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Abstract. Partial non-Gaussian state-space models include many models of inter-
est while keeping a convenient analytical structure. In this paper, two problems
related to partial non-Gaussian models are addressed. First, we present an efficient
sequential Monte Carlo method to perform Bayesian inference. Second, we derive
simple recursions to compute posterior Cramér-Rao bounds (PCRB). An application
to jump Markov linear systems (JMLS) is given.
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1. Introduction

1.1 Background
A partial non-Gaussian state-space model is a linear model whose parameters evolve

with time according to an unobserved stochastic process s;. Let t denote the discrete-
time index, then one has

(1.1) zr = Ap(st)Ti—1 + Bi(s)ve + Fr(st)uy
(1.2) Yt = Cy(s)xy + Dy(se)we + Ge(se)us,

where z; € R", y, € R™, u; € R™, v, € R™ and w, € R™. Given s;, A;(s:),
Bi(st), Ci(st), D(st), Fi(s¢) and Gy(s;) are known matrices of appropriate dimension and
Dt(st)D;F (st) > 0 for any s;. x; is an unobserved state, y; is the observation process and
u; is an exogenous control term. The noise sequences v;*%4¢N (0,I,,), w' LN (0, I, )
are independent Gaussian sequences, mutually independent and independent of the ini-
tial state zo ~ N(mg, Pp).

Conditional upon s;, (1.1)—(1.2) is thus a standard linear Gaussian state-space
model. However, the process s; is itself an unobserved random process. For the sake of
simplicity, it is assumed to be a first-order Markov process of initial distribution p(sp)
and Markov transition kernel p(s; | s;-1).
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This class of models has numerous applications as illustrated in the two following
examples, see Kitagawa and Gersch (1996), Shephard (1994) and West and Harrison
(1997) for many other examples.

Ezample 1. Jump Markov linear system. Assume that the process s, is a finite
state-space Markov chain, then the resulting model is a so-called JMLS:; that is a linear
Gaussian system whose parameters evolve according to an unobserved finite state-space
Markov chain. Such systems are widely used in digital communications, econometrics
and target tracking (see Bar-Shalom and Li (1995)).

Ezample 2. Time-varying autoregressive (TVAR) process. The TVAR coefficients
a; are reparametrised into the partial correlation coefficients s, € R™ and s; is assumed
to follow a simple Gaussian random walk: s; = s;_1 + & where so ~ N(0,I,,) and
g:'%2N(0, I,,). From s;, one can compute a; through the standard Levinson recursion.
Let uy = Y0 agius—; + 0y 0, and yy = uy + 0w, where v;*2:2N(0,1) and w, "N (0,1).
Then, by setting x¢ = (u¢,...,Ut—n,), One can put (s¢, z4,y:) in the state-space form
(1.1)-(1.2).

In this paper, we propose an efficient sequential Monte Carlo (SMC) method to
perform Bayesian inference for partial non-Gaussian state-spaces and we derive simple
recursions allowing easy computation of some PCRB.

1.2 Sequential Bayesian estimation

We denote for any sequence z;, z;.; = (zi,zz-H,...,zj). We are interested in es-
timating sequentially in time ¢ the posterior distribution of the state of the system
given by p(zo.t, So.¢ | ¥1:¢), or some of its characteristics such as the filtering distribution
p(z¢ | y1.¢). There is no closed-form expression for this class of models and one needs
to use computational methods to perform Bayesian inference. In a batch framework,
several authors have exploited the structure of partial non-Gaussian state-space models
so as to develop efficient Markov chain Monte Carlo (MCMC) algorithms (see Carter and
Kohn (1994, 1996), Friiwirth-Schnatter (1994) and Shephard (1994)). However MCMC
methods are not suited to sequential estimation. Recently there has been a surge of
interest in SMC methods for nonlinear/non-Gaussian time series analysis (Doucet et
al. (2001)). These methods, initiated in Gordon et al. (1993) and Kitagawa (1996),
utilise a random sample (or particle) based representation of the posterior probability
distributions: the particles are propagated over time using a combination of sequential
importance sampling and resampling steps. Related early work by West (1993a, 1993b)
develops weighted mixtures of kernel densities as the proposal distribution for sequential
importance sampling. However, in their standard forms, these algorithms do not use all
the salient structure of partial non-Gaussian state-space models.

