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Summary. Markov chain Monte Carlo and sequential Monte Carlo methods have emerged as
the two main tools to sample from high dimensional probability distributions.Although asymptotic
convergence of Markov chain Monte Carlo algorithms is ensured under weak assumptions, the
performance of these algorithms is unreliable when the proposal distributions that are used to
explore the space are poorly chosen and/or if highly correlated variables are updated indepen-
dently. We show here how it is possible to build efficient high dimensional proposal distributions
by using sequential Monte Carlo methods. This allows us not only to improve over standard
Markov chain Monte Carlo schemes but also to make Bayesian inference feasible for a large
class of statistical models where this was not previously so. We demonstrate these algorithms
on a non-linear state space model and a Lévy-driven stochastic volatility model.
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1. Introduction

Monte Carlo methods have become one of the standard tools of the statistician’s apparatus and
among other things have allowed the Bayesian paradigm to be routinely applied to ever more
sophisticated models. However, expectations are constantly rising and such methods are now
expected to deal with high dimensionality and complex patterns of dependence in statistical
models. In this paper we propose a novel addition to the Monte Carlo toolbox named particle
Markov chain Monte Carlo (PMCMC) methods. They rely on a non-trivial and non-standard
combination of MCMC and sequential Monte Carlo (SMC) methods which takes advantage of
the strength of its two components. Several algorithms combining MCMC and SMC approaches
have already been proposed in the literature. In particular, MCMC kernels have been used to
build proposal distributions for SMC algorithms (Gilks and Berzuini, 2001). Our approach
is entirely different as we use SMC algorithms to design efficient high dimensional proposal
distributions for MCMC algorithms. As we shall see, our framework is particularly suitable for
inference in state space models (SSMs) but extends far beyond this application of choice and
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allows us to push further the boundaries of the class of problems that can be routinely addressed
by using MCMC methods.

To be more specific, the successful design of most practical Monte Carlo algorithms to sample
from a target distribution, say π, in scenarios involving both high dimension and complex
patterns of dependence relies on the appropriate choice of proposal distributions. As a rule of
thumb, to lead to efficient algorithms, such distributions should both be easy to sample from
and capture some of the important characteristics of π, such as its scale or dependence structure.
Whereas the design of such efficient proposal distributions is often feasible in small dimensions,
this proves to be much more difficult in larger scenarios. The classical solution that is exploited by
both MCMC and SMC methods, albeit in differing ways, consists of breaking up the original
sampling problem into smaller and simpler sampling problems by focusing on some of the
subcomponents of π. This results in an easier design of proposal distributions. This relative ease
of implementation comes at a price, however, as such local strategies inevitably ignore some
of the global features of the target distribution π, resulting in potentially poor performance.
The art of designing Monte Carlo algorithms mainly resides in the adoption of an adequate
trade-off between simplicity of implementation and the often difficult incorporation of impor-
tant characteristics of the target distribution. Our novel approach exploits differing strengths of
MCMC and SMC algorithms, which allow us to design efficient and flexible MCMC algorithms
for important classes of statistical models, while typically requiring limited design effort on the
user’s part. This is illustrated later in the paper (Section 3) where, even using standard off-the-
shelf components, our methodology allows us straightforwardly to develop efficient MCMC
algorithms for important models for which no satisfactory solution is currently available.

The rest of the paper is organized as follows. Section 2 is entirely dedicated to inference in
SSMs. This class of models is ubiquitous in applied science and lends itself particularly well
to the exposition of our methodology. We show that PMCMC algorithms can be thought of
as natural approximations to standard and ‘idealized’ MCMC algorithms which cannot be
implemented in practice. This section is entirely descriptive both for pedagogical purposes and
to demonstrate the conceptual and implementational simplicity of the resulting algorithms. In
Section 3, we demonstrate the efficiency of our methodology on a non-linear SSM and a Lévy-
driven stochastic volatility model. We first show that PMCMC sampling allows us to perform
Bayesian inference simply in non-linear non-Gaussian scenarios where standard MCMC meth-
ods can fail. Second, we demonstrate that it is an effective method in situations where using
the prior distribution of the underlying latent process as the proposal distribution is the only
known practical possibility. In Section 4 we provide a simple and complete formal justification
for the validity and properties of PMCMC algorithms. Key to our results is the realization that
such seemingly approximate algorithms sample from an artificial distribution which admits our
initial target distribution of interest as one of its components. The framework that is considered
is somewhat more abstract and general than that for SSMs but has the advantage of applicabil-
ity far beyond this class of models. In Section 5 we discuss connections to previous work and
potential extensions.

