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ABSTRACT

Motivation: Identifying the network structure through which genes
and their products interact can help to elucidate normal cell
physiology as well as the genetic architecture of pathological
phenotypes. Recently, a number of gene network inference tools
have appeared based on Gaussian graphical model representations.
Following this, we introduce a novel Boosting approach to learn the
structure of a high-dimensional Gaussian graphical model motivated
by the applications in genomics. A particular emphasis is paid to the
inclusion of partial prior knowledge on the structure of the graph.
With the increasing availability of pathway information and large-
scale gene expression datasets, we believe that conditioning on
prior knowledge will be an important aspect in raising the statistical
power of structural learning algorithms to infer true conditional
dependencies.

Results: Our Boosting approach, termed BoostiGraph, is
conceptually and algorithmically simple. It complements recent work
on the network inference problem based on Lasso-type approaches.
BoostiGraph is computationally cheap and is applicable to very
high-dimensional graphs. For example, on graphs of order 5000
nodes, it is able to map out paths for the conditional independence
structure in few minutes. Using computer simulations, we investigate
the ability of our method with and without prior information to infer
Gaussian graphical models from artificial as well as actual microarray
datasets. The experimental results demonstrate that, using our
method, it is possible to recover the true network topology with
relatively high accuracy.

Availability: This method and all other associated files are freely
available from http://www.stats.ox.ac.uk/~anjum/.

Contact: s.anjum@har.mrc.ac.uk; cholmes@stats.ox.ac.uk
Supplementary information: Supplementary data are available at
Bioinfomatics online.

1 INTRODUCTION

Learning the structure, or connectivity, of a graphical model is an
important problem with a wide range of applications ranging from
speech processing to genomics. For example, it is the concerted
activity of thousands of genes and their products that primarily
determines the cellular phenotypes. Thus, elucidation of their

*To whom correspondence should be addressed.

complex interaction networks can help to provide new insights into
normal cell physiology as well as identify the genetic architecture
of pathological phenotypes. In addition, the study of protein—protein
interaction networks can also help to highlight key proteins that
could potentially become interesting drug targets (Jeong et al.,
2001).

Consequently, this task of structure learning for graphical
models has attracted considerable attention over the past few
years. Previously published methods in this field include Bayesian
networks (Friedman et al., 2000a; Segal et al., 2003) and Gaussian
graphical models (Dobra er al., 2004; Schafer and Korbinian,
2005). A sizeable amount of effort has also been directed towards
supervised or semi-supervised approaches, where partial knowledge
of the network structure is used to supplement the overall inference
procedure. Methods based on this framework include the kernel
canonical correlation analysis of Yamanishi ef al. (2004) and the
kernel metric learning method by Vert and Yamanishi (2005).
Unfortunately, most of the methods are either limited by the
small sample sizes of genomic datasets or are computationally too
expensive in the high-dimensional case, though some interesting
Bayesian methods are emerging (Lenkoski and Dobra, 2008;
Mukherjee and Speed, 2008). Motivated by these challenges,
we have developed a novel boosting approach for learning the
undirected network structure, with and without prior knowledge,
from high-dimensional data sets. We will limit ourselves here to the
Gaussian case as have others (Friedman et al., 2008; Schafer and
Korbinian, 2005). We consider p-dimensional data, y={y,...,yp}.
arising from a multivariate normal density

y~N(u,%)

with unknown mean g and non-singular covariance matrix X.
A graphical model for y can be represented by an undirected graph
G=(V;E), where V contains p nodes corresponding to each of the p
coordinates and the edges E = (e;; ) for i <j describe the conditional
independence relationship among (y1,...,yp). The edge between
¥; and y; is absent if and only if y; and y; are independent conditional
on the other variables. It is well known that the graphical structure
of G can be inferred from the precision matrix Q= >~ 1. Indeed the
partial correlation coefficients, p, satisfy
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where p;; =0 implies conditional independence between y; and y;.
That is, y; L yj| Y—(i,j) Where L denotes conditional independence
and y_(;;} denotes all other variables than {y;,yj}, y—{ij}=
Y\ {i,yj}. Thus, the partial correlations encode the structure (set
of edges) of the graph G, such that