We show here how it is possible to use this structure to develop an efficient SMC al-
gorithm to perform sequential Bayesian estimation. This algorithm combines sequential
importance sampling, a selection scheme and MCMC methods. In particular, variance
reduction is achieved by Rao-Blackwellisation using the Kalman filter as discussed in
Doucet (1997) and Doucet et al. (2000). However, we further improve the algorithm by
using other variance reduction methods and sampling schemes. A generalization of the
backward-forward algorithm of Carter and Kohn (1996) is also given: it allows an exact
initialization of the backward recursion, and requires neither the state covariance matrix
to be strictly positive nor A(s;) to be regular.
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1.3 Posterior Cramér-Rao lower bounds

For many real-world applications it is of great practical importance to be able to
compute a bound which sets a lower limit on the average mean-square error (MSE) of
the state estimate x;. For instance, assume one is interested in tracking the position
of an aircraft, then, in most civil and military applications, the user of the tracking
system requires the average MSE on the position to be below a certain value. If the
estimates the tracking system delivers are not precise enough, then it is considered
to be of no practical use. Thus, if one obtains for the dynamic model associated to
the target/tracking system, a lower bound on the average MSE that is larger than the
required precision, it means that it is not even worth trying to develop an estimation
scheme since not even the “true” optimal filter would achieve the required precision.
Instead what would be required is more information to aid the estimation process (for
example an improved sensor to provide more accurate measurements).

This problem has generated a large literature in the control and signal processing
community; a review can be found in Kerr (1989). Although different bounds exist, most
work has focused on PCRB as they are much easier to compute than the Barankin or
Ziv-Zakai bounds. PCRB for discrete time filtering were initially studied by Borobsky
and Zakai (1975) for scalar nonlinear models in additive Gaussian noise. Galdos (1980)
extended this result to the multidimensional case, and later Doerschuk (1995) considered
the class of nonlinear autoregressive processes driven by Gaussian noise with full rank
covariance matrix. More recently, Bergman (1999), Bergman et al. (1999) and Tichavsky
et al. (1998) have independently derived general expressions for PCRB using a different
and more general approach. However, their method cannot be applied to general partial
non-Gaussian state-space models. Indeed, all these approaches require p(s; | s;—1) to
be differentiable in argument s;. This is obviously not the case when s; is, for example,
a discrete random variable. We derive here some original recursions to compute these
bounds for state estimation in partial non-Gaussian state-space models. These bounds
are very easy to estimate though numerical integration is generally required.

1.4 Plan

We now list the main results and the organization of this paper. Section 2 presents
a general sequential Monte Carlo method, details the implementation issues and briefly
reviews some sufficient conditions to ensure asymptotic convergence. Section 3 is devoted
to the derivation and computation of posterior Cramér-Rao lower bounds. In Section 4,
we demonstrate the performance of the proposed algorithms for jump Markov linear
systems.

2. Sequential Bayesian estimation

2.1 Particle filtering

Given the observations y;.¢, any inference on (Zo.¢, So.¢) is based on the joint poste-
rior distribution p(zo., So:¢ | ¥1:¢) and its characteristics of interest such as the filtering
distribution p(z; | y;.¢) or the minimum mean square error (MMSE) estimate E(z: | ¥1.¢)-
The joint distribution can be factorized as follows

(2~1) P(mo:t, S0:¢ | Z/L:t) = p(iUD:t | Yi:t, 80:t)p(30:t, ' ylzt)a

where p(zot | ¥1:¢, S0:t) is a Gaussian distribution whose parameters can be evaluated
using Kalman recursions. From (2.1), one can see that, once the marginal distribution
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p(s0:t | ¥1:¢) is estimated, it is possible to obtain easily an estimate of p(zo.:, So:¢ | Y1:t)
if necessary. Thus we focus in this section on developing a simulation-based method to
estimate p(so.t | ¥1.¢). This distribution satisfies the following recursion

(s | Y1:t—1, S0:¢)P(St | $t-1)
P(Z/t | y1.~t—1)

We describe a general recursive algorithm which, for all ¢ > 0, generates N parti-
cles/paths (s(() 1, i=1,...,N) at time ¢ with an empirical measure p",

p(SO:t-1 | ylzt—l)-

P(SO:t | yl:t) =

N(dsor) = = N 25 (1) (dso:t),
that is “close” to p(so:t | y1.t), using the observation obtained at time ¢ and the set of
particles (s((;i_l;i =1,...,N) produced at time t — 1 (whose empirical measure p{ ,
was “close” to p(sg.t—1 | ¥1:4-1)); 8 s (dso.+) denotes the delta-Dirac mass at s( Y This

algorithm requires the introductlon of an importance function m(s; | y.¢,So.t—1). It
proceeds as follows at time ¢.

