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Abstract: Prior sensitivity analysis and cross-validation are important tools in Bayesian statistics. However,
due to the computational expense of implementing existing methods, these techniques are rarely used.
In this paper, the authors show how it is possible to use sequential Monte Carlo methods to create an
efficient and automated algorithm to perform these tasks. They apply the algorithm to the computation of
regularization path plots and to assess the sensitivity of the tuning parameter in g-prior model selection. They
then demonstrate the algorithm in a cross-validation context and use it to select the shrinkage parameter in
Bayesian regression. The Canadian Journal of Statistics © 2010 Statistical Society of Canada

Résumé: La sensibilité à la loi a priori et la validation croisée sont des outils importants des statistiques
bayésiennes. Toutefois, ces techniques sont rarement utilisées en pratique car les méthodes disponibles
pour les implémenter sont numériquement très coûteuses. Dans ce papier, les auteurs montrent comment
il est possible d’utiliser les méthodes de Monte Carlo séquentielles pour obtenir un algorithme efficace
et automatique pour implémenter ces techniques. Ils appliquent cet algorithme au calcul des chemins de
régularisation pour un problème de régression et à la sensibilité du paramètre de la loi a priori de Zellner
pour un problème de sélection de variables. Ils appliquent ensuite cet algorithme pour la validation croisée
et l’utilisent afin de sélectionner le paramètre de régularisation dans un problème de régression bayésienne.
La revue canadienne de statistique © 2010 Société statistique du Canada

1. INTRODUCTION AND MOTIVATION

An important step in any Bayesian analysis is to assess the prior distribution’s influence on
the final inference. In order to check prior sensitivity, the posterior distribution must be studied
using a variety of prior distributions. If these posteriors are not available analytically, they are
usually approximated using Markov chain Monte Carlo (MCMC) methods. Since obtaining the
posterior distribution for one given prior can be very expensive computationally, repeating the
process for a large range of prior distributions is often prohibitive. Importance sampling has been
implemented as an attempted solution (Besag et al., 1995), but the potential of infinite variance
importance weights makes this technique useless if the posterior distribution changes more than
a trivial amount as the prior is altered. Additionally, this importance weight degeneracy typically
increases with the dimension of the parameter space.

One such prior sensitivity problem is the computation of regularization path plots—a
commonly used tool when performing penalized regression. In these situations there is typically
a tuning parameter which controls the amount of shrinkage on the regression coefficients;
regularization path plots graphically display this shrinkage as a function of the tuning parameter.
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2 BORNN, DOUCET AND GOTTARDO

More precisely, these plots display the shrunken coefficients as a function of their L1-norm
in order to facilitate comparison between competing shrinkage methods. This choice of norm
originates from the LASSO shrinkage and variable selection method of Tibshirani (1996), for
which the LARS algorithm (Efron et al., 2004) may be employed to quickly produce these plots.
In the Bayesian version (Vidakovic, 1998; Park & Casella, 2008), however, we may want to plot
the posterior means (or other posterior summary statistics) of the regression coefficients β ∈ Rp

for a range of the tuning (or penalty) parameter λ. Using a double exponential prior on β, the
corresponding posterior distributions are proportional to

exp

⎛
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2σ2
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⎤
⎦

⎞
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where the response y is assumed to come from a normal distribution with meanXβ and variance
σ2 for a model matrix X. Since approximating (1) using MCMC at one level of λ can take
upwards of an hour depending on the precision required, producing this plot by repeating MCMC
hundreds of times for different λ is impractical.

Another tool requiring repeated posterior approximations is cross-validation, which has two
primary statistical purposes. The first is finding the value of a given parameter (for instance,
the penalty parameter in penalized regression) which minimizes prediction error. The second is
comparing differentmodels’ ormethodologies’ prediction performance. In both situations the data
are split into a training set, which is used to fit the model, and a testing set, which is used to gauge
the prediction performance of the trained model. A typical example would involve fitting a model
on the training set for a range of values of some model parameter, then setting this parameter to
the value that results in the lowest prediction error rate on the testing set. For example, we might
wish to select the value of λ in (1) to minimize prediction error. From a computational standpoint,
cross-validation is similar to prior sensitivity in both structure and complexity. Further, the entire
process is usually repeated for a variety of different training and testing sets and the results are then
combined. Although importance sampling has been applied to cross-validation (e.g., Alqallaf &
Gustafson, 2001), the problem of infinite variance importance weights remains (Peruggia, 1997).

In this paper, we begin by motivating and developing sequential Monte Carlo (SMC)
methods, then subsequently apply them to prior sensitivity analysis and cross-validation. While
the SMC methods themselves are well-established in the literature, to the authors’ knowledge
their application to prior sensitivity and cross-validation has yet to be explored. In Section 2
we present an efficient algorithm for sampling from a sequence of potentially quite similar
probability distributions defined on a common space. Section 3 demonstrates the algorithm in a
prior sensitivity setting and applies it to the creation of regularization path plots and the sensitivity
of the tuning parameters when performing variable selection using g-priors. Cross-validation
with application to Bayesian regression is developed in Section 4. We close with extensions and
concluding remarks in Section 5.

