃(xt :T |yt :T )

p̃(xt+1:T |yt+1:T )
dxt+1:T .

Hence (21) follows. 	


Remark Note that p̃(xt |yt+1:T ) defined in Proposition 2 is not a probability
density if γt+1(xt+1) �= ∫ f (xt+1|xt )γt (xt )dxt . A sufficient condition to ensure∫

p̃(xt |yt+1:T )dxt < ∞ consists of selecting the artificial densities {γt (xt )} such
that

f (xt+1|xt )

γt+1(xt+1)
< C < +∞ (22)

for any (xt , xt+1) ∈ X ×X ; i.e. γt+1(xt+1) needs to have thicker tails than f (xt+1|xt )

for any xt . In the next section we will see that, although the SMC approximation does
not directly rely on this backward prediction-update formula and (22) is also required
to ensure good performance of this numerical approximation.

Having defined the backward filter p̃(xt |yt :T ), we are now in position to present the
generalised two-filter smoothing formula. Its proof follows directly from the standard
two-filter formula (8) and Proposition 1.

Proposition 3 For any t ∈ {2, . . . , T − 1}, we have

p(xt |y1:T ) ∝ p(xt |y1:t−1) p̃(xt |yt :T )

γt (xt )

∝
∫

f ( xt | xt−1) p(xt−1|y1:t−1)dxt−1. p̃(xt |yt :T )

γt (xt )
(23)

and for t = 1

p(x1|y1:T ) ∝ µ (x1) p̃(x1|y1:T )

γ1(x1)
. (24)

We also detail the following decomposition of the joint density p(x1:T |y1:T ), which
will be utilized in Sect. 3.

Proposition 4 For any t ∈ {2, . . . , T − 1}, we have

p(x1:T |y1:T ) = p(xt |y1:T )p(x1:t−1|y1:t−1, xt )p(xt+1:T |yt+1:T , xt ), (25)
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where

p(x1:t−1|y1:t−1, xt ) =
t−1∏

k=1

p(xk |y1:k, xk+1) (26)

=
t−1∏

k=1

f (xk+1|xk)p(xk |y1:k)
p(xk+1|y1:k)

, (27)

and

p(xt+1:T |yt+1:T , xt ) =
T∏

k=t+1

p(xk |yk:T , xk−1) (28)

=
T∏

k=t+1

f (xk |xk−1)p(yk:T |xk)

p(yk:T |xk−1)
(29)

where

f (xk |xk−1)p(yk:T |xk)

p(yk:T |xk−1)
∝ γk−1(xk−1) f (xk |xk−1) p̃(xk |yk:T )

γk(xk) p̃(xk−1|yk:T )
. (30)

2.3 Choice of artificial distributions

Although theoretically any sequence of artificial densities {γt (xt )} can be used as
long as they satisfy (12), choice of these densities will have a significant impact on
the performance of the SMC procedures used to implement the generalised two-filter
formula. SMC algorithms approximate p(xt |y1:t ) ∝ p(xt )p(y1:t |xt ) where p(xt ) is
the marginal prior density of Xt and p̃(xt |yt :T ) ∝ γt (xt )p(yt :T |xt ) by two clouds of
particles located in regions of high probability masses of these densities and these den-
sities are combined through (23) to compute p(xt |y1:T ). If these densities have their
regions of high probability masses significantly disjoint, then the resulting approxima-
tion combining both cannot be expected to perform well. The only degree of freedom
being γt (xt ), it is sensible to select γt (xt ) as the marginal prior density p(xt ); that is
γt (xt ) is defined recursively through

γt (xt ) :=
∫

γt−1(xt−1) f (xt |xt−1)dxt−1 (31)

with γ1(x1) = µ (x1). This is the choice adopted in Bresler (1986). In this case
p̃(xt |yt+1:T ) defined in (20) is a probability density as (31) ensures that

γ (xt |xt+1) := f (xt+1|xt )γt (xt )

γt+1(xt+1)
(32)
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is a (generally time inhomogeneous) backward Markov kernel. Note that (32) is also
a backward Markov kernel for any choice of γ1(x1) if (31) is satisfied. Selecting
γ1(x1) �= µ (x1) can be convenient. Assume, for example, that f (·|·) admits an invari-
ant density π (·). Then even if µ (x1) �= π (x1), it is useful to set γ1 (x1) = π (x1)

as it ensures that γt (xt ) = π (xt ) for all t ≥ 2. Moreover, we have γ (xt |xt+1) =
f (xt |xt+1) if f is π -reversible.

Although defining γt (xt ) through (31) appears appealing, this is also very limiting.
For non-linear non-Gaussian state–space models, it is typically impossible to compute
the integrals appearing in (31) in closed-form. Hence, it is impossible to implement
the generalised two-filter smoothing formula for this choice of artificial densities. Our
approach is clearly more general and does not require γt (xt ) to satisfy (31) allow-
ing the generalised two-filter smoothing formula to be implemented for any dynamic
model.

Nevertheless, a generic sensible choice consists of selecting for γt (xt ) an analytical
approximation of the prior p (xt ). For example in the standard case where one can
generate easily a large number P of sample paths

{
X (i)

1:T
}

from the Markov process
{Xt }t≥1, it is possible to fit a mixture of Gaussian densities (or t densities) to the
empirical approximations of the priors

p̂ (dxt ) = 1

P

P∑

i=1

δ
X (i)

t
(dxt ) (33)

to obtain γt (xt ) or to use

γt (xt ) = 1

P

P∑

i=1

f
(

xt | X (i)
t−1

)
. (34)

This second approximation might be too computationally intensive for practical appli-
cations. If the Markov process {Xt }t≥1 is an ergodic Markov process with an unknown
invariant density π , then we propose to select a time-invariant density γt (xt ) = γ (xt )

approximating π (xt ). To determine γ (x), we can simulate a long sample path X1:P ,
where P >> T and fit a mixture of Gaussian densities (or t densities) to the empirical
measure