Particle filter for partial non-Gaussian state space models
Sequential importance sampling step
e Fori=1,...,N, sample &" ~ m(s; | yr.e, s(()i L) and 3§) = (s$9_,, 5.
e Fori=1,... ,N , evaluate the importance weights wg 2
6y P | yre—1, 3500 | 5,)
Wy X

W(ggi) | Z/l:t,g(()i 1)

2.2)

Selection step
e Multiply /Discard particles (5(()21,2 =1,...,N) with respect to high/ low normalised
importance weights wg’) to obtain N particles (SO(t)> i=1,...,N).
MCMC step
e For 1 = 1,...,N, apply to s(/)(flt) a Markov transition kernel K (ds (ii | sf)(:? ) of

invariant distribution p(dsg.+ | y1.+) to obtain N particles (s(()zl,i =1,...,N).

2.2 Implementation issues
2.2.1 Sampling step

There are infinitely many possible choices for m(s; | y1:¢, S0.t—1), the only condition
being that its support includes that of p(y; | y1:4—1, S0:¢)p(st | st—1). A sensible selection
criterion is to choose a proposal that minimises the variance of the importance weights
at time ¢, given sp.;—1 and y1.;. According to this strategy, Doucet et al. (2000) show
that the optimal distribution is p(s¢ | ¥1.¢, S0:¢—1)-

o Optimal sampling distribution. The optimal distribution satisfies

W(St | Yi:t, So:t—l) = P(St l Yi:¢, So:t—l) 15,8 P(Z/t | Yi1:t—1, SO:t)p(st | St—l),

and it is usually easy to sample from. The importance weight p(y; | ¥1.4—1, So.t—1) might
not admit however an analytical expression if s; does not lie in a finite-state space. In
such cases, one has to use an alternative method.
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o Prior distribution. If we use the prior distribution p(s; | s;—1) as importance
distribution, the importance weight is proportional to

(Y | y1:-1, 80:t) = N(Tyje—1(50:¢), St(50:2))

where §yj¢—1(50:), Yeje~1(50:¢) and Sy(so:¢) are evaluated using one step of a Kalman filter
detailed in Appendix A.

o Alternative sampling distribution. It is possible to design a variety of alternative
sampling distributions. For example, one can use the results of a suboptimal determin-
istic algorithm to construct an importance sampling distribution, Doucet et al. (2000)
and Pitt and Shephard (1999). This is useful in applications where p(s; | y1.¢, So.¢—1) is
too expensive to compute and p(s; | s;~1) is inefficient.

2.2.2  Selection step
The aim of the selection step is to obtain an “unweighted” approximation

P (s0.e | y1.e) = N1 EN5 « (dso) = - 25 ) (ds0:1)

i=1

of the weighted distribution

2

P (S0t | y1:e) = Z [()z:l(dSO:t),

that is a selection procedure associates with each particle (s(l) i=1,...,N) a number
of offspmng N; € N, such that El 1 Ni = N, to obtain N new partlcles S0 (’) . IfN; =0,
then s ; is discarded, otherwise it has N; offspring at time ¢.

We briefly describe here some selection schemes of complexity O(N).

e Sampling Importance Resampling (SIR)/multinomial sampling procedure. This
procedure, introduced originally by Gordon et al. (1993), is the most popular one. One
samples N times from pN(so ¢ | ¥1.¢) to obtain (30 +;1=1,...,N). This is equivalent to
drawing Jomtly (N;;i=1,...,N) according to a multinomial distribution of parameters
N and %{”. In this case, one has E[Ni] = N&{ and var|[N;] = Nﬁ;gi)(l — ﬁ;gi)). It is
better to use selection schemes with a reduced variance.

o Residual resampling. This was first presented by Higuchi (1997) and Liu and
Chen (1998) Set N; = |N 1?)(1) | then perform a SIR procedure to select the remaining
Ny =N-— Zl , NV; samples with the new weights wt(z) (ﬁ;t(’)N —N;)/Ny; add the results
to the current IV;. In this case, we obtain E[N;] = Nw(" but var[N;] = Nyw,® (1—w¥).
As outlined by Higuchi (1997), this procedure has been introduced earlier in the genetic
algorithm literature.