2. SEQUENTIAL MONTE CARLO ALGORITHMS

SMCmethods are often used in the analysis of dynamic systemswherewe are interested in approx-
imating a sequence of probability distributions πt(θt) where t = 1, 2, 3, . . . , T . The variable θt

can be of evolving or static dimension as t changes; note that t is simply an index variable and need
not be real time.Most work in the SMC literature is interested in the evolving dimension case, with
applications to state-space models (Doucet, Godsill & Andrieu, 2000) and target tracking (Liu &
Chen, 1998) among others. The static case, where each πt lies in a common space, has received
less attention (Chopin, 2002; Del Moral, Doucet & Jasra, 2006). The goal of SMC methods is to
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EFFICIENT PRIOR SENSITIVITY AND CROSS-VALIDATION 3

sample from the distributions {πt} sequentially, that is, first from π1, then π2, up to πT . In some
situations we are concerned with each intermediate distribution, whereas in others only the final
distribution πT is of interest (e.g., Neal, 2001). For further reading, the edited volume of Doucet,
de Freitas & Gordon (2001) covers a range of developments in SMC theory and applications.

The situation where the sequence of distributions lies in a common space arises in several
applications. For instance, the number of observations in some experiments can make MCMC
prohibitive. In this caseπt might be the posterior distribution of a parameter given the observations
1 through t. Moving through the data with a sequential strategy in this way may decrease compu-
tational complexity. Another application is transitioning from a simple distribution π1 to a more
complex distribution of interest πT . Alternatively we could consider situations analogous to sim-
ulated annealing (Kirkpatrick, Gelatt & Vecchi, 1983), where πt(θ) ∝ [π(θ)]φt for an increasing
sequence {φt}, t = 1, 2, 3, . . . , T . In all of these examples the bridging distributionsπ1, . . . , πT−1
are only used to reach the final distribution of interest πT . When we are interested in a certain
feature of each πt , SMC will typically be computationally cheaper than MCMC even if we can
successfully sample from each πt using MCMC. This is because SMC borrows information from
adjacent distributions, using the samples from earlier distributions to help in approximating later
distributions. Often the difficulty in using SMC is constructing this sequence of distributions; both
prior sensitivity and cross-validation are situations where there exists a natural sequence upon
which SMC may be applied. From here forward we assume the distributions to have a common
support.

For all times t, we seek to obtain a collection of N weighted samples (called particles)
{W (i)

t , θ
(i)
t }, i = 1, . . . , N approximating πt where the weights are positive and normalized to sum

to 1. We may estimate expected values with these particles using Êπt (g(θ)) = ∑N
i=1 W

(i)
t g(θ(i)t ).

One technique used in SMC is importance sampling, where particles {W (i)
t−1, θ

(i)
t−1} distributed as

πt−1 may be reused, reweighting them (before normalization) according to

W
(i)
t ∝ W

(i)
t−1

πt(θ
(i)
t−1)

πt−1(θ
(i)
t−1)

(2)

in order to obtain an approximation of πt . Thus we obtain the current weights by multiplying the
previous weights by an incremental weight πt(θ

(i)
t−1)/πt−1(θ

(i)
t−1).

In an attempt to prevent these weights from becoming overly non-uniform, we may move
each particle θ

(i)
t−1 (currently distributed according to πt−1) with a Markov kernel Kt(θ, θ′) to a

new position θ
(i)
t , then subsequently reweight the moved particles to be distributed according to

πt . Although the kernel Kt(θ, θ′) = πt(θ′) minimizes the variance of the importance weights, it
is typically impossible to sample from; thus it has been proposed to use Markov kernels with
invariant distribution πt (Gilks & Berzuini, 2001). A direct application of this strategy suffers
from a major flaw, however, as the importance distribution given by

ηt(θt) =
∫

π1(θ1)
T∏

t=2

Kt(θt−1, θt) dθ1:T−1

is usually impossible to compute and therefore we cannot calculate the necessary importance
weights. Additionally, this assumes we are able to sample from π1(θ1), which is not always the
case. Alternatives attempt to approximate ηt pointwise when possible, but the computation of
these algorithms is in O(N2) (Del Moral et al., 2006).

The central idea of SMC samplers (Del Moral et al., 2006) is to employ an auxil-
iary backward kernel with density Lt−1(θt, θt−1) to get around this untractable integral.
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4 BORNN, DOUCET AND GOTTARDO

It can be interpreted as a generalization of the method presented in Crooks (1998)
and Neal (2001). This backward kernel relates to a time-reversed SMC sampler giving the same
marginal distribution as the forward SMC sampler induced by Kt(θt−1, θt). The backward kernel
is essentially arbitrary, but should be optimized to minimize the variance of the importance
weights. Del Moral et al. (2006) prove that the sequence of backward kernels minimizing the
variance of the importance weights is, for any t, Lopt

t−1(θt, θt−1) = ηt−1(θt−1)Kt(θt−1, θt)/ηt(θt).
However, it is typically impossible to use this optimal kernel since it relies on intractable
marginals. Thus, we should select a backward kernel that approximates this optimal kernel.
Two suboptimal backward kernels given in Del Moral et al. (2006) to approximate L

opt
t−1 are

πt−1(θt)Kt(θt−1, θt)/(πt−1Kt(θt)) and πt(θt−1)Kt(θt−1, θt)/πt(θt). The latter is the same as that
used explicitly in Crooks (1998) and Neal (2001) and implicitly in Chopin (2002) and Gilks &
Berzuini (2001). These two backward kernels result in respective incremental weights

wa
t (θt−1, θt) = πt(θt)∫

πt−1(θt−1)Kt(θt−1, θt) dθt−1
(3a)

wb
t (θt−1, θt) = πt(θt−1)

πt−1(θt−1)
. (3b)