π̂ (dx) = 1

P − P0

P∑

t=P0+1

δXt (dx) (35)

where P0 corresponds to the burn-in or use

γ (x) = 1

P − P0

P∑

t=P0+1

f ( x | Xt−1) . (36)
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2.4 Discussion

Several numerical implementations of the standard two-filter smoothing formula (7)–
(8) described in the previous Section have already been proposed in the literature;
e.g. among others in Helmick et al. (1995) for switching state–space models and
in Isard and Blake (1998) for non-linear non-Gaussian state–space models. How-
ever, the algorithms proposed in these references rely on strong assumptions on the
models and/or provide incorrect results. The main problem is that, although it is
tempting to approximate both p(xt |y1:t ) and p(yt :T |xt ) using popular approximation
schemes, e.g. mixture of Gaussians as in Helmick et al. (1995), Extended/Unscented
Kalman filter or SMC as in Isard and Blake (1998), these are not valid approaches
in general for the term p(yt :T |xt ) because p(yt :T |xt ) is not a probability density in
argument xt and thus its integral over xt may not be finite. Specifically, techniques
such as SMC can only approximate finite measures and so their application to sce-
narios where

∫
p(yt :T |xt )dxt = ∞ will provide incorrect results. Moreover, even if∫

p(yt :T |xt )dxt < ∞, current schemes rely on a backward dynamic model which has
counter-intuitive properties as illustrated by the following example.

In cases where we have Xt = ϕ(Xt−1, Vt ) and it is possible to solve this equation
in Xt−1 to obtain

Xt−1 = ζ(Xt , Vt ), (37)

several authors in the literature define implicitly a backward Markov kernel (32)
through (37) which corresponds to

γ (xt−1|xt ) = f (xt |xt−1)∫
f (xt |xt−1)dxt−1

(38)

but, even if
∫

f (xt |xt−1)dxt−1 < ∞, this typically leads to a backward Markov kernel
with undesirable properties. For example, consider a stationary AR(1) process defined
by

Xt = aXt−1 + σ Vt , X1 ∼ N
(

0,
σ 2

1 − a2

)
, Vt

i.i.d.∼ N (
0, σ 2) (39)

for |a| < 1 where N (µ, υ) denotes the normal distribution of mean µ and variance
υ and N (x;µ, υ) the normal density of argument x and similar statistics. It follows

from (31) that γt (x) = N
(

x; 0, σ 2

1−a2

)
and a backward Markov kernel (32) of the

form

γ (xt−1|xt ) = f (xt−1|xt ) = N (
xt−1; axt , σ

2). (40)

On the other hand, Xt−1 = a−1(Xt − σ Vt ) leads to

γ (xt−1|xt ) = N (xt−1; a−1xt , a−2σ 2) (41)

which is a non-stationary Markov process.
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3 Generalized SMC two-filter smoother

SMC methods are a generic set of methods to sample from any sequence of densities
of increasing dimension; see Doucet et al. (2001) for a review. We briefly describe an
SMC approximation allowing us to approximate the artificial densities { p̃ ( xt :T | yt :T )}
hence the marginals { p̃ ( xt | yt :T )}. We focus on a simple sequential importance resam-
pling (SIR) strategy although more sophisticated algorithms can be implemented. The
SIR algorithm relies on a sequence of importance densities: the density q̃ ( xT | yT )

whose support include the support of p̃ ( xt | yt :T ) and q̃ ( xt | yt , xt+1) whose support
include the support of g(yt |xt )γt (xt ) f (xt+1|xt ). The algorithm proceeds as follows:
see Doucet et al. (2001) for implementation details.

SMC implementation of the generalised backward information filter

1. Initialisation, time t = T .

• For i = 1, . . . , N sample X̃ (i)
T ∼ q̃ ( ·| yT ); evaluate the weight

W̃ (i)
T ∝

p̃
(

X̃ (i)
T

∣
∣∣ yT

)

q̃
(

X̃ (i)
T

∣
∣∣ yT

) ∝
γT

(
X̃ (i)

T

)
g
(

yT | X̃ (i)
T

)

q̃
(

X̃ (i)
T

∣
∣∣ yT

) . (42)

Iterate Steps 2 and 3.
2. Resampling.

• Normalize the weights
∑N

i=1 W̃ (i)
t = 1.

• Resample the particles
{

X̃ (i)
t :T
}

and set W̃ (i)
t = 1

N .

3. Sampling.
• Set t = t − 1; if t = 0 stop.

• For i = 1, . . . , N sample X̃ (i)
t ∼ q̃

(
·| yt , X̃ (i)

t+1

)
; evaluate the weight

W̃ (i)
t ∝

p̃
(

X̃ (i)
t :t+1

∣∣∣ yt :T
)

p̃
(

X̃ (i)
t+1

∣∣∣ yt+1:T
)

q̃
(

X̃ (i)
t

∣∣∣ yt , X̃ (i)
t+1

)

∝
g
(

yt |X̃ (i)
t

)
γt

(
X̃ (i)

t

)
f
(

X̃ (i)
t+1

∣∣∣ X̃ (i)
t

)

γt+1

(
X̃ (i)

t+1

)
q̃
(

X̃ (i)
t

∣∣∣ yt , X̃ (i)
t+1

) . (43)

We obtain the following Monte Carlo approximation of p̃ ( xt :T | yt :T )

̂̃p (dxt :T | yt :T ) =
N∑

i=1

W̃ (i)
t δ

X̃ (i)
t :T

(dxt ) (44)
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hence an approximation of p̃ ( xt | yt :T )

̂̃p (dxt | yt :T ) =
N∑

i=1

W̃ (i)
t δ

X̃ (i)
t

(dxt ).