o Minimum variance sampling. This class includes the stratified sampling procedure
introduced in Kitagawa (1996) where a set U of N points is generated in the interval [0, 1],
each of the points a distance N~! apart. The number N; is taken to be the number of
points in U that lie between Zl_ll ﬁ;g’) and 3%, @ . If we denote {Nw"} = N —
IN wgz)J, then the variance of all the algorithms in this class is var[N;] = {N@{’}(1 —
{N wgl) }). This strategy also includes the Tree Based Branching Algorithm presented in
Crisan (2001).
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Recent theoretical results obtained in Crisan and Doucet (2000) show that it is

not necessary to design unbiased selection schemes, i.e. we can have E[N;| # N 11;;).
Using randomised selection schemes is also part of the “folklore” of particle filters: the
deterministic selection scheme proposed by Kitagawa (1996) is efficient and theoretically
valid.
2.2.3 MCMC step ‘
If the distribution of the importance weights is skewed then the particles (§gl,z =
., N) which have high importance weights w( Y are selected many times and thus

numerous particles s (t) and s, (’ ) are in fact equal for i # j; there is a depletion of samples.
One way to perform sample regeneration consists of considering a mixture approximation,
Gordon et al. (1993). An alternative method based on MCMC methods has been recently
proposed by Gilks and Berzuini (1998) in the context of fixed-parameter estimation. The
rationale behind the use of MCMC moves is based on the following remark. Assume
that the particles sg(ft) are distributed marginally according to p(so: | ¥1:t). Then if we
apply to each particle a Markov transition kernel K (dso.; | s.,) of invariant distribution
p(s0:t | Y1), e such that [ K(dso. | so..)P(dsq. | y1:¢) = p(dso.t | ¥1:¢), then the new
particles s((f% are still distributed according to the posterior distribution of interest. So
if K(dso.t | sg.;) is a kernel that stochastically updates so( t) to obtain 30 t ) then we have a
theoretically valid way of introducing diversity amongst the samples. It is possible to use
all the standard MCMC methods such as the Metropolis-Hastings (M-H) or the Gibbs
samplers, Robert and Casella (1999), the main difference being that we do not require
the kernel to be ergodic.

There is an infinite number of possible choices for the MCMC transition kernel.
Carter and Kohn (1996) proposed an efficient MCMC algorithm based on a backward-
forward recursion where the state z; is integrated out and s; is sampled one-at-a-time.
They empirically demonstrated that their sampler was more efficient than the one where
x4 is sampled (Carter and Kohn (1994), Friiwirth-Schnatter (1994) and Shephard (1994)).
We propose here a similar strategy but relax the restrictions of Carter and Kohn (1996)
(approximate initialization of the backward recursion, state covariance matrix strictly
positive and A(s;) regular). Our algorithm, based on the backward information filter
(Anderson and Moore (1979)), can be applied to any state-space model (1.1)—(1.2),
see Doucet (1997) and Doucet and Andrieu (1999) for details. The derivation is not
presented here, due to its length.

We set s‘(f;i_ L= :J(’t) .- Then, to sample s(i) for k =t— L+ 1,...,t according
to p(sk | yrt, s")) where s = (s‘(f% L,sgz)LH, . sg)l,s;c(i)l, : '(1)) the algorithm

proceeds as follows at time ¢ for the particle i.

Backward-forward procedure

Backward step

For k =t—L+1,...,t compute and store Plél_kl+1 (s;c(i)l:t) and Pl,élkJrl(sk+1 DM k1
(s;c(j-)l:t) using (A.1)-(A.3) given in Appendix A.

Forward step

For k =t—- L+ 1 ..,t, sample s(i) using a Gibbs or a M-H step of invariant

cisributon p(s | 1,81 (e (2:9) and store mue (5, _y5) and Py o))

1
In this algorithm, Pk”c+1 (3k+1 ,) and P, |k+1(sk+1 t)mkik+1(s,c(_31 ;) are given by the
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backward information filter recursion given in Appendix A and, for any k = t — L +
1,...,t, we have

(2.3) p(sk | y1:t,5-1) o< p(sk | Sk—1)P(Sk+1 | k)N (Fkik—1(S0:k), Sk (S0:k))

~ ~ —-1 ~
X [Tk (80:4) Qi (S0:k) P 1 (Sk41:0) Qe (S0:k) + Ly [71/2
1 -1
X eXp(—g[mak(soik)})};]k-f-l(sk+1:t)mklk(30:k)

T -1
- 2mk|k(SO:k)Plélk+1(3k+1:t)m;c|k+1 (Sk+1:¢)

-1
— (M1 (k1:8) = Mk (0:6)) T Prgn (Skt1:t)

—-1
X Ry (S0:) Py (8k+1:6) (M g (Shr1:6) — mklk(so:k))l)-

Here one has Pk|k(30:k) = lek (so:k)ﬁklk(SO:k)Qak(SO:k) where ﬁklk(so:k) is ang XNk
(1 < ng < ng) diagonal matrix with the non-zero eigenvalues of Py (so.x) as elements,
and