2. Inference in state space models

In this section we first introduce notation and describe the standard inference problems that
are associated with SSMs. Given the central role of SMC sampling in the PMCMC method-
ology, we then focus on their description when applied to inference in SSMs. For pedagogical
purposes we consider in this section one of the simplest possible implementations—standard
improvements are discussed in Section 2.5. The strengths and limitations of SMC methods are
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subsequently briefly discussed and we then move on to describe standard MCMC strategies for
inference in SSMs. Again we briefly discuss their strengths and weaknesses and then show how
our novel methodology can address the same inference problems, albeit in a potentially more
efficient way. No justification for the validity of the algorithms presented is provided here—this
is postponed to Section 4.

2.1. State space models
Further on, we use the standard convention whereby capital letters denote random variables,
whereas lower case letters are used for their values. Consider the following SSM, which is also
knownasahiddenMarkovmodel. In this context,ahiddenMarkovstateprocess{Xn; n�1}⊂X N

is characterized by its initial density X1∼μθ.·/ and transition probability density

Xn+1|.Xn =x/∼fθ.·|x/, .1/

for some static parameter θ∈Θ which may be multidimensional. The process {Xn} is observed,
not directly, but through another process {Yn; n�1}⊂YN. The observations are assumed to be
conditionally independent given {Xn}, and their common marginal probability density is of the
form gθ.y|x/; i.e., for 1�n�m,

Yn|.X1, . . . , Xn =x, . . . , Xm/∼gθ.·|x/: .2/

Hereafter for any generic sequence {zn} we shall use zi:j to denote .zi, zi+1, . . . , zj/.
Our aim is to perform Bayesian inference in this context, conditional on some observations

y1:T for some T�1. When θ∈Θ is a known parameter, Bayesian inference relies on the posterior
density pθ.x1:T |y1:T /∝pθ.x1:T , y1:T / where

pθ.x1:T , y1:T /=μθ.x1/
T∏

n=2
fθ.xn|xn−1/

T∏
n=1

gθ.yn|xn/: .3/

If θ is unknown, we ascribe a prior density p.θ/ to θ and Bayesian inference relies on the joint
density

p.θ, x1:T |y1:T /∝pθ.x1:T , y1:T /p.θ/: .4/

For non-linear non-Gaussian models, pθ.x1:T |y1:T / and p.θ, x1:T |y1:T / do not usually admit
closed form expressions, making inference difficult in practice. It is therefore necessary to resort
to approximations. Monte Carlo methods have been shown to provide a flexible framework to
carry out inference in such models. It is impossible to provide a thorough review of the area
here and instead we briefly review the underlying principles of MCMC and SMC methods for
SSM models at a level that is sufficient to understand our novel methodology.

2.2. Sequential Monte Carlo algorithm for state space models
In the SSM context, SMC methods are a class of algorithms to approximate sequentially the
sequence of posterior densities {pθ.x1:n|y1:n/; n�1} as well as the sequence of marginal likeli-
hoods {pθ.y1:n/; n�1} for a given θ∈Θ. More precisely such methods aim to approximate first
pθ.x1|y1/ and pθ.y1/, then pθ.x1:2|y1:2/ and pθ.y1:2/ and so on. In the context of SMC methods,
the posterior distributions that are associated with such densities are approximated by a set of
N weighted random samples called particles, leading for any n�1 to the approximation

p̂θ.dx1:n|y1:n/ :=
N∑

k=1
Wk

nδXk
1:n

.dx1:n/, .5/
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where Wk
n is a so-called importance weight associated with particle Xk

1:n. We now briefly describe
how such sample-based approximations can be propagated efficiently in time.