Now combining the particle approximations of p( xt | y1:t−1) and p̃( xt | yt :T ) and using
(23), we obtain the following approximation of p ( xt | y1:T )

p̂(dxt |y1:T ) =
N∑

j=1

W ( j)
t |T δ

X̃ ( j)
t

(dxt ) (45)

where

W ( j)
t |T ∝ W̃ ( j)

t

N∑

i=1

W (i)
t−1

f
(

X̃ ( j)
t |X (i)

t−1

)

γt

(
X̃ ( j)

t

) . (46)

Note that it is also possible to combine the particle approximations of p(xt |y1:t ) and
p̃ (xt | yt+1:T ) to obtain an approximation of p ( xt | y1:T ). Like the SMC implemen-
tation of the forward filtering-backward smoothing formula, the computational com-
plexity of this algorithm is O(T N 2). However, fast computational methods have been
developed to address this problem (Klaas et al. 2006). Moreover, note that if (22) is sat-
isfied, then it is possible to reduce this computational complexity to O(T N ) by using
rejection sampling with p̂ (dxt−1| y1:t−1) ̂̃p (dxt | yt :T ) as a proposal. More recently, an
important sampling type approach has also been proposed in Fearnhead et al. (2008b)
to reduce the computational complexity to O(T N ); see Briers et al. (2005) for a
similar idea developed in the context of belief propagation. Fearnhead et al. (2008b)
also discusses an extension to address the case where the Radon–Nikodym derivative
f (xt |xt−1) /γt (xt ) is not defined because f (xt |xt−1) has a singular component.

3.1 Algorithm settings and convergence results

For the forward filter, it is well-known that a sensible choice for the importance
density consists of minimizing the variance of the incremental importance weight
g( yt | xt ) f ( xt | xt−1)/q( xt | yt , xt−1) conditional upon xt is given by qopt( xt | yt ,

xt−1) ∝ g ( yt | xt ) f ( xt | xt−1) and the resulting importance weight is equal to
p ( yt | xt−1) = ∫

g ( yt | xt ) f ( xt | xt−1) dxt ; see Doucet et al. (2000). A reasoning
similar to Doucet et al. (2000) leads to the following result: the optimal backward
importance density q̃opt( xt | xt+1, yt ) minimizing the variance of the incremental
weight

w̃t (xt , xt+1) = g ( yt | xt ) γt (xt ) f ( xt+1| xt )

γt+1 (xt+1) q̃ ( xt | yt , xt+1)
. (47)
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given xt+1 satisfies

q̃opt ( xt | yt , xt+1) ∝ g ( yt | xt )
γt (xt ) f ( xt+1| xt )

γt+1 (xt+1)
(48)

and the associated incremental weight (47) is equal to

w̃
opt
t (xt+1) =

∫
g ( yt | xt )

γt (xt ) f ( xt+1| xt )

γt+1 (xt+1)
dxt . (49)

If it is not possible to sample (48) and/or compute (49) then one can design an approx-
imation of (48), for example, using an Extended or Unscented Kalman approximation,
computing the resulting incremental importance weight using (47).

From a convergence point of view, the general results on SMC methods presented
in Del Moral (2004) such as Lp-convergence, central limit theorem or uniform (in
time) convergence can be applied straightforwardly and we do not present them here.
We just recall that these results typically require the incremental weight (47) to be
upper-bounded on X × X .

3.2 SMC sampling from the joint distribution

We now provide detail of the SMC implementation of this algorithm, which is the
generalised two-filter smoothing analogy of the procedure outlined in Godsill et al.
(2004).

SMC procedure to sample approximately from p ( x1:T | yt :T )

1. Select t to be between 2 and T − 1, say t = T/2 if T is even, and sample
X ′

t ∼ p̂(·|y1:T ) (by randomly selecting X̃ (i)
t with probability W (i)

t |T ).

2. Sample from (26) by sampling each variate recursively backwards in time,
X ′

t−1, . . . , X ′
1, by randomly selecting sample X ′

k from an approximation of

p(xk |yk:T , X ′
k+1), i.e. by randomly selecting X (i)

k with probability

α
(i)
k ∝ W (i)

k f (X ′
k+1|X (i)

k ).

3. Sample from (28) by sampling each variate recursively forward in time,
X ′

t+1, . . . , X ′
T , by randomly selecting sample X ′

k from an approximation of

p(xk |yk:T , X ′
k−1), i.e. by randomly selecting X̃ (i)

k with probability

β
(i)
k ∝ W̃ (i)

k

γk−1(X ′
k−1) f (X̃ (i)

k |X ′
k−1)

γk(X̃ (i)
k )

.

It follows from Proposition 4 that X ′
1:T = {X ′

1, . . . , X ′
T } is an approximate reali-

sation from p(x1:T |y1:T ). An important advantage of this algorithm over the forward
filtering-backward sampling is that the two sampling operations can be performed in
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parallel. Moreover, a straightforward generalisation to the case where the time interval
{1, 2, . . . , T } is divided into more than two intervals can also be easily derived.

4 Generalized two-filter smoothing for conditionally linear Gaussian models

A popular mechanism for reducing the variance of an estimator is to exploit the
Rao–Blackwell theorem. By performing so-called Rao–Blackwellisation, efficient
SMC filtering algorithms have appeared in the literature; see Chen and Liu (2000) and
Doucet et al. (2000). Informally, Rao–Blackwellisation exploits the fact that analytic
substructure appears in the problem under consideration and so one can marginalise
such structure to reduce the dimension of the space on which one is performing the
Monte Carlo approximation. That is, the space E can be partitioned into two disjoint
subsets E A and EZ with associated random variables At and Zt . We assume that Zt

can be marginalised analytically.
Consider the following conditionally linear Gaussian model

Zt = H(At )Zt−1 + J (At )Vt (50)

Yt = K (At )Zt + L(At )Wt (51)

where Vt
i.i.d.∼ N (0, Iv), Wt

i.i.d.∼ N (0, Iw) and {At }t∈N is a latent Markov
process. H(·), J (·), K (·) and L(·) are matrices of appropriate dimension. Denote
Xt := (At Zt ). The initial state X1 is distributed according to µ(x1) = µa(a1)µz(z1)

where µz(z1) = N (z1; m, �) and the transition kernel satisfies

f (xt |xt−1) = fz(zt |zt−1, at ) fa(at |at−1) (52)

with fz(zt |zt−1, at ) = N (
zt ; H(at )zt−1, J (at )J (at )

T
)

and g(yt |xt )= N (yt ;
K (at )zt , L(at )L(at )

T
)
.