Rklk(so:t) = Qk[k(SO:k)[ﬁﬁ(SO:k) + Qak(SO:k)PI;|_1c1+1(3k+1:t)Qk!k(30:k)]_léak(s&k)-

The matrices le k(S0:x) and fIk| k (S0:k) are straightforwardly obtained using the sin-
gular value decomposition of Pyx(s0.x). The computational complexity of the resulting
Gibbs sampling algorithm at each iteration is O(LN) and one needs to keep in memory
the paths of all trajectories (s;(_l)LH:t;i =1,...,N) as well as (mklk(sff:i), Pk;k(s((ﬁl);i =
1,..., N) over the time interval k =t — L+1,...,t.

2.3 Convergence issues

Let B(R™) be the space of bounded, Borel measurable functions on R™. We denote
|| fll = supegn | f(z)]- The following theorem is a straightforward consequence of Theorem
1 in Crisan and Doucet (2000), which is an extension of previous results in Crisan et al.
(1999).

THEOREM 2.3.1. If the importance weights, (2.2), are upper bounded and if one
uses one of the selection schemes described previously, then, for all t > 0, there exists ¢;
independent of N such that for any f, € B(R™* 1)

N . : i
E (% ; ft(sgi) - /ft(SO:t)p(dSO:t I yl:t)) S Ct%'

This result shows that, under very mild assumptions, convergence of this general
particle filtering method is ensured and that the convergence rate of the method is
independent of the dimension of the state-space; ¢; usually increases exponentially with
time however. If additional assumptions on the dynamic system under study are made,
it is possible to get uniform convergence results for the filtering distribution p(z¢ | y1.¢),
as demonstrated by Del Moral and Guionnet (1998).

Another severe restriction of this convergence result is that it is limited to bounded
functions: this excludes the MMSE estimate E(z; | y1.4). In conclusion, although the
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particle filter is guaranteed to converge asymptotically (as N — +o00) and seems to
stabilize in practice, it is difficult to assess rigorous convergence towards the true filter
when N is finite.

3. Posterior Cramér-Rao lower bounds

In this section, we derive lower bounds on the average mean-square error of the state
estimate of x; given by

(3.1) E((B(z¢ | y1n) = 2)(E(@e | Y1) — 20)T),

where E(z; | y1.n) is the MMSE estimate of z; given the observations yi., and the
expectation is with respect to p(z¢, y1.n). A Monte Carlo method to estimate (3.1) would
consist of sampling a large number P of realizations {(z1.t(i),y1.n(¢));¢ = 1,..., P},
computing an estimate 24, (i) of E(z; | y1 n) for each realization using a particle ﬁltermg
method and then finally approximating (3.1) by

(3.2) B Z(wtm(@ = 24(0)) (&1 (1) = 2 ()7

This method, however, is not only very computationally mtenswe but it is also difficult
to quantify the error one commits by approximating E(z, | y;. Zl) by £4,(i). Instead,
we derive below a posterior Cramér-Rao lower bound on (3.1), which is much easier to
compute.

3.1 Review of the posterior Cramér-Rao bound R

Let 8 € R™ be a random parameter with prior density p(8), and let ¥(z) : Z — R?
be an estimate of an absolutely continuous function of this parameter, ¥(9) : R — R?,
based on the observation z € Z. Then we have the following Bayesian version of the
Cramér-Rao bound. It is originally due to van Trees (1968); see also Gill and Levit
(1995) for different extensions and detailed regularity conditions.

THEOREM 3.1.1. The PCRB for estimating 0 using z is given by
(3.3) Ep(-,0)((2) — $(9)) ($(2) — (6))") > MPMT,

where
MT = By, (Vo log p(z 6)(d(2) — $(8))7) = / Vop(z 6)(d(z) — ¥(6))F dzdb

P~ = Ep, 0)(Vglogp(z,0)V§ log p(z,0)) = / Vop(z,0)Vj log p(z,0)dzdf.