These incremental weights are then multiplied by the weights at the previous time and normalized
to sum to 1. We note that the suboptimal kernel resulting in (3b) can be thought of as an approx-
imation of that resulting in (3a), and has the same form as (2), the reweighting mechanism for
importance sampling. Despite this, both kernels lead to a correct algorithm. In this manner the first
kernel should perform better, particularly when successive distributions are considerably differ-
ent (Del Moral et al., 2006). Although the weights (3a) are a better approximation of the optimal
backward kernel weights, the second kernel is convenient since the resulting incremental weights
(3b) do not depend on the position of the moved particles θt and hence we are able to reweight
the particles prior to moving them. We include the incremental weight (3a) because, when Kt is a
Gibbs kernel (i.e., Kt(θt−1, dθt) = δθt−1,−k

(dθt,−k)πt(dθt,k|θt,−k)) moving one subset k at a time,
it simplifies to πt(θt−1,−k)/πt−1(θt−1,−k) where θt−1,−k is the particle excluding the kth compo-
nent. By a simple Rao–Blackwell argument it can be seen that this choice, by conditioning on the
variable being moved, results in reduced variance of the importance weights compared to (3b).

2.1. An Efficient SMC Algorithm
Now that we have described some components of SMC methodology, we proceed to develop
an efficient algorithm for performing prior sensitivity and cross-validation. The basic idea of
our algorithm is to first reweight the particles {W (i)

t−1, θ
(i)
t−1}, i = 1, . . . , N, such that they are

approximately distributed as πt . If the variance of the weights is large, we then resample the
particles with probabilities proportional to their weights, giving us a set of N equally weighted
particles (including some duplicates). After resampling we move the particles with a kernel of
invariant distribution πt , which creates diversity in the particles. Our algorithm relates closely to
resample-move algorithms (Gilks & Berzuini, 2001; Chopin, 2002), although our formulation is
more general and allows for the use of a variety of suboptimal backward kernels and corresponding
weights.

Moving the particles at each time step is not particularly efficient. For example, if two
successive distributions in the sequence are identical, we are wasting our time by moving
the particles. If successive distributions are similar but not necessarily identical, to save
computational time we can simply copy forward the particles at time t − 1 and reweight them
with the importance sampling weights (2). Deciding when to move particles may be done
dynamically or deterministically. A dynamic scheme would move the particles whenever the
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EFFICIENT PRIOR SENSITIVITY AND CROSS-VALIDATION 5

variance of the weights becomes too large (usually measured by the effective sample size (ESS)
(
∑N

i=1(W
(i)
t )2)−1), whereas a deterministic scheme would move the particles every kth time step

for some integer k. Since the sequence of distributions will likely not change at a constant rate,
it is better to use a dynamic scheme as this allows for little particle movement during parts of
the sequence with little change and more movement in parts of the sequence where successive
distributions vary more. The frequency of particle movement should be partially determined by
knowledge of the mixing properties of the Markov kernel used. For instance, if the kernel mixes
very well, we can move particles less frequently, whereas slow-mixing kernels require more
frequent movement to ensure particles adequately follow the sequence of distributions.

When the ESS drops below a specified threshold, we reweight the particles at time t − 1 to
be approximately distributed as πt prior to moving them. The weights (3b) only depend on the
particles at time t − 1, so we can easily do this. In the case of a one at a timeGibbs sampler, we can
also use the weights (3a). Because the unweighted particles at time t are not distributed according
to πt , we cannot simply move the particles without first taking their weights into consideration.
Thus prior to moving the particles we resample them such that W

(i)
t = 1/N for i = 1, . . . , N

and the particles’ unweighted distribution is πt . Resampling methods duplicate particles with
large weights and remove particles with low weights. Specifically, we copy the ith particle N

(i)
t

times such that
∑N

i=1 N
(i)
t = N and E(N(i)

t ) = NW
(i)
t , where W

(i)
t are the normalized importance

weights. Lastly, all of the resampled particles are assigned equal weights. The simplest unbiased
resampling method consists of sampling N

(i)
t from a multinomial distribution with parameter

(N, {W (i)
t }). It should be noted that more sophisticated resampling schemes, such as residual

resampling (Liu, 2001) and stratified resampling (Kitagawa, 1996) exist, resulting in reduced
variance of N

(i)
t relative to multinomial resampling. After the particles are resampled, we can

move them with the kernel Kt .
An efficient SMC algorithm which may be used to perform prior sensitivity and cross-

validation is therefore:
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6 BORNN, DOUCET AND GOTTARDO

3. PRIOR SENSITIVITY

In the case of prior sensitivitywe are interested in approximating the posterior distribution of some
variable(s) θ given the data D, symbolically notated as π(θ|D) ∝ f (D|θ)ν(θ), where f (D|θ) and
ν(θ) are the likelihood and the prior distribution of θ, respectively. Here the notation ν(θ) is used
to differentiate the prior from the posterior distribution πt(θ), allowing for the omitting of depen-
dencies. This prior sensitivity framework has been studied in a closed-form setting (Gustafson &
Wasserman, 1995; Gustafson, 1996), but situations requiring Monte Carlo methods have received
less attention. It is worth noting that only the prior distribution changes between successive
distributions (the likelihood remains the same). Thus when we reweight particles to approximate
the sequence of posterior distributions for θ, theweights (2) depend solely on the prior distribution,

W
(i)
t ∝ W

(i)
t−1

f (D|θ(i)t−1)νt(θ
(i)
t−1)

f (D|θ(i)t−1)νt−1(θ
(i)
t−1)

∝ W
(i)
t−1

νt(θ
(i)
t−1)

νt−1(θ
(i)
t−1)

(4)

where θ
(i)
t is the ith particle sampled at time t and νt(θ

(i)
t ) is the tth prior distribution evaluated

at the point θ
(i)
t . If the ESS falls below a given threshold at time t (notated as c in algorithm

pseudocode), we resample and move, otherwise we simply reweight. Conveniently, resampling
andmoving using (3b) and reweighting using (2) both result in the sameweight mechanism (4). In
a later example wewill also employ theweights (3a), which have reduced variance relative to (3b).