0 if p;j=0
ij= :
1 otherwise

Given an i.i.d. sample of n data, we are interested here in
estimating the structure of the undirected graph. This problem is also
known as covariance selection and was first studied by Dempster
(1972). In order to handle the high-dimensional models under this
framework, one approach is to use a greedy forward/backward
search, but the selection/deletion of an edge requires O (pz)
operations and is too computationally intensive for high-dimensional
graphs. Recently, many alternative algorithms have appeared to
solve this problem. For example, in a Bayesian framework, the
authors in Jones et al. (2005) employ a stochastic algorithm to
manage tens of thousands of variables. However, most of the
papers have focused on the use of faster L1 (Lasso) regularization
techniques, where a L1 penalty is imposed on 2 to increase
its sparsity (Tibshirani , 1996). Various optimization techniques
have been developed to maximize the L1-penalized log-likelihood
(Banerjee er al., 2008; Friedman et al., 2008; Li and Yang, 2005;
Schmidt et al., 2007; Yuan, 2006; Yuan and Lin, 2007). In particular,
Friedman et al. (2008) have recently proposed the graphical Lasso
procedure which is a simple yet computationally efficient procedure.
Yuan (2006) have also proposed an approach to compute the
regularization path for this problem. A simpler approach has also
been presented in the seminal work of Meinshausen and Buhlmann
(2006), which consists of using a Lasso procedure for each variable,
while using the others as predictors. The edge between nodes i
and j is included if the estimated regression coefficient of variable
ionjandj on i are non-zero. The authors studied this approach
in detail, and showed that the resulting estimator is consistent for
sparse high-dimensional graphs.

In this article, we explore the use of boosting methods to learn
the structure of large graphs, of order 5000 nodes or higher. Since
the introduction of Freund and Schapire’s Adaboost algorithm for
classification, boosting algorithms have become one of the most
important supervised machine learning methods. In the insightful
paper (Friedman et al., 2000b), Friedman, Hastie and Tibshirani
pointed out the relationship between boosting and L1-penalized
estimation and initiated the use of boosting in contexts other than
classification. In particular, in a regression context, Buhlmann and
Yu (2003) have proposed L2 boosting which is an iterative procedure
refitting the residuals multiple times.

The algorithm we propose, termed BoostiGraph, for learning
graph structures uses the same notion of iterated residual updating
at the nodes and univariate autoregressions and can be interpreted
as a componentwise L2 boosting alternative to the work of
Meinshausen and Buhlmann (2006). For graphs of order 5000 nodes,
BoostiGraph is able to map out full boosting paths for the conditional
independence structure in few minutes on a standard PC at time of
writing. The method is also conceptually simple, of around 50 lines
of a single file Matlab code using a single for loop, and appears
highly competitive with other graphical inference approaches. The
Matlab code is available from http://www.stats.ox.ac.uk/~anjum/.

2 METHODS

2.1 Boosting graphical structure

Our starting point is similar to that of Meinshausen and Buhlmann (2006)
and relies on the use of the autoregressions

Yi:Zﬂlej+‘9i
J#
where p;; =0 implies that the regression coefficient, 8;; =0. That is, by fitting
the autoregressions at each node and considering the 8;; for all i,j we can
detect whether y; L yj| Y—(i,j)» namely y; is conditionally independent of y;
given the rest of the data, i.e. there is no edge between y; and y;.

Let the nxp-dimensional matrix Y= (Y1,....,Y,) contain the n
independent observations of y so that the rows of the column vector Y;
correspond to the n independent observations of y; and Y_; corresponds to the
n independent observations of the remaining (p—1) nodes. In Meinshausen
and Buhlmann (2006), the regression is solved under the Lasso-penalized
likelihood framework

Bi=argmax {HY,‘*Y—iﬂi”%‘i‘}‘”ﬂi”l}
b

i

where ||Bill; = Zj#i |ﬂ,;/| and A >0 is a regularization parameter. That is, E,-
is the optimal setting of B; given the criteria on the right-hand side. Instead of
using a Lasso-type approach, we favour here a boosting approach where at
the m-th iteration residuals from the current model fit are regressed upon the
univariate predictors given by other y’s. This univariate update is extremely
fast. For more details on the linear regression and boosting, readers are
referred to Buhlmann (2006) and the references therein.