The PCRB differs from the traditional, likelihood based, Cramér-Rao bound in
several ways. The bound (3.3) is a matrix inequality on the estimator mean square error
correlation matrix and it holds even if the estimator 9)(z) is biased. Several interesting
scalar bounds can be derived from (3.3), and a number of different weighted matrix
bounds can also be formed: see Gill and Levit (1995). The bound (3.3) does not depend
on any true unknown parameter 6y, instead it is computed by expectation with respect
to the joint density p(z, 6).
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3.2 PCRB for partial non-Gaussian state space models

We now derive PCRB for estimation of the state z;. Conditional upon sg.; the model
(1.1)—(1.2) is a linear Gaussian state-space model and the optimal MMSE estimate of
z¢ is given by the Kalman filter. The error covariance from the Kalman filter equations
would therefore give the fundamental lower bound on the estimation performance if the
sequence Sp.; were known. Given y;.,, the PCRB for the state x; is given by

(3'4) Pti—nl - p(zt,yl;n)("A:Z logp(xta yl:n)),
where AJ! is the second order (Laplacian) partial differential operator with respect to

the vector z;. This fundamental bound (3.4) is valid under very mild conditions on the

prior p(z;).
The PCRB can be used to determine a lower bound on the estimation error of z;
based on the prior distribution of the sequence sg.;. We get the following results.

THEOREM 3.2.1. Filtering. The PCRB for estimating z; in the model (1.1)-(1.2)
using yi.¢ is given by

E((&(y14) — ) (e(yr4) — z)T) 2 Py,
where the matriz Py satisfies
(3.5) Py = AT AT + (AeYeSe — B) AT (SF Y AT — BY),

with Ty = (IDt——lllt—l + R;7H ! and Ay = QY — STY['S:. The matrices Ay, By, Qy
and R; are formed by averaging the matrices from the model (1.1)—(1.2) over the prior
distribution of s, i.e.
A = E(A¢(st))
B: = E(By(s1))
Q;'= E(—AY logp(ye |ze—1, 8¢, vt )p(ve))

= E(B{ (s:)C{ (st)(D¢(s¢) D (s£)) ' Ce(5¢) B (s¢)) + In,,
R = E(-AZ 1 logp(yt |Ti-1, 81, vt))

= E(Af (s:)CF (s:)(Di(5:) D () Cu((3¢) Ae(s+))
SF = E(-A% " log p(ye |21, 8¢, vt))

= E(BY (s:)C{ (5¢)(D¢(5:) D (5:)) "' Cil5¢) As(54))-

(3.6)

ProoFr. The proof is given in Appendix B.
A bound in the prediction case can be obtained in a similar way.

THEOREM 3.2.2. Prediction. The PCRB for estimating x; in the model (1.1)—(1.2)
using yYi.+—1 18 given by

E((#1(y1:-1) — 20)(@e(y1:-1) — z)T) = Py,
where the matriz Py, satisfies

(3.7)  Pys—1 = Ae(Pic1jt—2 — Poorjp—2(Picijp—2 + Re) " Pi_1y—2) A + B,BY.
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PrOOF. The proof is given in Appendix B.

These bounds require numerical integration methods as Ay, By, @, R; and S; in
(3.6), do not usually admit any closed-form expression. These quantities can be com-
puted using Monte Carlo methods by simulating realizations of s; according to its prior
distribution. Quantifying the error of these Monte Carlo estimates is straightforward.

4. Application

We address the problem of tracking a maneuvering target in noise. The difficulty
in this problem arises from the uncertainty in the maneuvering command driving the
target. The state of the target at time ¢ is denoted as x; = (Iy ¢, T, lyts Ty,e)T Where
lzt (Iy¢) and rz (ry:) represent the position and velocity of the target in the x (resp.
in the y) direction. The state evolves according to a JMLS model of parameters (see
Bar-Shalom and Li (1995)),

1T00

0100
A: y BZO].I, C=I,G= My
0017 4 4 Oaxn,

0001

and D = v/3diag(20,1,20,1). The switching term is F'(s;)us, where s, is 3-state Markov
chain corresponding to the three possible maneuver commands: straight, left turn, right
turn. The chain has the following transition probabilities: pmm = 0.9 and py, n = 0.05
for m # n; its initial distribution is the invariant distribution of the transition matrix.
For any ¢, we have

F(1)u, = (0,0,0,0)T,
F(2)u, = (—1.225,-0.35,1.225,0.35)%,
F(3)u; = (1.225,0.35, —1.225, —0.35)7".

We implement the particle filtering method described in Section 2 to estimate E(z; | y1.¢).
We use as importance distribution p(s: | ¥1.¢, $1.¢—1) and perform selection according to
the stratified sampling scheme. We perform M = 100 different measurement realizations
and compare our results with the Interacting Multiple Model (IMM) algorithm (Bar-
Shalom and Li (1995)) and the standard Sampling Importance Resampling (SIR) filter
(Gordon et al. (1993) and Kitagawa (1996)). The performance measure is the root mean
square (RMS) position error, computed as follows from the MMSE estimates with respect
to the true simulated trajectories:

M T
1
RMS = | 777 D D llos = BB (m)? + (Iye = IMSF (m))2),

m=1 t=1

where lé"ftM SE(m) is the MMSE target position estimate in the z direction at time ¢ of
the m-th Monte Carlo simulation. We present in Table 1 the performance of our Monte
Carlo (MC) filter, the IMM and the SIR filter. The MC filter is more precise than the
other methods.
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Table 1. RMS for IMM, SIR filter and MC filter.