3.1. Regularization Path Plots
Consider the regression model with response vector y = (y1, . . . , yn)T and model matrix X =
(x1, . . . ,xp) where xj = (x1j, . . . , xnj)T, j = 1, . . . , p are the column vectors of predictors
(including the unit intercept vector). For clarity of presentation we present the model with a con-
tinuous response; however, it is simple to extend to binary responses (Albert & Chib, 1993). We
use the prostate data of Stamey et al. (1989) which has eight predictors and a response (logarithm
of prostate-specific antigen) with likelihood

y|µ,X, β, σ2 ∼ Nn(Xβ, σ2In). (5)

Using a double exponential prior distribution with parameter λ on the regression coefficients
β = (β1, . . . , βp), the corresponding posterior distribution is proportional to (1). We see from
the form of this posterior distribution that if λ = 0 the MAP estimate of β will correspond to
the least-squares solution. However, as λ increases there will be shrinkage on β which may be
displayed using a regularization path plot. Because the shrinkage as λ varies is nonlinear, we set
a schedule λt = et/20, t = 1, . . . , 100. We create a “gold standard” Bayesian Lasso regularization
path plot for this data by running MCMC with a Markov chain of length 100,000 at each level
of λ and plotting the posterior mean of the resulting regression coefficients (Figure 1). Because
accurately estimating extreme quantiles using MCMC is difficult, we also show a 99% credible
interval for two of the coefficients. It should be noted that the creation of this plot took over 8 h.

Since the idea is to create these plots quickly for exploratory analysis, we will compare our
SMC-based method to MCMC with both constrained to work in 5 min (±5 s), and both using the
same Markov kernel. In order to perform MCMC in our time frame of 5 min, the Markov chain
had a length of 1,200 for each of the 100 levels of λ. To maximize efficiency, the final state of each
Markov chain was used as the initial state of the subsequent chain. The mean of each resulting
posterior distribution was used to plot the regularization path plot in Figure 2a. In comparison, to
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Figure 1: Regularization Path Plots: The gold standard. The plot is of standardized coefficients βj versus
|β|1/max(|β|1). Ninety-nine percent credible intervals for coefficients 1 and 5 shownwith dashed and dotted

lines, respectively.

Figure 2: Regularization path plots: Plots using MCMC and SMC for fixed computational time of 5 min.
The plots are of standardized coefficients βj versus |β|1/max(|β|1). Ninety-nine percent credible intervals
for coefficients 1 and 5 shown with dashed and dotted lines, respectively. (a) MCMC with 1,200 samples (5

min); (b) SMC with 4,200 samples (5 min).
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8 BORNN, DOUCET AND GOTTARDO

run in 5 min our SMC algorithm usedN = 4,200 particles and resampled and moved the particles
when the ESS dropped below c = 2N/3 = 2,800 (Figure 2b). For the sake of time comparisons,
all computations here and later were performed on a Power Mac G5 with dual 2.7 GHz PowerPC
processors.We see from these plots that bothmethods capture the key features of the regularization
path plot as shown by the gold standard: every one of the variables has the correct path. The
methods vary, however, in the amount of noise. In order to estimate the extreme quantiles, both
algorithms used the corresponding sample quantiles, and hence because of the larger sample size,
theSMCalgorithmprovides better estimates. In estimating themean,we seemuchmore variability
usingMCMCcompared to SMC. This is due to SMCbeing able to usemanymore particles since it
is able to save time by borrowing information from previous distributions. To be specific, the SMC
algorithm in this context had to resample andmove theparticles only 25 times in the entire sequence
of 100 distributions. The remainder of the time our algorithm simply reweighted the particles,
which is computationally inexpensive. This feature is largely responsible for the smooth results of
the SMCalgorithm.Hence it is possible that if our initial sample is biased, subsequent reweightings
might also be biased.However, assuming theMarkovkernelsKt aremixing fast enough, any initial
error will be forgotten in later distributions (Del Moral, 2004, Chapter 7). In subsequent examples
we explore this bias-variance trade-off for each algorithm. It is worth noting that, because of this
reweighting mechanism, adding more incremental distributions in the sequence will have little
effect on the computational time of the SMC algorithm, unlike MCMC-based strategies, which
would approximate each new distribution with a new Markov chain. In addition, we attempted to
make these plots using importance sampling, reweighting (and not moving) particles from π1 to
approximate later distributions. However, the weights became degenerate, with all of the weights
eventually focussing on one particle with standardized L1 norm of 0.8. Specifically, all but one
of the weights had values near zero, and the one particle with positive weight had standardized
L1 norm of 0.8. Thus importance sampling was only able to create roughly 1/5 of the entire plot,
and hence is clearly not a candidate methodology for creating these plots. We will see later that
in many such situations importance sampling fails, even with large amounts of particles.