2.2 BoostiGraph

The method is perhaps most easily illustrated through the algorithm. Here, T’
is the number of boosting iterations, while 0 < <1 is a step-length factor. In
all subsequent simulations, we select n=0.1. The indices i, refer to different
nodes in the network.
Boosting graph structure algorithm (BoostiGraph):
(1) Standardize Y; to zero mean and unit standard deviation for all i.
(2) Set counter m=0, initialize the p x (p—1) coefficients ﬂi;m) =0 for
all i,j.
(3) Initialize working residuals Y* <Y.
(4) Fit the p x (p—1) univariate regressions
By=Y)Y;  Yi#j
(5) Find best predictor
i.j=argmax {[8;1}
(6) Perform the boosting update
S(m+1) >(m) D
/3? i <« /3;] + 7]/3,' ¥
* * B
Ve (07 —nbiby)
(7) Update the (p—1) autoregressions on Y?* that have changed
EU =YY" for j A
(8) Increment counter, m <—m+1, and repeat steps 5—7 until m=T.

(9) Return vector of matrices /B“:T ),
(10) Report e\’ =1-5 (EST g >) .
ij i K
We can see from the above that BoostiGraph implements a forward
stagewise fitting algorithm in the spirit of Friedman et al. (2000b). That
is, at each stage the ‘best’ predictor (directed edge) is selected.
Computationally, the initialization of the algorithm involves 1/2p(p—1)
pairwise node comparisons after which each boosting step requires p—1
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updates. These evaluations are only univariate regressions as the working
residuals store the current parameter values. The algorithm returns at iteration

. (T) . . .
T an estimate e;; of the graph structure, but it is also possible to display

the full boosting path e[-j(-]:T). The run time is of order (T +p/2)(p—1) for
T boosting steps and p variables. Please note that in principle, unlike the
approaches by Yuan and Lin (2007) and Friedman et al. (2008), the proposed
method (as in Meinshausen and Buhlmann, 2006) does not guarantee the
positive definiteness of the resulting estimator. However, given an estimate
of the structure of the graph a conventional estimator of the precision matrix
could be adopted.

2.3 Regularization by early stopping

As the number of boosting iterations increases, BoostiGraph will overfit
and the false discovery rate of edge detection will increase. Stopping
early allows us to regularize the solution. One way to determine the
stopping time is to estimate the degrees of freedom in conjunction with
an information criteria such as the Bayesian information criteria (BIC;
Schwartz, 1978). We have explored the use of BIC which appears to give
reasonable performance. The BIC for the model, say m, can be estimated
as shown in the equation given below; and where, following Efron et al.
(2004), the degrees of freedom (df) are calculated by the number of non-zero
edges.

RSS
BIC(m) = —- +2log (np)df (m)
o

where RSS is the residual sum of squares for the estimated model and &7 is
the usual unbiased estimate of the variance of the error terms (¢;) based on
the full model. The second term of the equation [2log(np)df (m)] penalizes
the model for the lack of parsimony; where, df(m) represents the degrees of
freedom of the model m. The number of observations is represented by n
and p is the number of parameters.

An alternative would be to use, say, 10-fold cross-validation on the
autoregressions. We have not explored this last method. Readers interested
in the theoretical properties of boosting methods are referred to Buhlmann
(2003).

3 GRAPH INFERENCE WITH AUXILIARY
INFORMATION

The majority of the mainstream graph/network inference algorithms,
including the BoostiGraph method described above, follow the
unsupervised learning framework. Although these methods have
been used with varying degrees of success, predicting new edges
with a reasonable false discovery rate still remains extremely
challenging due the relatively small sample sizes.

The increasing wealth of large-scale genomic data and other useful
biological information have enabled the network inference problem
to be formulated as a semi-supervised or supervised learning task.
The main aim, in this case, is to utilize the prior knowledge in such a
way that it can help to predict the missing interactions and increase
the overall performance.

Supervised graph inference has drawn considerable interest and
a variety of methods under this framework have been proposed.
For instance, the kernel canonical correlation analysis published
by Yamanishi ef al. (2004) and the kernel metric learning method
by Vert and Yamanishi (2005). Both these methods map the genes
or proteins onto the Euclidean space where connected nodes are
close to each other. For example, if nodes A and B are connected,
they will lie close to each other in the Euclidean space. However,
a third node C, only connected to node A, will also be assigned

an edge to node B based on the fact that A and B are connected.
This underlying hypothesis that genes with similar genomic data
are likely to have similar neighbours has not yet been justified nor
supported by experimental evidence (Bleakley et al., 2007).