Algorithm/N 50 100 250 500 1000
IMM Filter 24.69 - - - -
SIR Filter 26.22 24.76 24.02 23.88 2345
MC Filter 22.95 22.74 2269 22.64 2262
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Fig. 2. From top to bottom: simulated sequence r¢, estimation of $(s¢ | y1:¢) (s¢ = 1 circle solid,
s¢ = 2 cross dashdot, s; = 3 plus dashed), p(s¢ | y1:t+10) (same convention for s; = 1,2, 3).

In Fig. 1, we display a realization of (l;,,1,:) and its MMSE estimate computed
using N = 500 particles. In Fig. 2, we present for the same realization the simulated
sequence sy, P(s¢ | ¥1.¢) and p(s; | y1.442) (L = 10). Fixed-lag smoothing significantly
improves the detection of occurrences with respect to filtering. The performance of the
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35

o 10 2 a0 40 s e 70 80 90 00
Fig. 3. Monte Carlo approximation of the average mean-square error for the Monte Carlo filter
(solid line) and SIR filter (dotted line) with the posterior Cramér-Rao bound (dashed line) for

lzt.

fixed-lag smoothing approximation and of a Gibbs sampler to estimate p(s; | y1.7) (not
displayed here) appears very similar. Finally in Fig. 3, we compute the PCRB given
by (3.5) and compare it to the empirical estimate (3.2) of the RMS (3.1) obtained from
both our algorithm (N = 500) and the SIR filter (N = 10000). The PCRB is of the
same order of magnitude as the RMS achieved by the particle filter algorithms.

5. Discussion

In this paper, we have addressed the problem of optimal estimation for partial
non-Gaussian state space models. A particle filtering method based on several variance
reduction methods has been proposed and general posterior Cramér-Rao bounds have
been established. The performance of this algorithm and bounds have been demonstrated
on a target tracking problem.

Appendix A: Kalman filter and backward information filter

We consider the system (1.1)-(1.2). The sequence s¢.; being here assumed known,
the Kalman filter equations are as follows. Set mgjo = &0 and Fyo = Fy, then, for any
t, compute

Myjr—1(50:t) = A(Se)my—1)t—1(S1:6-1) + F(s¢)us

Pyi—1(s0:t) = A(s¢) Pr—1js—1(51:-1) AT (s¢) + B(s¢) BT (s¢)

ytlt—l(SO:t) = C(St)mtlt—1(30:t) + G(st)uy

St(so:t) = C(st)Pt|t—1 (SO:t)CT(St) + D(St)DT(St)

M (So:t) = Muje—1(S0:t) + Pr—1(50:4)CT (5¢)S;* (S0:¢)Pej—1(S0:t)
Pye(s0:t) = Pye—1(50:t) — Pyy—1(s0:)CT (5£)S;  (80:4)C (1) Prje—1(S0:),

where mtlt—l(so:t) = E{ﬂft | Z/l:t——lasO:t}a mtlt(SO:t) = E{mt Iylzt;SO:t}a gtlt—l(so:t) =
Yt — Yeje—1(50:t), Pre—1(s0:6) = cov {xs | y1:0-1, 50:4}, Poje(S0:¢) = cov {z¢ | Y14, S0:¢}, Yeje—1
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(s0:¢) = E{y¢ | y1:4-1,50:¢} and S;(s0:¢) = cov {ys | ¥1:¢-1, 50:¢ }-
The backward information filter proceeds as follows from time t tot — L + 1,

(A1) Pl (s1) = CT(s0)(D(s:)DT (s¢)) "1 C(su)
(A-2) Pl (se)ymiyy(se) = CT(s)(D(s0)D (s¢)) ™ (e — Glse)ue),

and for k=t¢,...,t-L+1,

Ak+1(sk+1:t) = [Inv + BT(sk-f-l)P]g;lj”k_*_l($k+1:t)B(3k+1)]_l
-1
Plilk+1(3k+1:t) B
= AT(3k+1)P];+1|k+1(3k+1:t)