We are interested in estimating the sequence of smoothed densities {p(at , zt |y1:T )}.
It is possible to use the methods described in the previous sections directly on the pro-
cess {Xt }t∈{1,...,T } to estimate {p(at , zt |y1:T )} directly. However, this would not take
into account the structure of the model (50) and (51). Indeed, conditional upon {At }t∈N,
(50) and (51) define a standard linear Gaussian model and this can be exploited to pro-
pose a specific generalised two-filter formula. We are able to reduce the variance of
the SMC estimates by performing calculations.

4.1 Generalized backward information filter

It is straightforward to show that

p(at , zt |y1:T ) ∝ p(at , zt |y1:t−1) p̃(at , zt |yt :T )

γ a
t (at )γ

z
t (zt )

(53)
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where {γ a
t (at )} and {γ z

t (zt )} are two sequences of artificial densities with {γ z
t (zt )}

selected as γ z
t (zt ) = N (zt ; mt , �t ). As will be shown, p̃(at , zt |yt :T ) is calculated

through

p̃(at , zt |yt :T ) =
∫

p̃(at :T , zt |yt :T )dat+1:T (54)

where the artificial densities p̃(at :T , zt |yt :T ) are defined, for t = T , as

p̃(aT , zT |yT ) ∝ γ a
T (aT )γ z

T (zT )g(yT |aT , zT ), (55)

and for t ≥ 2

p̃(at :T , zt |yt :T ) ∝ γ a
t (at )

T∏

k=t+1

fa(ak |ak−1)γ
z
t (zt )p(yt :T |at :T , zt ). (56)

Equations (55) and (56) will be useful in determining a recursive weight update
equation in what follows. Compared to (13) and (15), (55) and (56) rely on the term
p(yt :T |at :T , zt ) which does not have an elegant factorisation as in the standard case.
Calculation of this term under the current modelling assumptions is a generalisation of
the backward information filter for linear Gaussian models presented in Mayne (1966)
and Doucet and Andrieu (2001).

4.1.1 SMC implementation

An SMC algorithm approximates the density p̃(at :T |yt :T ) (and so p̃(at |yt :T ) by
marginalisation) through a set of weighted samples. Calculation of the weights is
performed by marginalisation of Zt . That is, at time t = T , the weight is given by

W̃ (i)
T = p̃( Ã(i)

T |yT )

q̃( Ã(i)
T |yT )

=
∫

p̃( Ã(i)
T , zT |yT )dzT

q̃( Ã(i)
T |yT )

. (57)

Direct substitution of Eq. (55) into (57) yields

W̃ (i)
T ∝ γ a

T ( Ã(i)
T )

∫
γ z

T (zT )g(yT | Ã(i)
T , zT )dzT

q̃( Ã(i)
T |yT )

. (58)

Similarly, the weight at time t ≥ 2 is given by

W̃ (i)
t ∝ W̃ (i)

t+1

p̃( Ã(i)
t :T |yt :T )

p̃( Ã(i)
t+1:T |yt+1:T )q̃( Ã(i)

t |yt :T , Ã(i)
t+1:T )

∝ W̃ (i)
t+1

∫
p̃( Ã(i)

t :T , zt |yt :T )dzt
∫

p̃( Ã(i)
t+1:T , zt+1|yt+1:T )dzt+1q̃( Ã(i)

t |yt :T , Ã(i)
t+1:T )

. (59)
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Direct substitution of (56) into (59) yields

W̃ (i)
T ∝

W̃ (i)
t+1

γ a
t

(
Ã(i)

t
)

fa
(

Ã(i)
t+1| Ã(i)

t
) ∫

γ z
t (zt )p(yt :T | Ã(i)

t :T , zt )dzt

γ a
t+1

(
Ã(i)

t+1

)
q̃
(
Ã(i)

t |yt :T , Ã(i)
t+1:T

) ∫
γ z

t+1(zt+1)p(yt+1:T | Ã(i)
t+1:T , zt+1)dzt+1

.

(60)

As is apparent, to implement this backward filter, it is necessary to be able to com-
pute

∫
γ z

t (zt )p(yt :T |at :T , zt )dzt pointwise up to a normalising constant. This integral,
constructed through the following proposition, justifies the necessary introduction of
the artificial densities {γ z

t }, and the selection of a Gaussian density (or more generally
a Gaussian mixture density) for the variables {Zt }.
Proposition 5 Assume that p(yt :T |at :T , zt ) is parameterised by its information matrix,
P̃−1

t |t (at :T ), and information vector, ν̃t |t (at :T ), with constant term c̃t |t (at :T ), for each
t ∈ {1, . . . , T }. Then, for any t ∈ {1, . . . , T } we have

∫
γ z

t (zt )p(yt :T |at :T , zt )dzt

∝ |̃−1
t |t (at :T )|−1/2 exp

{
−1

2

(
c̃t |t (at :T ) − z̃t |t (at :T )T ̃−1

t |t (at :T )̃zt |t (at :T )
)}

(61)

where

̃−1
t |t (at :T ) = P̃−1

t |t (at :T ) + �−1
t (62)

z̃t |t (at :T ) = ̃t |t (at :T )
(
ν̃t |t (at :T ) + �−1

t mt
)
. (63)

The resulting SMC algorithm proceeds as follows.