Ben-Hur and Noble (2005) view the graph inference problem as
a classical binary supervised classification task and solve it with
a support vector machine (SVM) based on a specific kernel for
all edges. However, building one unique global model that can be
applied to all the nodes in the graph is not trivial. Instead, Bleakley
et al. (2007) investigated the possibility of building local models.
This proposed local method uses SVM to learn the individual
subnetworks associated with each of the nodes in the known graph
(the training set). The classification rules, thus, learnt for each of
those nodes in the training set are then used individually to predict
edges between that node and the nodes in the unknown part of the
graph (the test set).

However, learning robust classification rules still requires a
reasonably large number of positive examples, in the form of known
edges, and negative examples in the form of known non-edges. This
could be a problem if only a small amount of biological information
regarding the regulatory network structure to be inferred is at hand.
Moreover, the above mentioned methods, given a (labelled) training
set and an (unlabelled) test set, infer edges only for the test set
(Chapelle et al., 2006). This means that targets of all examples
in the training set are required and since this may not always be
possible, we suggest using a semi-supervised framework. Under this
framework, given a training set, we can infer edges over the entire
input space.

In this section, we propose a simple modification to the
BoostiGraph algorithm which will allow us to utilize auxiliary
information and improve the graph inference especially when the
number of predictors greatly exceeds the number of observations.

3.1 The proposed method

As before, G= (V;E) represents the undirected graph, where E C
(V xV)is aset of edges.

Suppose we are given the knowledge of a subgraph G, =
(Vs Epy) of G where Vi, CV and E, ={(v,V') €E|v,V € V,;} which
contains the known edges and the known non-edges. The goal
of the semi-supervised network inference is to then determine
the set of edges E/ C (VxV)\Ey, from the knowledge of Gy,.
Information regarding the known edges can be extracted from
a number of potential sources such as scientific literature or
databases with information on transcriptional relationships (e.g.
TRRD; http://wwwmgs.bionet.nsc.ru/mgs/gnw/trrd/). In contrast,
prior knowledge on non-edges is harder to obtain mainly due to
their absence from scientific literature. However, as shown in Segal
et al. (2003), information on non-edges can be extracted based on
the annotation of genes in terms of their cellular function or cellular
localization and the assumption that genes that are not involved in
a signal transduction pathway, are unlikely to directly regulate any
other gene. This type of prior knowledge is likely to increase as
more genes are annotated.

To utilize the information given in the subgraph, G;;, the main
idea is to choose, at each iteration, the edge with the largest
score which takes into consideration the likelihood of the edge
given the data as well as the log-odds value as shown in the
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equation given below:

Liej=1)

+log i
L(e;j=0)

1 —mj

log score;j=log

We can think of L(e;; = 1) as the approximate likelihood that there
is an edge, between nodes i and j, given the data and also given the
other edges. L(e;;=0) is the (approximate) likelihood that there is
no edge, between nodes i and j, given the data and also given the
other edges. Since the latter value, at each iteration, is equivalent
to the current likelihood of the model and will be the same for
each edge; it, therefore, suffices to rank the edges based on the
(approximate) value of their L(e;; = 1) plus the log-odds. Here, 7;; €
[0, 1] represents the prior information which is basically the users
certainty or uncertainty, on the presence of an edge between nodes
iandj.

3.1.1 Modified BoostiGraph The pseudo-algorithm shown in
this section will help to illustrate the proposed modification to
BoostiGraph. As before, T is the number of boosting iterations, while
0<n<1 is a step-length factor. Let Ej, represent the set of likely
edges and E, the set of unlikely edges. Let the prior information
about the network structure be encoded in a V x V symmetric matrix
such that

0.5<m;<l1 ifi#jand (i,j) € En
T 0<mjj<0.5 ifi#j and (i,j) € E,
Y710 if i=j

0.5 otherwise

(1) Standardize Y; to zero mean and unit SD for all i.
(2) Set counter m=0, initialize the px (p—1) coefficients
By =0 foralli

(3) Initialize working residuals Y* < Y.