2.2.1. A sequential Monte Carlo algorithm
The simplest SMC algorithm propagates the particles {Xk

1:n} and updates the weights {Wk
1:n} as

follows. At time 1 of the procedure, importance sampling (IS) is used to approximate pθ.x1|y1/ by
using an importance density qθ.x1|y1/. In effect, N particles {Xk

1} are generated from qθ.x1|y1/

and ascribed importance weights {Wk
1 } which take into account the discrepancy between the

two densities. To produce N particles approximately distributed according to pθ.x1|y1/ we sam-
ple N times from the IS approximation p̂θ.dx1|y1/ of pθ.x1|y1/; this is known as the resampling
step. At time 2 we aim to use IS to approximate pθ.x1:2|y1:2/. The identity

pθ.x1:2|y1:2/∝pθ.x1|y1/ fθ.x2|x1/ gθ.y2|x2/

suggests reusing the samples obtained at time 1 as a source of samples approximately distributed
according to pθ.x1|y1/ and extending each such particle through an IS density qθ.x2|y2, x1/ to
produce samples approximately distributed according to pθ.x1|y1/ qθ.x2|y2, x1/. Again impor-
tance weights {Wk

2 } need to be computed since our target is pθ.x1:2|y1:2/ and a resampling step
produces samples approximately distributed according to pθ.x1:2|y1:2/. This procedure is then
repeated until time T. The resampling procedure of the SMC algorithm prevents an accumula-
tion of errors by eliminating unpromising samples: this can be both demonstrated practically
and quantified theoretically (see Section 4.1 for a discussion).

Pseudocode of the SMC algorithm that was outlined above is provided below. To alleviate
the notational burden we adopt below the convention that whenever the index k is used we
mean ‘for all k ∈ {1, . . . , N}’, and we also omit the dependence of the importance weights on
θ—we shall do so in the remainder of the paper when confusion is not possible. We also use the
notation Wn := .W1

n , . . . , WN
n / for the normalized importance weights at time n and F.·|p/ for

the discrete probability distribution on {1, . . . , m} of parameter p = .p1, . . . , pm/ with pk � 0
and Σm

k=1 pk =1, for some m∈N.

Step 1: at time n=1,

(a) sample Xk
1 ∼qθ.·|y1/ and

(b) compute and normalize the weights

w1.Xk
1/ := pθ.X

k
1, y1/

qθ.X
k
1|y1/

= μθ.X
k
1/gθ.y1|Xk

1/

qθ.X
k
1|y1/

,

Wk
1 := w1.Xk

1/

N∑
m=1

w1.Xm
1 /

:
.6/

Step 2: at times n=2, . . . , T ,

(a) sample Ak
n−1 ∼F.·|Wn−1/,

(b) sample Xk
n ∼q.·|yn, Xn−1

Ak
n−1/ and set Xk

1:n := .X
Ak

n−1
1:n−1, Xk

n/, and
(c) compute and normalize the weights

wn.Xk
1:n/ := pθ.X

k
1:n, y1:n/

pθ.X
Ak

n−1
1:n−1, y1:n−1/qθ.Xk

n|yn, X
Ak

n−1
n−1 /

.7/
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= fθ.X
k
n|X

Ak
n−1

n−1 /gθ.yn|Xk
n/

qθ.Xk
n|yn, X

Ak
n−1

n−1 /

,

Wk
n := wn.Xk

1:n/

N∑
m=1

wn.Xm
1:n/

:

In this description, the variable Ak
n−1 represents the index of the ‘parent’ at time n−1 of parti-

cle Xk
1:n for n=2, . . . , T . The standard multinomial resampling procedure is thus here interpreted

as being the operation by which offspring particles at time n choose their ancestor particles at
time n−1, according to the distribution

r.An−1|Wn−1/ :=
N∏

k=1
F.Ak

n−1|Wn−1/,

where, for any n= 1, . . . , T − 1, An := .A1
n, . . . , AN

n /. The introduction of these variables allows
us to keep track of the ‘genealogy’ of particles and is necessary to describe one of the algorithms
that is introduced later (see Section 2.4.3). For this purpose, for k = 1, . . . , N and n = 1, . . . , T

we introduce Bk
n, the index which the ancestor particle of Xk

1:T at generation n had at that
time. More formally for k = 1, . . . , N we define Bk

T := k and for n = T − 1, . . . , 1 we have the
backward recursive relation Bk

n := An
Bk

n+1 . As a result for any k = 1, . . . , N we have the identity
Xk

1:T = .X1
Bk

1 , X2
Bk

2 , . . . , X
T−1
Bk

T−1 , X
T
Bk

T / and Bk
1:T = .Bk

1, Bk
2, . . . , Bk

T−1, Bk
T =k/ is the ancestral ‘lineage’

of a particle. This is illustrated in Fig. 1.
This procedure provides us at time T with an approximation of the joint posterior density

pθ.x1:T |y1:T / given by

p̂θ.dx1:T |y1:T / :=
N∑

k=1
Wk

T δXk
1:T

.dx1:T /, .8/

from which approximate samples from pθ.x1:T |y1:T / can be obtained by simply drawing an
index from the discrete distribution F.·|WT /. This is one of the key properties exploited by the
PMCMC algorithms. In addition we shall also use the fact that this SMC algorithm provides

X1
1 X1

2 X1
3 X1

4 X1
5

X2
1

A1 = 31 A1 = 12 A1 = 43 A1 = 34
A1 = 45

A2 = 21
A2 = 42 A2 = 23 A2 = 14 A2 = 35

X2
2 X2

3 X2
4 X2

5

X3
1 X3

2 X3
3 X3

4 X3
5

Fig. 1. Example of ancestral lineages generated by an SMC algorithm for N D5 and T D3: the lighter path
is X2

1:3 D .X3
1,X4

2,X2
3/ and its ancestral lineage is B2

1:3 D (3,4,2)
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us with an estimate of the marginal likelihood pθ.y1:T / given by

p̂θ.y1:T / := p̂θ.y1/
T∏

n=2
p̂θ.yn|y1:n−1/ .9/

where

p̂θ.yn|y1:n−1/= 1
N

N∑
k=1

wn.Xk
1:n/

is an estimate computed at time n of

pθ.yn|y1:n−1/=
∫

wn.x1:n/ qθ.xn|yn, xn−1/ pθ.x1:n−1|y1:n−1/dx1:n:

It follows from equation (7) that wn.x1:n/ only depends on x1:n through xn−1:n. We have omitted
the dependence on N in equations (5), (8) and (9), and will do so in the remainder of this section
when confusion is not possible.

2.2.2. Design issues and limitations
This algorithm requires us to specify qθ.x1|y1/ and {qθ.xn|yn, xn−1/; n=2, . . . , T}. Guidelines on
howbest toselect{qθ.xn|yn, xn−1/}arewellknown.Withpθ.xn|yn, xn−1/∝fθ.xn|xn−1/ gθ.yn|xn/,
it is usually recommended to set qθ.xn|yn, xn−1/ = pθ.xn|yn, xn−1/ whenever possible and to
select qθ.xn|yn, xn−1/ as close as possible to pθ.xn|yn, xn−1/ otherwise; see for example Carpen-
ter et al. (1999), Cappé et al. (2005), Doucet and Johansen (2009), Liu (2001) and Pitt and
Shephard (1999). It is often much simpler to design these ‘local’ importance densities than
to design a global importance density approximating pθ.x1:T |y1:T /. An ‘extreme’ case, which
was originally suggested in Gordon et al. (1993), consists of using the prior density of the
latent Markov process {Xn; n � 1} as an importance density; i.e. set qθ.x1|y1/ = μθ.x1/ and
qθ.xn|yn, xn−1/=fθ.xn|xn−1/. In scenarios where the observations are not too informative and
the dimension of the latent variable not too large, this default strategy can lead to satisfactory
performance. It is in fact the only possible practical choice for models where fθ.xn|xn−1/ is
intractable or too expensive to evaluate pointwise, but easy to sample from; see Ionides et al.
(2006) for many examples.