X(In, = B(sk41)Ak11(sk11:0) BT (8541) Py 1 e (Sk1:0)) AlSk41)
P]é]_]:-pl(sk-l-l:t)m;glk-f-](sk-l-l:t)
= AT (sk41) (In, = Py1jigr (Sk41:6) B(sk41) Dkga (sk41:6) BT (sk11))
XPI’c:llk+1(sk+l=t)(m;c+llk+l(3k+1:t) — F(sg+1)uks1)
P/kal (Sk:t) = PLI;:H (sk+1:¢) + CT(sk)(D (k) DT (1)) 7+ C (s)

-1 -1
P];|k (sk:t)m;dk(sk:t) = P]:;Ik+1(Sk+1:t)m/k|k+1(sk+1:t)

+ CT (s)(D(sk) DT (sk)) " (yx — G(sk)uk)-

(A.3)

Appendix B: Posterior Cramér-Rao bounds derivation
ProOF OoF THEOREM 3.2.1. Consider the stochastic vector

Ze—1(y1:¢) — Te—1

Ze(y1:4) — Ae(se)Te—1 — Be(se)ve — Fi(sy)ue
Va1 log p(ve, Te—1, S¢—1:¢, Y1:¢)

Vo logp(ve, Te—1, 8¢-1:, Y1:t)

where
P(Ut, Ti—1, St—1:t5 yl:t) = P(Ut)P(St |3t—1 )P(yt |$t—1,3t, Ut )P($t—1,3t—1, ylzt—l)-

The correlation matrix of & is

H, M
(B.1) E(&e) = ( MZT K:) > 0,

where

Hyy ¢ Higy I 0 Ji_1+ RS
Hy = M, = A B Ky = oT 1)
Hyyy Hogy t By i Qs

Joo1 = E(-AZ - log p(ze—1, 811, Y1:6-1))-
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Assume that a bound on the filter error covariance for the previous time instant is known;
E((&—1(y1:4—1) = 5-1) (Fem1(W1:0-1) — 24-1)T) > P,_yjt—1. It follows from the PCRB

that P, ,_; > Ji—1, and hence from (B.1) that

Hyyy Hyoy I 0
Hyp Hozy Ay B,
T 1 -1 > 0.
I AT P +R7 S,
0 B st Q:!

Thus, the following matrix inequality holds

(B.2) Huy Hioy 2 Lo Pt_lllt_l:r_l_ e 5E1 ! Ag: )
Hyy ¢ Hoot A, B S; Q; 0 B}
and the lower right block induces a lower bound on the filtering error covariance at the

current time instant: Haop = E((£:(y1:1) — @¢)(@:(y1:4) — 2:)T) = Pye. This matrix
bound follows from (B.2) since

-1
P+ RS _ [ (07 =87 ST —TuSA
s¥ Q;! —A7SEY, A7t )

where A, = Q7' — STY; 'S, and 17" = P}, , + R;' yields that

Py = AT AT + A S AT ST AT — A XS A B + B.A ' BY — B.AT ST YL AT
= AT AT + (AX,S; — B) A (ST AT — BT).

The result (3.5) follows by induction since Jg 1= Foo-
Proor or THEOREM 3.2.2. Consider the stochastic vector

ZTy—1 — Tt

Zy — A4(8t)Te—1 — Be(se)ve — Fi(st)ue
Vi, log p(vg, Te—1, St—1:¢, Y1:0—1)
Vo, log p(ve, Tt—1, St—1:, Yi:it—1)

&t

where
P(Ut, xt—last—lztvyl:t—l) = p(vt)P(St ISt—l )P(yt—l lwt—h St )P(xt—l, 8t—17y1:t—2)-

The correlation matrix of & is

T
(B.3) E(&&) = (Ztt IA;I: ) >0,

where .
H I 0 Ji + R
H, = Hyy Hyo M, = K, = ++ R, 0 '
Hyy Hs» A, B, 0 I
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Assume that a bound E((Z¢—1(y1:4~2) —Zt—1) (-1 (¥1.6—2) —2t=1)T) > Pi_1jt—2 is known.
It follows from the PCRB that P > Ji, and hence from (B.3) that

t—1jt—2 =
Hi, Hyo I AT
Hy H 0 BT
21 22 ) . t 2 0.
I 0 Py, ,+R1 0
A, B, 0 I
Thus we have that
Hy Hp) (10 (P e+ RIDTHON (1 AT
Hoy Hyy | — \ A By 0 I 0 BF |’

and hence that

E((&t(y1:4-1) — 20) (@e(y1:0-1) — z4)7)
> Ay(Pi_qje—2 — Pioajp—2o(Pi-1ji-2 + Ry)™'P,_1j1—2)A] + B,B].

The result (3.7) follows by induction.
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