(4) Fit the p x (p—1) univariate regressions.
Bi=Y/Yf Vi#j

(5) Calculate score for each potential edge

log (score;j) =log (likelihood;;)+1log (odds;;)

where,

1 - -~
SV = YiBy) (¥ = Y;By)

log (odds;j) = log(m;j)—log(1—m;j)

log (likelihood;;) =—

(6) Find best edge

A

i.j=argmax {log (score;j)}.
ij

(7) Once the edge has been added, reset the prior information for
that edge to 0.5

mij < 0.5.
(8) Follow steps 6 and 7 of the BoostiGraph algorithm 2.2.

(9) Increment counter, m <—m-1, and repeat steps 5-8 until
m=T.

(10) Follow steps 9 and 10 of the BoostiGraph algorithm 2.2.

4 EXPERIMENTAL RESULTS
4.1 Graph inference using BoostiGraph

4.1.1 On sparse network structure  Following the procedure from
others (Friedman et al., 2008, Yuan, 2006, Yuan and Lin, 2007), we
generated data from a graphical model with sparse Markov structure
(Q)jj=a for |i—jl=1; (2);;=1Vi; (£2);; =0 otherwise.
We generated 100 datasets with n=100, p=200, «={0.5,0.3}
and noise 0 =0.1,
y~N(@©,Q ' +0%1)

The resulting graphs had approximately 500 connections.

Tables 1 and 2 show the true positive rate (TPR) and false
positive rate (FPR) for the top 300, 400 and 500 edges inferred by
BoostiGraph, GeneNet (Schafer and Korbinian, 2005), glasso and
Least Angle Regression (LARS; Efron ef al., 2004). LARS was run
separately on each node with the remaining nodes as predictors in a
similar manner to Meinshausen and Buhlmann (2006). The points on
the receiver operating curves (ROC) curve for LARS correspond to
the TPRs and FPRs across the entire network inferred under various
cut-off points. In this case, the cut-off points, ranging from 1%
to 100%, are the percentages of variance explained by the LARS
solution.

The Tables 1 and 2 show the results over 100 simulated
datasets. From these tables it can be seen that BoostiGraph slightly
outperforms all three methods. However, its performance is closely
followed by others. Please refer to the Supplementary Material for
the full ROC curves.

Table 3 shows the runtime of all four methods, in minutes, for the
sparse setting on a Quad Core processor. BoostiGraph is extremely
fast and can compute the required statistics for large datasets with
5000-10 000 nodes within 1 min.

4.1.2 On non-sparse network structure We also considered a
non-sparse graph which was generated by randomly removing some
connections in the Cholesky decomposition of €2;; = o fori #j,a=
0.5, (2);i=1 and 0=0.01. The resulting graph has approximately
1000 connections for p =200 and we set n=100. The lower graph
size, p=200, was needed to ensure the stability in the generation of
the dataset, as the condition number of the covariance matrix became
too high for larger p. We assessed the performance on 100 datasets
drawn from this non-sparse network structure. Tables 4 and 5 show
the performance of BoostiGraph, glasso, GeneNet and LARS for
low (¢=0.3) and high (¢ =0.5) effect sizes, respectively.

The BoostiGraph algorithm once again performs competitively
against all three methods—glasso, GeneNet and LARS. Please refer
to the Supplementary Material for the full ROC curves with error

Table 1. Average performance results for BoostiGraph, GeneNet, glasso and
LARS on 100 datasets of sparse Markov structure, «=0.3,0=0.1

Method Top 300 edges Top 400 edges Top 500 edges

TPR FPR TPR FPR TPR FPR

BoostiGraph 0.417 0.004 0.490 0.008 0.545 0.011

GeneNet 0.416 0.004 0.488 0.008 0.541 0.011
glasso 0.390 0.005 0.455 0.009 0.506 0.012
LARS 0.308 0.004 0.369 0.008 0.419 0.009
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Table 2. Average performance results for BoostiGraph, GeneNet, glasso and
LARS on 100 datasets of sparse Markov structure, «=0.5,0=0.1

Table 6. Runtime, in minutes, for non-sparse networks on a Quad Core
processor for BoostiGraph, GeneNet, glasso and LARS