Note that SMC methods also suffer from well-known drawbacks. Indeed, when T is too large,
the SMC approximation to the joint density pθ.x1:T |y1:T / deteriorates as components sampled
at any time n < T are not rejuvenated at subsequent time steps. As a result, when T −n is too
large the approximation to the marginal pθ.xn|y1:T / is likely to be rather poor as the succes-
sive resampling steps deplete the number of distinct particle co-ordinates xn. This is the main
reason behind the well-known difficulty of approximating p.θ, x1:T |y1:T / with SMC algorithms;
see Andrieu et al. (1999), Fearnhead (2002) and Storvik (2002), for example. We shall see in
what follows that, in spite of its reliance on SMC methods as one of its components, PMCMC
sampling is much more robust and less likely to suffer from this depletion problem. This stems
from the fact that PMCMC methods do not require SMC algorithms to provide a reliable
approximation of pθ.x1:T |y1:T /, but only to return a single sample approximately distributed
according to pθ.x1:T |y1:T /.

2.3. Standard Markov chain Monte Carlo methods
A popular choice to sample from p.θ, x1:T |y1:T / with MCMC methods consists of alternately
updating the state components x1:T conditional on θ and θ conditional on x1:T . Sampling
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from p.θ|y1:T , x1:T / is often feasible and we do not discuss this here. Sampling exactly from
pθ.x1:T |y1:T / is possible for two scenarios only: linear Gaussian models and finite state space
hidden Markov models (Carter and Kohn, 1994; Frühwirth-Schnatter, 1994). Beyond these par-
ticular cases the design of proposal densities is required. A standard practice consists of dividing
the T components of x1:T in, say, adjacent blocks of length K and updating each of these blocks
in turn. For example we can update xn:n+K−1 according to an MCMC step of invariant density

pθ.xn : n+K−1|y1:T , x1:n−1, xn+K:T /∝
n+K∏
k=n

fθ.xk|xk−1/
n+K−1∏

k=n

gθ.yk|xk/: .10/

When K is not too large it might be possible to design efficient proposal densities which can be
used in a Metropolis–Hastings (MH) update; see Shephard and Pitt (1997) for a generic Gauss-
ian approximation of equation (10) for SSMs with a linear Gaussian prior density fθ.xk|xk−1/

and a log-concave density gθ.yk|xk/. However, as K increases building ‘good’ approximations
of equation (10) is typically impossible. This limits the size K of the blocks xn:n+K−1 of variables
which can be simultaneously updated and can be a serious drawback in practice as this will slow
down the exploration of the support of pθ.x1:T |y1:T / when its dependence structure is strong.

These difficulties are exacerbated in models where fθ.xk|xk−1/ does not admit an analytical
expression but can be sampled from; see for example Ionides et al. (2006). In such scenarios
updating all the components of x1:T simultaneously by using the joint prior distribution as
a proposal is the only known strategy. However, the performance of this approach tends to
deteriorate rapidly as T increases since the information that is provided by the observations is
completely ignored by the proposal.