SMC implementation of the generalised backward information filter for a conditionally
Gaussian linear model

1. Initialise at time t = T .

• For i = 1, . . . , N , sample Ã(i)
T ∼ q̃(·|yT ).

• For i = 1, . . . , N , compute and normalise the importance weights:

W̃ (i)
T ∝

γ a
T

(
Ã(i)

T

) ∫
γ z

T (zT )p
(

yT | Ã(i)
T , zT

)
dzT

q̃
(

Ã(i)
T |yT

) . (64)

Iterate Steps 2 and 3.
2. Resampling.

• Normalize the weights
∑N

i=1 W̃ (i)
t = 1.

• Resample the particles
{

Ã(i)
t :T
}

and set W̃ (i)
t = 1

N .
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3. Sampling.
• Set t = t − 1; if t = 0 stop.
• For i = 1, . . . , N , sample Ã(i)

t ∼ q̃(·|yt , Ã(i)
t+1:T ); evaluate the weight

W̃ (i)
t ∝ W̃ (i)

t+1

γ a
t

(
Ã(i)

t

)
fa

(
Ã(i)

t+1| Ã(i)
t

) ∫
γ z

t (zt )p(yt :T | Ã(i)
t :T , zt )dzt

γ a
t+1

(
Ã(i)

t+1

)
q̃
(

Ã(i)
t |yt :T , Ã(i)

t+1:T
) ∫

γ z
t+1(zt+1)p(yt+1:T | Ã(i)

t+1:T , zt+1)dzt+1

.

(65)

At first glance, this algorithm seems to require the complete path { Ã(i)
t :T } at time t .

However, like the Rao-Blackwellised particle filters described in Chen and Liu (2000)
and Doucet et al. (2000) the weight update (60) depends on at :T only through the set of
sufficient statistics of the backward information filter for linear Gaussian state–space
models, which will now be derived. Proof of this proposition can be found in Briers
et al. (2004).

Proposition 6 For each t ∈ {1, . . . , T } we have:

p(yt :T |at :T , zt ) ∝ exp

{
−1

2
c̃t |t (at :T ) − 1

2
zT

t P̃−1
t |t (at :T ) + ν̃t |t (at :T )

}
(66)

where the constant term, information matrix and information vector (̃ct |t (at :T ),
P̃−1

t |t (at :T ) and ν̃t |t (at :T ) respectively) satisfy the following recursion

c̃t |t (at :T )= c̃t |t+1(at+1:T )−log
(∣∣(L(at )L(at )

T )−1∣∣)+yT
t

(
L(at )L(at )

T
)

yt

(67)

P̃−1
t |t (at :T ) = P̃−1

t |t+1(at+1:T ) + K (at )
T (L(at )L(at )

T )−1
K (at ) (68)

ν̃t |t (at :T ) = ν̃t |t+1(at+1:T ) + K (at )
T (L(at )L(at )

T )−1
yt (69)

with the intermediate terms c̃t |t+1(at+1:T ), P̃−1
t |t+1(at+1:T ) and ν̃t |t+1(at+1:T )

parameterising
p(yt+1:T |at+1:T , zt ), given as

c̃t |t+1(at+1:T ) = c̃t+1|t+1(at+1:T ) + log
(∣∣(J (at+1)J (at+1)

T )
∣∣)

− log
(∣∣J (at+1)�t+1(at+1:T )J (at+1)

T
∣∣)

−ν̃t+1|t+1(at+1:T )T J (at+1)J (at+1)
T �t+1(at+1:T )̃νt+1|t+1(at+1:T )

(70)

P̃−1
t |t+1(at+1:T ) = H(at+1)

T [I − P̃−1
t+1|t+1(at+1:T )J (at+1)�t+1(at+1:T )J (at+1)

T ]

×P̃−1
t+1|t+1(at+1:T )H(at+1) (71)

ν̃t |t+1(at+1:T ) = H(at+1)
T [I − P̃−1

t+1|t+1(at+1:T )J (at+1)�t+1(at+1:T )J (at+1)
T ]

×ν̃t+1|t+1(at+1:T )T , (72)
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where:

�t+1(at+1:T ) = (
I + J (at+1)

T P̃−1
t+1|t+1(at+1:T )J (at+1)

)−1
.

The boundary conditions parameterising p(yT |aT , zT ) are as follows

c̃T |T (aT ) = − log
(∣∣(L(aT )L(aT )T )−1∣∣)+ yT

T

(
L(aT )L(aT )T )−1

yT (73)

P̃−1
T |T (aT ) = K (aT )T (L(aT )L(aT )T )−1

K (aT ) (74)

ν̃T |T (aT ) = K (aT )T (L(aT )L(aT )T )−1
yT . (75)

It is important that one calculates the constant terms in the above recursion since
they are dependent upon at :T and so contribute to the SMC weight update equation.
This is in contrast to the traditional two-filter formulation for Gaussian state–space
models, in which calculation of this constant term is unnecessary.

4.1.2 Algorithm settings

In this context the optimal importance function for the generalised backward infor-
mation filter is given by

q̃opt (at |yt :T , at+1:T )∝ γ a
t (at ) fa (at+1|at )

∫
γ z

t (zt )p(yt :T |at :T , zt )dzt

γ a
t+1 (at+1)

∫
γ z

t+1(zt+1)p(yt+1:T |at+1:T , zt+1)dzt+1
. (76)

The optimal importance density only depends on at :T through at :t+1 and the the suffi-
cient statistics for the backward information filter derived above. Hence, when using
this importance density there is no need to store the complete path

{
Ã(i)

t :T
}
.