Method Top 300 edges Top 400 edges Top 500 edges Nodes BoostiGraph GeneNet glasso LARS
TPR FPR TPR FPR TPR FPR 100 0.0017 0.0034 0.0015 0.192
500 0.0017 0.0688 4.9841 3.303

BoostiGraph ~ 0.553  0.0008  0.685  0.002  0.768  0.005 1000 0.0021 0.3185 >120 11.84

GeneNet 0.547  0.094 0.674  0.003  0.756  0.006
glasso 0.490  0.003 0.590  0.005 0.666  0.008
LARS 0.380  0.003 0462  0.005 0529  0.006

Table 3. Runtime, in minutes, for sparse networks on a Quad Core processor
for BoostiGraph, GeneNet, glasso and LARS

Nodes BoostiGraph GeneNet glasso LARS
100 0.001 0.004 5e-04 0.196
500 0.002 0.068 0.037 3.540
1000 0.003 0.323 0.310 12.60
5000 0.038 7.87 >11 > 279
10000 0.158 34.52 > 60 >1173

Table 4. Average performance results for BoostiGraph, GeneNet, glasso and
LARS on 100 datasets of non-sparse structure, «=0.3,0=0.1

Method Top 900 edges Top 1000 edges Top 1500 edges

TPR FPR TPR FPR TPR FPR

BoostiGraph ~ 0.524  0.019  0.551  0.024 0.650  0.045

GeneNet 0.520 0.020 0.547  0.024 0.647  0.045
glasso 0474  0.023 0513 0.029 0.603  0.047
LARS 0.411 0.011 0.437  0.013 0.461 0.015

Table 5. Average performance results for BoostiGraph, GeneNet, glasso and
LARS on 100 datasets of non-sparse structure, «=0.5,0=0.1

Method Top 900 edges Top 1000 edges Top 1500 edges

TPR FPR TPR FPR TPR FPR

BoostiGraph ~ 0.613  0.015  0.650  0.019 0.751  0.0395

GeneNet 0.617 0.015 0.650 0.018 0.749  0.0396
glasso 0453  0.024 0481  0.028 0.600  0.0476
LARS 0447 0.012 0474 0.014 0.500  0.0163

bars. The timing comparison between all four methods on the setting
is given in Table 6. Once again the runtime, reported in minutes, was
observed on a Quad Core processor.

As can be seen from Table 6, the BoostiGraph algorithm is
relatively computationally fast especially when the number of nodes
is high, i.e. >1000, though the runtime gets comparatively slower
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Fig. 1. Gene network inferred from E.coli data set using the BoostiGraph
method; from example in section 4.1.3

for more edges and higher FDR as BoostiGraph has to be run for
longer to realise such networks.

4.1.3 Escherichia coli example We applied the BoostiGraph
to the microarray dataset containing the stress response levels
of E.coli during the expression of a recombinant protein SOD
(human superoxide dismutase). This experiment was conducted by
the Institute of Applied Microbiology, University of Agricultural
Sciences of Vienna (Schmidt-Heck et al., 2004). The initial
experiment results monitor the expression levels of all 4289 E.coli
genes at 8, 15, 22, 45, 68, 90, 150, and 180 min after induction of
the recombinant protein. Schmidt-Heck er al. (2004) have identified
102 genes out of the 4289 genes as differentially expressed in one
or more samples after induction. This preselected set of 102 genes
and their expression levels across nine samples were used for our
analysis.

Figure 1 shows the network inferred by the BoostiGraph method
with early stopping using a BIC criteria. The runtime was 5.4s
to fit the graph. We have highlighted a few of the edges that
demonstrate the ability of BoostiGraph to infer real structure. These
include the edge between the genes cspA and cspG and between
cspG and hns. The edge between the cold shock proteins cspA
and ¢spG is supported by the study which reports a high sequence
similarity, both in coding and non-coding regions, for these two
proteins in E.coli (Nakashima et al., 1996). While the cspA protein
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is known to be involved in the transcriptional regulation of the
cold shock gene hns (Jones et al., 1992; La Teana et al., 1991),
the high sequence similarity between cspA and cspG provides some
support for the edge between cspG and hns. This edge is particularly
interesting because none of the other approaches, namely GeneNet,
LARS and Lasso regression, were able to infer an edge between
cspA and hns or cspG and hns. Due to limited space, we have
relegated the details on the networks inferred by the other three
methods to the Supplementary Material. Another notable edge is
that between genes ompF and ompC which has been inferred only
by the BoostiGraph approach and the LARS approach. Both of
the genes, ompF and ompC, are porin proteins and are known to
show differential expression depending on the growing media for
the E.coli (Waukau and Forst, 1992). This provides some evidence
that our BoostiGraph approach is able to infer real structure.