3.2. Variable Selection Using g-Priors
Consider the normal likelihood set-up (5). Now, however, with an eye towards model selection,
we introduce the binary indicator variable γ ∈ {0, 1}p, where γj = 1 means the variable xj is
included in the model. Thus γ can describe all of the 2p possible models. Following the notation
ofMarin &Robert (2007), we use qγ = 1T

nγ as a counter for the number of variables in the model.
If Xγ is the model matrix which excludes all xj’s if γj = 0, we can employ the following prior
distributions for β and σ2 (Zellner, 1986; Marin & Robert, 2007):

π(βγ , σ2|γ) ∝ (σ2)−(qγ+1)/2−1 exp
[
− 1
2gσ2βT

γ (X
T
γXγ )βγ

]
.

From this it is straightforward to show that the posterior density for γ is thus

π(γ |y,X) ∝ (g + 1)−(qγ+1)/2
[
yTy − g

g + 1
yTXγ (XT

γXγ )−1Xγy
]−n/2

. (6)

We perform model selection on the pollution data set of McDonald & Schwing (1973), in
which mortality rate is compared against 15 pollution-related variables in 60 metropolitan areas.
The 15 independent variables include, for instance, mean annual precipitation, population per
household, and average annual relative humidity. The response variable y is the age-adjusted
mortality rate in the given metropolitan area. We seek to perform variable selection to narrow
down the number of independent variables which best predict the response. With 15 variables,
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EFFICIENT PRIOR SENSITIVITY AND CROSS-VALIDATION 9

calculating the posterior probabilities of the over 30,000 models exactly is possible but time-
consuming. We have chosen this size of data set to allow for a benchmark from which we can
compare MCMC to SMC.

Our goal is to see how the explanatory variables change as we vary the prior distribution
parameter g. In other words, we are interested in seeing how robust the variable selection method
is to changes in the setting of g, specifically g = et/10, t = 1, . . . , 100. We use a Gibbs sampler
strategy to compare the SMC-based algorithm to brute-force MCMC, benchmarked against the
exact solution obtained from (6), in which βγ and σ2 are integrated out. Specifically, we update
γ one component at a time. The incremental weight ratio (3b) will be the ratio of the posterior
distribution (6) evaluated on the complete data at successive levels of g. In addition, we are able
to use the weights (3a), which corresponds to the ratio of the posterior distribution (6) evaluated
on all of the data, excluding the variable that is being moved by the Gibbs sampler.

In order to see our desired result, we use (6) to plot the exact marginal probabilities as well as
some sample model probabilities for various levels of g (Figure 3a and b). The models chosen are
those with highest posterior probability in this range of g. This process took slightly over 8 h, and
hence we would like to find a faster method. We constrain both stochastic algorithms to run in 30
min (±1 min). As a result the MCMC algorithm uses a Markov chain of length 10,000 and the
SMC algorithm uses 18,000 particles. At each time step, a randomly chosen variable from each
particle is added/removed from the model. We plot the resulting posterior marginal and model
probabilities for each algorithm in Figure 3c–f. First impression shows that the plot created using
MCMC has much more variability. However, the smoothness in the SMC algorithm is not a result
of perfect accuracy of the method, but rather only smoothness of the reweighting mechanism
(2). Because of this, if SMC does poorly during times of particle movement, the subsequent
reweighted approximations will also be inaccurate. To ensure this is not the case and verify that
SMC is indeed outperforming MCMC, we look at the average absolute error of the marginal
probabilities (at 100 levels of λ and for 15 variables). We find the average absolute error in the
marginal probabilities using MCMC is 0.0292 whereas with SMC it is only 0.0187. In addition,
their respective maximum absolute errors were 0.24 and 0.08, respectively. In fact 50 runs of the
algorithms resulted in similar results, with SMC consistently outperformingMCMC. Specifically,
the respective mean (and standard deviation) for SMC and MCMC for the average absolute error
were 0.0182 (0.0016) and 0.0289 (0.0026), and for the maximum absolute error were 0.11 (0.04)
and 0.28 (0.03). From this we see that SMC is indeed providing a better approximation of the true
marginal probabilities.

What then may be taken from these marginal probability plots? When performing simple
forward selection regression, the variables 1, 2, 6, 9, and 14 are chosen. Slightly different results
come from doing backward selection; in particular variables 1 and 14 are replaced by variables 12
and 13. The LASSO solution (using fivefold cross-validation) is the same as the forward solution
with the additional variables 7 and 8. In addition, the LASSO solution contains some shrinkage
on the regression coefficients (see Example 3.1). Using the marginal probabilities resulting from
g-priors, the variables that clearly stand out (see Figure 3a) are 1, 2, 6, 9, and 14. Thus the g-
prior solution taken from the plot corresponds to the forward selection model. As g increases,
the most probable model increases from {9} to {6, 9} to {2, 6, 9}. Also, for a given g, say g = e9,
the marginal probability plot obtained with SMC shows the correct top 4 variables for inclusion,
whereas the variability from the MCMC-based plot makes it impossible to do so.