4.1.3 Combination step

Using equation (53), it is possible to combine the approximation of the (generalised)
backward information filter with an approximation based on a standard Rao-Black-
wellised SMC filter presented in Chen and Liu (2000) and Doucet et al. (2000)

p̂ (dat , zt |y1:t−1)

=
N∑

i=1

W (i)
t−1 f (at |A(i)

t−1)N
(
zt ; P−1

t |t−1

(
A(i)

1:t
)
νt |t−1(a1:t ), Pt |t−1

(
A(i)

1:t
))

, (77)

where the terms P−1
t |t−1

(
A(i)

1:t
)

and νt |t−1(a1:t ) are the (predicted) information matrix
and vector computed in the forward filtering operation. All that remains to be specified
is the approximation to the backward information filtering quantity p̃(at , zt |yt :T ). By
(54) we can write the following

p̃(at , zt |yt :T ) = γ z
t (zt )

∫
p̃(at :T |yt :T )p(yt :T |at :T , zt )∫

γ z
t (z′

t )p(yt :T |at :T , z′
t )dz′

t
dat+1:T , (78)
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and so

̂̃p(at , zt |yt :T )

= γ z
t (zt )

N∑

j=1

W̃ ( j)
t δ

A( j)
t

(at ) exp

{
−1

2
z̃t |t (A( j)

t :T )T ̃−1
t |t (A( j)

t :T )zt |t (A( j)
t :T )

− 1

2
zT

t P̃−1
t |t (A( j)

t :T )zt + ν̃t |t (A( j)
t :T )

}
. (79)

Through straightforward algebraic manipulations, one obtains the following
approximation of the desired density

p̂(dat , zt |y1:T ) =
N∑

j=1

N∑

i=1

W (i, j)
t |T δ

Ã( j)
t

(dat )N

×
(

zt ; P−1
t |T (A(i)

1:t−1, Ã(i)
t :T )νt |T (A(i)

1:t−1, Ã(i)
t :T ), Pt |T (A(i)

1:t−1, Ã(i)
t :T )

)
,

where

P−1
t |T (a1:T ) = P−1

t |t−1(a1:t ) + P̃−1
t |t (at :T ) (80)

νt |T (a1:T ) = Pt |T (a1:T )
[
νt |t−1(a1:t ) + ν̃t |t (at :T )

]
(81)

and the weight equation being given as

W (i, j)
t |T ∝ W̃ ( j)

t W (i)
t−1

fa

(
Ã( j)

t |A(i)
t−1

)

γ a
t ( Ã( j)

t )
exp

{
−1

2

(
log(|−1

t |T (A(i)
1:t−1, Ã( j)

t :T )|)

+ log(|Pt |t−1(A(i)
1:t−1)|) − log(|Pt |T (A(i)

1:t−1, A( j)
t :T )|)

−̃zt |t ( Ã( j)
t :T )T ̃t |t ( Ã( j)

t :T )−1̃zt |t ( Ã( j)
t :T )T

+νt |t−1(A(i)
1:t−1)P−1

t |t−1(A(i)
1:t−1)νt |t−1(A(i)

1:t−1)

−νt |T (A(i)
1:t−1, Ã( j)

t :T )P−1
t |T (A(i)

1:t−1, Ã( j)
t :T )νt |T (A(i)

1:t−1, Ã( j)
t :T )

)}
. (82)

4.2 Extensions

A similar Rao-Blackwellised SMC idea can be applied to the class of partially observed
linear Gaussian models defined by

Zt = H Zt−1 + J Vt , (83)

At = K Zt + LWt , (84)

Yt | (Zt = yt , At = at ) ∼ g ( ·| at ) , (85)
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where {Zt }t∈N and {At }t∈N are unobserved processes, Vt
i.i.d.∼ N (0, Iv), Wt

i.i.d.∼
N (0, Iw) and H, J, K and L are matrices of appropriate dimension; see Andrieu and
Doucet (2002) and de Jong (1997) for applications. Let us denote Xt := (At , Zt ). The
initial state X1 is distributed according to µ (x1) = N (z1; m, �) fa (at | zt ) and the
transition kernel satisfies

f ( xt | xt−1) = fa,z (at | at−1, zt ) fz ( zt | zt−1) (86)

where fa,z
(
at
∣∣at−1, zt

)=N (
at ; K zt , L LT

)
and fz

(
zt | zt−1

)=N (
zt ; H zt−1, J J T

)
.

We are interested in computing the sequence of smoothed densities {p (at | y1:T )}. In
this case, we can exploit the structure of the model to integrate out zt through Kalman
filtering techniques as in Andrieu and Doucet (2002).

The generalised two-filter smoothing formula is given by

p (at | y1:T ) ∝ p (at | y1:t−1) p̃ (at | yt :T )

γt (at )
(87)

where

p̃ (at :T | yt :T ) ∝ γt (at ) p (at+1:T | at )

T∏

k=t

g ( yk | ak) . (88)

In an SMC implementation, the forward filter {p (at | y1:t )} will be approximated by a
Rao-Blackwellised particle filter which is a random sum of Kalman filters described in
Andrieu and Doucet (2002) whereas { p̃ (at :T | yt :T )} can be implemented in a similar
manner. It relies on computing

p̃ (at :T | yt :T )

p̃ (at+1:T | yt+1:T ) q̃ (at | yt :T , at+1:T )
∝ γt (at ) p (at+1:T | at ) g ( yt | at )

γt+1 (at+1) p (at+2:T | at+1)

∝ γt (at ) p (at | at+1:T ) p (at+1) g ( yt | at )

γt+1 (at+1) p (at )
.

(89)

We can use here γt (at ) = p (at ) as it can easily be computed analytically using
(83)–(84). All these calculations can be done efficiently using a generalised backward
information filter similar to the one developed in the previous section but associated
here to (83)–(84) as

p (at | at+1:T ) = p (at+1:T | at ) p (at )

p (at+1:T )
(90)
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where

p (at+1:T | at ) =
∫

p (at+1:T | zt ) p ( zt | at ) dzt , (91)

p (at+1:T ) =
∫

p (at+1:T | zt ) p (zt ) dzt . (92)

5 Applications

In this section we present four applications of the generalised two-filter smoothing
algorithm.