4.2 Graph inference using BoostiGraph and prior
knowledge of partial network structure

4.2.1 On sparse network structure We assessed the performance
of our method and compared it to the local model approach proposed
by Bleakley et al. (2007) on simulated data drawn from the sparse
network structure described in Section 4.1.1. Using that network
structure, we generated 100 datasets with n=100, p=200, «=0.5
and noise o0 =0.1. The performance on all 100 datasets were tested
across a 5-fold cross-validation and at each fold, information on all
pairwise interactions between a randomly selected set comprising
of 20% (80% in the second case) of the nodes were provided as
the training set. For the local model, following Kato et al. (2005),
we transform the datasets into positive semi-definite matrices of
similarities between genes using a RBF Gaussian kernel. To emulate
different levels of prior information, we simulated prior values
uniformly using 7;; €[0.5, 1] for edges and uniformly using 7;; €
[0,0.5] for non-edges.

From the ROC curves in Figure 2a, it is quite clear that the
modified BoostiGraph has an advantage over the local model
approach when the network to be inferred is sparse. Although the
local model uses balanced penalization when positive and negative
training sets are of unequal sizes, in this sparse setting with only
500 edges and approximately 19 000 non-edges, there was a large
difference between the number of positive and negative examples.
This discrepancy made it difficult for the SVM classifier to learn
robust classification rules.

4.2.2 On non-sparse network structure For this non-sparse
example, we considered the network structure described in
Section 4.1.1. The performance of our modified BoostiGraph and the
local model were compared on all 100 datasets with 5-fold cross-
validation and at each fold, information on all pairwise interactions
between arandomly selected set comprising 20% (80% in the second
case) of the nodes were provided as the training set. As in the
previous example, the RBF Gaussian kernel was used as the kernel
matrix function for input to the local model.

The ROC curves in Figure 2b shows the performance of our
modified BoostiGraph approach in comparison with that of the
local model. Once again, the modified BoostiGraph approach out-
performs the local model by a large margin regardless of the
amount of information provided in the training set. Please refer
to the Supplementary Material for experiments on the sensitivity
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LT - - modified BoostiGraph (20% Training Data

06f e ’ o local model (80% Training Data)

‘ -A-|ocal model (20% Training Data)

——modified BoostiGraph (80% Training Data|
== modified BoostiGraph (20% Training Data)| |
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o o o
N © b
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Fig. 2. ROC curves: modified BoostiGraph vs local model on sparse and
non-sparse structures. (a) ROC curves for BoostiGraph (solid lines) and
Local Model using SVM (dashed lines), for sparse Markov structure, « =0.5,
o0=0.1. (b) ROC curves for BoostiGraph (solid lines) and Local Model using
SVM (dashed lines) , for non-sparse structure, «=0.5, 0 =0.1.

of the modified BoostiGraph algorithm and also a performance
comparison between the BoostiGraph algorithms with and without
prior information.

4.2.3 Analysis of cell signalling data We evaluated the
performance of our modified BoostiGraph approach and that of
the local model proposed by Bleakley et al. (2007) on the RAF
signalling network. This network, shown in Figure 3, has been well
studied in the literature (e.g. Sachs et al., 2005, Dougherty et al.,
2005) and has been used by both Friedman et al. (2008) and Werhli
et al. (2006) as the gold standard network for their analyses.

The expression levels for all the 11 proteins of this network,
namely RAF, MEK, PLCg, PIP2, PIP3, ERK, AKT, PKA, PKC,
P38 and JNK, were measured by Sachs et al. (2005) by applying
flow cytometery experiments. The original dataset consisted of 5400
data points for each of the 11 proteins and Sachs e al. (2005) have
demonstrated that with such a large dataset, the RAF signalling
network can be successfully reverse engineered. However, most
of the microarray expression datasets have small sample sizes and
therefore, to make it a more realistic performance assessment of
the methods, we used the data from Werhli ef al. (2006) who have
sampled the data from Sachs et al. (2005) into five individual sets
with 100 data points for each protein.