4. CROSS-VALIDATION

We focus on leave-s-out cross-validation, which is the case when the testing set consists of
s observations. Continuing in the linear regression framework, let X\S and y\S be the model
matrix and response vector excluding the subset S of observations (of size s). We are interested
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10 BORNN, DOUCET AND GOTTARDO

Figure 3: Marginal andmodel probabilities for variable selection using g-priors as a function of log(g). Plot
(a) highlights several variables (X1,X2,X6,X9,X14) which show high marginal probabilities of inclusion.
Plot (b) shows the posterior probabilities of five models chosen to highlight the effect of g on model size.
Plots (c–f) compare MCMC to SMC’s performance. (a) Posterior marginal probabilities: Exact solution.
(b) Posterior model probabilities: Exact solution. (c) Posterior marginal probabilities: MCMC with 10,000
samples (30 min). (d) Posterior model probabilities: MCMC with 10,000 samples (30 min). (e) Posterior
marginal probabilities: SMC with 18,000 samples (30 min). (f) Posterior model probabilities: SMC with

18,000 samples (30 min).
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in a collection of T model parameter (typically prior distribution parameter) settings resulting
in posterior densities πt(θ|X\S,y\S) for t = 1, . . . , T . Once we have approximations of all T
posterior densities, we select the model parameter settings which result in the best prediction
of yS using XS . To find the sequence of distributions πt(θ|X\S,y\S), t = 1, . . . , T , the same
SMC-based algorithm proposed for prior sensitivity is applicable. Specifically, once we have
obtained a Monte Carlo approximation of π1(θ|X\S,y\S), we can transition to the remainder of
the distributions πt(θ|X\S,y\S), t = 2, . . . , T using SMC.

In addition to quickly evaluating the model for a variety of settings on the training set, SMC
methods also provide a tool for switching the training/testing set without fully re-approximating
the posterior densities. Specifically, suppose we have a testing set S1, and using SMC we find
approximations of πt(θ|X\S1 ,y\S1 ), t = 1, . . . , T , each of which are tested for prediction perfor-
mance on the subset S1. However, typically we are interested in performing cross-validation for
a variety of different splits of the data into training and testing sets. Thus, we will now want a
new testing set S2 and find approximations of πt(θ|X\S2 ,y\S2 ), t = 1, . . . , T . The obvious way to
accomplish this is to start fresh by approximating π1(θ|X\S2 ,y\S2 ) with MCMC and proceeding
to approximate the remainder of the distributions using SMC. However, we can be a bit more
clever than this, recognizing that π1(θ|X\S1 ,y\S1 ) and π1(θ|X\S2 ,y\S2 ) are related (Alqallaf &
Gustafson, 2001; Bhattacharya & Haslett, 2007).

Successive splits of the data into training and testing sets should give similar model settings.
Therefore, we first build the model for a given parameter setting on the full data set using SMC,
resulting in an approximation of π1(θ|X,y). Then instead of usingMCMC to get approximations
of π1(θ|X\S,y\S) for different S ∈ {S1, . . . , Smax}, we can build a sequence of distributions
(π1(θ|X,y))1−γ (π1(θ|X\S,y\S))γ for an increasing temperatureγ = 0, ε, 2ε, . . . , 1 − ε, 1which
will allow us to transition to the case-deletion posteriors. The process is illustrated in Figure 4. The
case ofγ = 0, 1with nomovement step corresponds to basic case-deletion importance sampling as
discussed in Peruggia (1997). Although case-deletion importance sampling has been demonstrated
to achieveup to 90%cost savings in somecircumstances (Alqallaf&Gustafson, 2001), the problem
of degeneracy still makes importance sampling fail in many situations (Peruggia, 1997; Epifani,
MacEachern & Peruggia, 2005).

Figure 4: Diagram of cross-validation process. Each arrow represents transitioning using SMC.
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12 BORNN, DOUCET AND GOTTARDO

Let� = (β, σ2). The posterior distributionπ(�) of� is proportional to q(�) = f (y|β, σ2) ×
π(β) × π(σ2). Assume we collect samples from the distribution π(�). We are interested in
reweighting these samples such that they come from the distribution attained by removing the set
S. The modified likelihood and posterior for this case-deletion scenario are, respectively

f\S(y|β, σ2) = (σ2)−(n−s)/2 exp
{

− 1
2σ2

[
(y − Xβ)T(y − Xβ) − (yS − XT

Sβ)T((yS − XT
Sβ))

]}

q\S(�) = f\S(y|β, σ2) × π(β) × π(σ2)

We assume that the prior distributions for β and σ2 are proper and independent. Epifani et al.
(2005) show that if the weights w\S(�) = q\S(�)/q(�) are used to move to the case-deletion
posterior directly, then the rth moment of these weights is finite if and only if all of the following
conditions hold:

(a) λH < 1/r

(b) n − rs > 1
(c) RSS∗\S(r) > 0

where λH is the largest eigenvalue of the matrixHS = XT
S (X

TX)−1XS and RSS∗\S(r) = RSS −
reTS (I − rHS)−1eS where eS = yS − XT

S (X
TX)−1XTy and RSS denotes the residual sum of

squares of the least-squares fit of the full data set. This result should not be taken lightly: as
Geweke (1989) points out, if the secondmoment does not exist, the importance sampling estimator
will follow neither a N1/2 asymptotic (where N is the number of importance sampling draws)
nor a central limit theorem. (a) states that if the leverage of the deleted observations is too large,
then the importance weights will have infinite variance. (b) gives a condition relating sample size
to the allowable test set size s. (c) says that if the influence of the deleted observation is large
relative to RSS, then the importance weights will have infinite variance. We show here how using
a sequence of artificial intermediate distributions with SMC can help to mitigate this problem.