5.1 A non-linear time series

Consider the time series problem

Xt = 1

2
Xt−1 + 25

Xt−1

1 + X2
t−1

+ 8 cos(1.2 (t − 1)) + Vt (93)

Yt = X2
t

20
+ Wt , (94)

where X1 ∼ N (0, 5),.Vt
i.i.d.∼ N (0, 15) and Wt

i.i.d.∼ N (0, 0.01).
To enable a comparison between the two (forward–backward and two-filter)

smoothing methodologies, 100 Monte Carlo simulations were performed. We chose
to use an unscented approximation to the optimal importance function for both the
forward and backward passes. We compared the two-filter smoothing algorithm using
a time-invariant artificial density given by an approximation of (33) (t-f(1)) and (35)
(t-f(2)) by a mixture of three Gaussians together with the forward–backward smooth-
ing algorithm f-b. Note that the same set of samples constructed in the forward filter
was used by all three algorithms. Here {Xt } does not admit an invariant density because
of the cyclical component in (93) but it is still possible to select (35).

In Table 1, we display the effective sample size (ESS) for varying numbers of
samples averaged over 100 Monte Carlo simulations for t-f(1) and f-b. The ESS pro-
vides a measure of the degeneracy of the particle set and a larger ESS value is desired;
see Liu and Chen (1998) for example. The SMC t-f(1) algorithm provides significantly
higher ESS and is thus expected to yield lower-variance estimate that the SMC f-b
algorithm; similar results were obtained for t-f(2). This is confirmed by evaluating
the average RMS error values for the minimum mean square estimate (MMSE) for
these simulations are displayed in Table 2. It is clear to see that the two-filter SMC
algorithms converges to the MMSE estimate faster than the forward–backward SMC
algorithm. Moreover, the use of either approximation for γ using the transition density
appears to provide a reasonable artificial density in this particular case.
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Table 1 Average ESS values
for 100 Monte Carlo runs of 50
time epochs

N f-b t-f(1)

50 34.8 47.2

100 67.7 94.3

500 327.9 472.2

1000 645.2 940.2

Table 2 Average RMS values
for 100 Monte Carlo runs of 50
time epochs

N f-b t-f(1) t-f(2)

50 90.14 41.34 41.03

100 86.40 41.66 40.38

500 81.12 43.56 45.14

1000 83.36 39.73 39.99

5.2 A non-linear diffusion process

Consider a scalar diffusion process

dXt = α(Xt )dt + dBt ; t ∈ [0, T ] (95)

where dBt is a Brownian motion. As in the previous sections, we assume that we
observe the process at discrete times t1, t2, . . . in some additive white Gaussian noise.
In Fearnhead et al. (2008a) it is shown that is possible to write the transition density
of the diffusion process as

f (xtk+1 |xtk )=N (xtk+1 −xtk ; 0,�tk+1 Id) exp
{

A(xtk+1)− A(xtk )
}

a(xtk , xtk+1), (96)

where A(u) = ∫
u α(z)dz is the anti-derivative of α, �tk+1 = tk+1 − tk , and

a(xtk , xtk+1) = E
W

(xtk ,xtk+1 )

[
exp

{
−1

2

∫ tk+1

tk
(α2 + α′)(ωs)ds

}]
. (97)

Here W
(xtk ,xtk+1 ) denotes a Brownian bridge starting at xtk and finishing at xtk+1 . It is

not possible to estimate f (xtk+1 |xtk ) exactly but it is shown in Fearnhead et al. (2008a)
how to obtain a positive unbiased estimate of this quantity. Hence, it is possible to
obtain an unbiased estimate of the weights given by (46) appearing in the generalised
two-filter smoothing algorithm

Ŵ ( j)
tk+1|T ∝ W̃ ( j)

tk+1
×

N∑

i=1

W (i)
tk

γt
(
X̃ ( j)

tk+1

)N (X̃ ( j)
tk+1

− X (i)
tk ; 0,�tk+1 Id)

× exp
{

A(X̃ ( j)
tk+1

) − A(X (i)
tk ) − l�t

}
r(xtk , xtk+1) (98)
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where r(xtk , xtk+1) is the realisation of a random variable with mean a(xtk , xtk+1); see
Fearnhead et al. (2008a) for details. Obtaining an unbiased estimate of the impor-
tance weights is sufficient to ensure that our smoothing estimates are (asymptotically)
consistent.

Note that using the forward filtering-backward smoothing recursion in this context
would be much more complex as the transition density appears both at the numera-
tor and the denominator of (11); hence we cannot obtain easily an unbiased estimate
of (11). This means that the generalised two-filter smoothing algorithm is the only
practical algorithm for use within this class of models.

We apply this algorithm to the following diffusion process considered in Fearnhead
et al. (2008a)

dXt = sin(Xt )dt + dBt . (99)

Since the diffusion is a Langevin diffusion, we are able to take the invariant density as
the artificial density in the backward filter. We assume that this diffusion is observed
in some additive white Gaussian noise of variance σ 2 = 1. The simulated diffusion,
data, and results (in the form of residuals), based on N = 1,000 samples, can be
found in Fig. 1. In this example we use the prior density as the proposal densities in
the forward and backward filters, respectively. Clearly, we should be able to improve
performance through the the incorporation of the measurement information into the
proposal density as done in Fearnhead et al. (2008a).

5.3 Parameter estimation through EM for stochastic volatility

In many cases of interest, the state–space model (1)–(2) depends on (additional)
unknown parameters θ ∈ �, i.e.