Also, since the RAF signalling network is a relatively small
network, as part of our prior information, we selected the network
between 6 of the 11 proteins, namely PIP3, PIP2, PKC, PKA, RAF,
ERK (coloured nodes in Fig. 3). This was done to ensure that the
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BoostiGraph

Fig. 3. The undirected RAF signalling pathway from Werhli et al. (2006)
and drawn using RGraphviz (Gentry et al., 2004).
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- = =local model
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Fig. 4. The ROC curves for both modified BoostiGraph (solid line) and local
model (dashed line) on the flow cytometery data from Werhli ez al. (2006).

local model approach had at least one positive example for each
node to train on and also that there was at least one edge between
each node in the training set and the test set for the local model to
infer. Once again, for the modified Boostigraph, the edges between
the chosen proteins were randomly assigned probabilities between
0.5 and 1; while the non-edges were randomly assigned probabilities
between 0 and 0.5.

Figure 4 shows the ROC curves for both the modified BoostiGraph
approach and the local model approach. The performance results
for both methods were averaged over the five individual datasets.
From the ROC curves, it can be seen that our modified BoostiGraph
approach performed slightly better than the local model and was
able to infer almost 35% and 50% of the true edges with zero and
1% false positives, respectively.

5 DISCUSSION

In this article, we have proposed BoostiGraph: a boosting approach
to graph structure learning. The resulting graph structure is
an undirected network that allows exploratory analysis of gene
expression data. Please note that the gene interactions in the inferred
network should not be interpreted as pathways due to the lack of
information on the underlying translation of mRNA to proteins and
the activation states of these proteins. The BoostiGraph algorithm is
conceptually simple and computationally very efficient as it relies
only on univariate regressions. We have demonstrated in simulations

that BoostiGraph appears highly competitive with GeneNet, glasso
and LARS. However, there are still several open questions. In
particular, it would be interesting to study the theoretical properties
of the resulting algorithm and to establish a stopping rule allowing us
to obtain a consistent estimate of the graph. Furthermore, it would
also be worth investigating that how the BoostiGraph and other
regression-based approaches fare against those based on entirely
different philosophies, e.g. Belief Propagation Networks (Braunstein
etal.,2008), as well as fully Bayesian and non-approximate methods
(Dobra et al., 2003; Mukherjee and Speed, 2008). However, in this
article, our focus was to introduce a novel boosting approach for
network inference and to demonstrate its performance in comparison
with other linear methods.

We have also shown the how the BoostiGraph algorithm can
be extended to incorporate prior knowledge about the network
structure. We compared the performance of our method with the
local model approach proposed by Bleakley et al. (2007). The main
advantage of this method is that through the use of kernels this
method is capable of handling vectorial as well as non-vectorial data
to represent the information on the nodes by the use of the kernel
trick (Vapnik, 1998). For instance, in the case of inferring biological
networks, this local model can handle a variety of data types,
including biological sequences and molecular structures (Bleakley
et al., 2007). However, selecting the appropriate kernel for the data
at hand is also one of its main challenges.

In addition, this local model approach does require complete
information on all nodes in the training set and can only infer new
edges between nodes in the training set and the test set. In contrast,
the modified BoostiGraph algorithm is able to work with any amount
of prior information regarding the pertinent network structure and
is capable of inferring new edges over the entire input space.

From a methodological point of view, it would be interesting to
extend the BoostiGraph approach to non-Gaussian mixed variable
graphical models, as the univariate nature would allow for efficient
fitting of the generalized autoregressions (for different variable
types). An effective approach proposed in Heckerman et al. (2000)
relies on learning a dependency network; that is, we independently
learn the conditional distribution of a node given the remaining
modes. In the discrete case, we can represent these distributions
using logistic regression. It is fairly straightforward to extend
BoostiGraph to this and other classes of problems such as automatic
speech recognition (Bilmes, 2004), image analysis (Freeman et al.,
2000) and for industrial planning on complex domains (Gebhardt
et al., 2000).
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