We introduce a sequence of distributions

qγ (�) ∝ (q(�))1−γ (q\S(�))γ

where γ = 0, ε, 2ε, . . . , 1 − ε, 1 to move from q(�) to q\S(�). At a given step γ = γ∗ in the
sequence, the successive importance weights appearing in the SMC algorithm to move to the next
step γ∗ + ε are

w\S,γ∗ (�) = (q(�))1−γ∗−ε(q\S(�))γ
∗+ε

(q(�))1−γ∗ (q\S(�))γ∗

=
(

q\S(�)
q(�)

)ε

Theorem 1. Provided that RSS∗\S(1) > 0 and the prior distributions for β and σ2 are
proper and independent, a sequence of distributions proportional to {(q(�))1−γ (q\S(�))γ ; γ =
0, ε, 2ε, . . . , 1 − ε, 1} may be constructed to move from q(�) to q\S(�) such that the importance
weights w\S,γ (�) for each successive step have a finite rth moment under qγ (�) provided

ε <
α − 1
r − 1

(7)
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where α > 1 is chosen to satisfy

λH < 1/α (8a)

n − αs > 2 (8b)

RSS∗\S(α) > 0. (8c)

The proofmaybe found in theAppendix. The provision thatRSS∗\S(1) > 0 is very reasonable,
and states that the least-squares fit of the full data must not fit the training set perfectly. Note also
that we find α for each subset S. Thus we may use the largest allowable step size ε in (7) for each
subset S, maximizing the algorithm’s efficiency by varying the length of the sequence of tempered
distributions for each subset. While this result is not sufficient to establish that the variance of
SMC estimates are finite for a finite number N of particles, it can be used to upper bound the
asymptotic variance of SMC estimates under additional mild regularity mixing conditions on the
MCMC kernels; see Chopin (2004), Del Moral (2004, Chapter 7), and Jasra & Doucet (2008) for
similar ideas.

4.1. Application to Bayesian Regression
To demonstrate the strength of SMC applied to cross-validation, we use it to select the parameter
λ of the Bayesian Lasso (1). For brevity, we reuse the pollution data set (McDonald & Schwing,
1973) of Section 3.2, selecting the parameter λ using leave-one-out cross-validation. Firstly, it is
worth pointing out that importance sampling will fail in this situation, as λH > 1/2 on 6 of the 60
observations in this data set, and hence the sufficient conditions to ensure finite variance are not
satisfied. Using a sequence of intermediate distributions, we find that the largest α satisfying (8)
equals 1.103, or, to ensure a finite secondmoment, ε < (α − 1)/(r − 1) = 0.103. Thus, it suggests
using a sequence of distributions of length at most 10. For most variables α > 2, which for r = 2
is equivalent to importance sampling. Thus SMC does not waste time transitioning to case-deleted
posteriors if importance sampling will suffice.

We use a Gibbs sampler to approximate the posterior distribution of (β, σ2) for λ = e−5 on
the full data set and then use SMC to move to the case-deletion posterior distributions by creating
a sequence of auxiliary distributions as described above. For each different case-deletion we then
use SMC to find approximations of the posterior for schedule λ = et/15, t = −75, . . . , 75. Plotting
the cross-validation errors as a function of λ using MCMC with a Markov chain of length 20,000
(Figure 5, solid line) we observe that the average squared loss

∑21
k=1(yk − xkβ)2/21 is a smooth

function in λ with minimum near e3/2. This “gold standard” plot required 48 h to complete. Thus
to minimize prediction error (at least in terms of the squared loss) we should set λ = e3/2. To
perform this task in a time-restricted manner we constrained both MCMC and SMC algorithms
to work in 30 min (±1 min). Figures 5a and b are the resulting plots. The reduced variability of
the SMC-based plot allows us to make more accurate conclusions. For instance, it is clear in the
plot obtained with SMC (Figure 5b) that the minimum error lies somewhere around λ = e3/2,
whereas from the MCMC plot (Figure 5a) it could be anywhere between e1/2 and e5/2.

5. EXTENSIONS AND CONCLUSIONS

In our presentation of the algorithm, a fixed sequence of distributions πt(θ), t = 1, 2, 3, . . . , T is
used. However, it is also possible to determine the sequence of distributions automatically such
that successive distributions are a fixed distance apart, as measured by ESS. For instance, assume
we are interested in πt(θ) = π(θ|λt) where λt is a scalar parameter and we have a Monte Carlo
approximation of π(θ|λt−1) for an arbitrary t, namely {W (i)

t−1, θ
(i)
t−1}, i = 1, . . . , N. We may set λt
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14 BORNN, DOUCET AND GOTTARDO

Figure 5: Plots of cross-validation error as a function of log(λ). (a) Cross-validation error as a function of
log(λ) using MCMC with 60 samples (30 min). Gold standard (MCMC with 20,000 samples) shown with
solid line. (b) Cross-validation error as a function of log(λ) using SMC with 350 samples (30 min). Gold

standard (MCMC with 20,000 samples) shown with solid line.

to ensure that ESS = c for a constant c by solving

c =
N∑

i=1

(
(W (i)

t )2
)−1

where W
(i)
t is given by (2). This may be solved numerically or in closed-form, if possible. This

technique would be beneficial in situations where little or nothing is known about the sequence
of distributions, and hence it would be nice to automatically create the sequence.

All our examples have considered a sequence of distributions parameterized by a scalar
parameter for which the definition of the sequence of target distributions is very intuitive. If
we are interested in dealing with multivariate parameters then the algorithm may be adapted by,
for instance, creating a grid (or hyper-grid) of distributions. SMC may be used to work across
each dimension in succession. It is worth noting that the complexity of the algorithm scales
exponentially with dimension, although MCMC does as well.

Also of interest is the parallelization of SMC algorithms to further decrease the time required
to perform prior sensitivity and cross-validation. While recent work has primarily focussed on
cluster computing environments, promising progress has been made using graphics processing
units or GPUs. See, for instance, Lee et al. (2009), who reduce computational time of SMC
methods by upwards of two orders of magnitude by conducting massively parallel inference with
GPUs.