Xt |Xt−1 = xt−1 ∼ fθ (·|xt−1), (100)

Yt |Xt = xt ∼ gθ (·|xt ), (101)

with X1 ∼ µθ . To estimate θ given y1:T , we propose to maximise the log-likelihood

log pθ (y1:T ) = log pθ (y1) +
T∑

t=2

log pθ (yt |y1:t−1) . (102)

A direct maximization of the likelihood is typically complex and so we utilize the
standard Expectation-Maximization algorithm instead. This iterative algorithm pro-
ceeds as follows: given a current estimate θ(i−1) of θ then

θ(i) = arg max
θ∈�

Q
(
θ(i−1), θ

)
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Fig. 1 Top Smoothed MAP estimate (solid line) and observations Yt (dots). Bottom Residuals

where

Q
(
θ(i−1), θ

) =
∫

log (pθ (x1:T , y1:T )) pθ(i−1) ( x1:T | y1:T ) dx1:T . (103)

The EM algorithm guarantees that Q
(
θ(i), θ

) ≥ Q
(
θ(i−1), θ

)
making it a popular

technique. Note than when Q
(
θ(i−1), θ

)
is approximated numerically using SMC

methods then we cannot ensure this property. When the complete data density is
from the exponential family, then computing Q

(
θ(i−1), θ

)
only requires evaluat-

ing expectations of the form Eθ(i−1) [ϕ1 (xt )| y1:T ] , Eθ(i−1)[ϕ2 (xt−1, xt )| y1:T ] and
Eθ(i−1) [ϕ3 (xt , yt )| y1:T ]. This can be done using any smoothing technique approxi-
mating the marginal densities p(xt |y1:T ) and p ( xt−1:t | y1:T ). We can compute
p ( xt−1:t | y1:T ) using a straightforward generalization of the two-filter formula which
we omit here.

We propose here an application of this parameter estimation algorithm to a stochastic
volatility model which can be written as follows

Xt = θ1 Xt−1 + θ2Vt , X1 ∼
(

0,
θ2

2

1 − θ2
1

)

(104)

Yt = θ3 exp (Xt/2) Wt , (105)
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Fig. 2 Sequence of log-likelihood values with N = 500; Iteration number (x-axis) and log-likelihood
(y-axis)

where Vt
i.i.d.∼ N (0, 1) and Wt

i.i.d.∼ N (0, 1). This process is stationary and we use for
the artificial densities the invariant density. As X1 follows the invariant density of the
process, we cannot maximise Q in closed form but the EM is still a valid maximization
procedure if we just obtain θ(i) such that Q

(
θ(i−1), θ (i)

) ≥ Q
(
θ(i−1), θ

)
. We used

for θ(i)

θ
(i)
1 =

∑T
t=2 Eθ(i−1)

[
Xt−1 Xt | y1:T

]

∑T −1
t=1 Eθ(i−1)

[
X2

t

∣∣ y1:T
] , (106)

θ
(i)
2 =

(

(T − 1)−1

(
T∑

t=2

Eθ(i−1)[X2
t |y1:T ] + θ

(i)2
1

T∑

t=2

Eθ(i−1)[X2
t−1|y1:T ]

− 2θ
(i)
1

T∑

t=2

Eθ(i−1)[Xt−1 Xt |y1:T ]
))1/2

, (107)

θ
(i)
3 =

(

T −1
T∑

t=1

y2
t Eθ(i−1)

[
exp (−Xt )| y1:T

]
)1/2

(108)

which corresponds to the maximum of a modified Q function where the initial state
is discarded and we checked that Q

(
θ(i−1), θ (i)

) ≥ Q
(
θ(i−1), θ

)
. We first tested the

algorithm on a simulated dataset of length 100 and used N = 500 particles. In Fig. 2,
we display the log-likelihood against iteration number averaged over 100 Monte Carlo
runs.

5.4 Blind deconvolution of seismic signals

In several problems related to seismic signal processing and nuclear science, the
signal of interest can be modelled as the output of a linear filter excited by a
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Fig. 3 Top Simulated signal Xt (solid line) and observations Yt (dotted line). Middle Simulated sequence
ν′

t . Bottom Smoothed posterior estimates p(At = 1|y1:T )

Bernoulli–Gaussian (BG) process and observed in white Gaussian noise; see Cappé
et al. (1999). This section provides an example of the detection of a Bernoulli–Gauss
process related to simulated data from the aforementioned application domain using
the conditionally Linear Gaussian smoothing algorithm framework.

The noise process on the input sequence is distributed according to λN (0, σ 2
ν ) +

(1 − λ)δ0, 0 < λ < 1, with δ0 the delta-Dirac measure in 0. The observation noise is
distributed according to N (0, σ 2

w). It is algorithmically convenient to introduce a hid-
den Bernoulli process At ∈ {1, 2} such that P(At = 1) = λ. By modelling the linear
filter using an AR(2) model, the signal admits the following conditionally Gaussian
state–space model representation, the parameters of (50) and (51) are as follows

H =
(

c1 c2
1 0

)
, K = (1 0), L = σ 2

w. (109)

since H , K , and L are not dependent upon the value of the latent discrete process, and

J (at = 1) = (σ 2
ν 0)T , J (at = 2) = (0 0)T . (110)

In the following simulations, we set the parameters to c1 = 1.51, c2 = −0.55,
σw = 0.25, and σν = 0.50. T = 250 observations are generated and the exemplar
data set is shown in Fig. 3. At the bottom of this figure is the smoothed posterior
estimates of p(At = 1|y1:T ) for N = 50. It is clear to see that the algorithm is able to
detect all significant changepoints. Increasing the number of particles did not appear
to improve the results.
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6 Discussion

SMC approximations to generalised two-filter smoothing provide a non-iterative
alternative to MCMC to perform Bayesian inference in non-linear non-Gaussian state–
space models. This approach performs experimentally significantly better than the
alternative non-iterative forward filtering-backward smoothing approach. It is also
more widely applicable as it allows us to deal easily with scenarios where only unbiased
estimates of the target densities are available such as for partially observed diffusions.
Compared to MCMC, the main advantage of this approach will be for multimodal
situations where SMC methods provide typically a better exploration of the space
than MCMC thanks to the exploratory abilities of a large number of interacting parti-
cles.
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