Whilewe have given two choices of incrementalweights, (3a) and (3b),many other choices are
available (DelMoral et al., 2006). In situations where the weights are dependent on the position of
the moved particle, such as with (3a), auxiliary particle techniques may be used (Pitt & Shephard,
1999; Johansen &Whiteley, 2009). Specifically, we reweight the particles with an approximation
of the weight of interest (for instance, (3a)) which is only dependent on the particles at time t − 1,
using W

(i)
temp ∝ W

(i)
t−1 × W

(i)
approx where W

(i)
approx is the approximation of the incremental weight.

After we have resampled and moved the particles we then compensate for this approximation
using W

(i)
t ∝ W

(i)
true/W

(i)
approx × W

(i)
temp where W

(i)
true is the true weights given by (3a) or (3b).
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We have seen that by adapting importance sampling to move particles between successive
distributions, SMC drastically limits the problem of importance sampling degeneracy. By using
a resample-move type algorithm, we are able to perform prior sensitivity and cross-validation
in a computationally feasible manner while avoiding the fore-mentioned pitfalls of importance
sampling. We have shown the SMC algorithm to be considerably more efficient than existing
methods based on iterative MCMC approximations. In this way regularization path plots and
other sensitivity analysis problems can be studied in the context of the full posterior distribution
instead of a few summary statistics. In addition, SMC provides a tool for naturally performing
cross-validation in an efficient manner. Lastly, through the importance weights, SMC provides
a measure of the distance between distributions, and hence gives a way to select a subset of
distributions of interest for exploratory or other purposes.

APPENDIX

Proof of Theorem 1. (following along the lines of Peruggia (1997) and Epifani et al. (2005)) to
show that the rth moment of successive importanceweights is finite, we need to find the conditions
under which

∫
φ(�) d� is finite, where φ(�) = (q(�))1−γ (q\S(�))γ × (w\S,γ (�))r. We expand

and simplify φ(�) to obtain

φ(�) = f 1−γ (y|β, σ2) × f
γ
\S(y|β, σ2) × π(β) × π(σ2) × (w\S,γ (�))r

= f (y|β, σ2) × [w\S,γ (�)]γ+rε × π(β) × π(σ2)

= (σ2)−((n−s(γ+rε))/2−1)−1 × π(β) × π(σ2)

× exp
{

− 1
2σ2

[
(y − Xβ)T(y − Xβ) − (γ + rε)(yS − XSβ)T(yS − XSβ)

]}

= φ1(�) × φ2(�)

where

φ1(�) = π(β) × π(σ2) × exp
{

− 1
2σ2 [(β − β̃)T[XTX − (γ + rε)XT

SXS](β − β̃)]
}

φ2(�) = (σ2)−((n−s(γ+rε))/2−1)−1

× exp
{

− 1
2σ2 [y

Ty − (γ + rε)yT
SyS − β̃

T[XTX − (γ + rε)XSXT
S ]β̃]

}

and β̃ = [XTX − (γ + rε)XSXT
S ]

−1[yTX − (γ + rε)ySXT
S ]. We will show momentarily that

[XTX − (γ + rε)XSXT
S ] is positive definite, and hence invertible. Note thatφ1(�) is proportional

to a proper density for�when [XTX − (γ + rε)XSXT
S ] is positive definite. In this case φ1(�) is

upper bounded. Now φ2(�) is proportional to an inverse gamma distribution provided that both

n − s(γ + rε)
2

> 1

yTy − (γ + rε)yT
SyS − β̃

T [
XTX − (γ + rε)XT

SXS

]
β̃ > 0

Thus, aside fromshowing conditions underwhich [XTX − (γ + rε)XSXT
S ] is positive definite,

we also need to find conditions guaranteeing the above two inequalities. We first show that
[XTX − (γ + rε)XT

SXS] is positive definite. Using the Woodbury matrix identity, we see that
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16 BORNN, DOUCET AND GOTTARDO

[XTX − (γ + rε)XT
SXS]−1 may be written as

(XTX)−1 + (XTX)−1(γ + rε)XS(I − (γ + rε)XT
s (X

TX)−1XS)−1XT
S (X

TX)−1.

Now if (I − (γ + rε)XT
s (X

TX)−1XS)−1 is positive definite, the second term in the above sum is
positive semi-definite. This is the case when all the eigenvalues of XT

s (X
TX)−1XS are less than

1/(γ + rε). [XTX − (γ + rε)XT
SXS]−1 may then be written as the sum of a positive definite and

a positive semi-definite matrix, and hence [XTX − (γ + rε)XT
SXS] is positive definite.

Now we proceed to find conditions ensuring

yTy − (γ + rε)yT
SyS − β̃

T[XTX − (γ + rε)XSXT
S ]β̃ > 0.

Simple but tedious algebra gives the following expression:

yTy − (γ + rε)yT
SyS − β̃

T[XTX − (γ + rε)XSXT
S ]β̃

= RSS − (γ + rε)eTS (I − (γ + rε)HS)eS

= RSS∗\S(γ + rε)

which, by the theorem’s conditions, is greater than 0 for argument value 1, and since RSS∗\S is a
smoothly decreasing function in its argument, it is also positive for some positive argument value
less than 1. Now, we choose ε < (α − 1)/(r − 1), which implies α > γ + rε. By α satisfying (8),
the conditions outlined in the proof hold. Namely, (a) λH < 1/(γ + rε), since these eigenvalues
are upper bounded by 1, (b) n − s(γ + rε) > 2, and (c) RSS∗\S(γ + rε) > 0. �
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