2.4. Particle Markov chain Monte Carlo methods for state space models
In what follows we shall refer to MCMC algorithms targeting the distribution p.θ, x1:T |y1:T /

which rely on sampling exactly from pθ.x1:T |y1:T / as ‘idealized’ algorithms. Such algorithms
are mostly purely conceptual since they typically cannot be implemented but in many situations
are algorithms that we would like to approximate. In the light of Sections 2.2 and 2.3, a natural
idea consists of approximating these idealized algorithms by using the output of an SMC
algorithm targeting pθ.x1:T |y1:T / using N�1 particles as a proposal distribution for an MH
update. Intuitively this could allow us to approximate with arbitrary precision such ideal-
ized algorithms while only requiring the design of low dimensional proposals for the SMC
algorithm. A direct implementation of this idea is impossible as the marginal density of a par-
ticle that is generated by an SMC algorithm is not available analytically but would be required
for the calculation of the MH acceptance ratio. The novel MCMC updates that are presented
in this section, PMCMC updates, circumvent this problem by considering target distributions
on an extended space which includes all the random variables that are produced by the SMC
algorithm; this is detailed in Section 4 and is not required to understand the implementation of
such updates.

The key feature of PMCMC algorithms is that they are in fact ‘exact approximations’ to
idealized MCMC algorithms targeting either pθ.x1:T |y1:T / or p.θ, x1:T |y1:T / in the sense that
for any fixed number N�1 of particles their transition kernels leave the target density of inter-
est invariant. Further they can be interpreted as standard MCMC updates and will lead to
convergent algorithms under mild standard assumptions (see Section 4 for details).

We first introduce in Section 2.4.1 the particle independent Metropolis–Hastings (PIMH)
update, an exact approximation to a standard independent Metropolis–Hastings (IMH) update
targeting pθ.x1:T |y1:T /, which uses SMC approximations of pθ.x1:T |y1:T / as a proposal. We
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emphasize at this point that we do not believe that the resulting PIMH sampler that is presented
below is on its own a serious competitor to standard SMC approximations to pθ.x1:T |y1:T /.
However, as is the case with standard IMH-type updates, the PIMH update might be of inter-
est when used in combination with other MCMC transitions. In Section 2.4.2, we describe
the particle marginal Metropolis–Hastings (PMMH) algorithm which can be thought of as an
exact approximation of a ‘marginal Metropolis–Hastings’ (MMH) update targeting directly
the marginal density p.θ|y1:T / of p.θ, x1:T |y1:T /. Finally, in Section 4.5 we present a particle
approximation to a Gibbs sampler targeting p.θ, x1:T |y1:T /, called hereafter the particle Gibbs
(PG) algorithm.

2.4.1. Particle independent Metropolis–Hastings sampler
A standard IMH update leaving pθ.x1:T |y1:T / invariant requires us to choose a proposal density
qθ.x1:T |y1:T / to propose candidates XÅ

1:T which, given a current state X1:T , are accepted with
probability

1∧ pθ.X
Å
1:T |y1:T /

pθ.X1:T |y1:T /

qθ.X1:T |y1:T /

qθ.X
Å
1:T |y1:T /

,

where a∧b :=min{a, b}. The optimal choice for qθ.x1:T |y1:T / is qθ.x1:T |y1:T /=pθ.x1:T |y1:T /, but
in practice this ideal choice is impossible in most scenarios. Our discussion of SMC methods sug-
gests exploring the idea of using the SMC approximation of pθ.x1:T |y1:T / as a proposal density,
i.e. draw our proposed sample from equation (8). As indicated earlier, sampling XÅ

1:T from equa-
tion (8) is straightforward given a realization of the weighted samples {Wk

T , Xk
1:T ; k =1, . . . , N},

but computing the acceptance probability above requires the expression for the marginal distri-
bution of XÅ

1:T , which turns out to be intractable. Indeed this distribution is given by

qθ.dx1:T |y1:T /=E{p̂θ.dx1:T |y1:T /},

where the expectation is here with respect to all the random variables generated by the SMC
algorithm to sample the random probability measure p̂θ.dx1:T |y1:T / in equation (8). Although
this expression for qθ.dx1:T |y1:T / does not admit a simple analytical expression, it naturally
suggests the use of the standard ‘auxiliary variables trick’ by embedding the sampling from
pθ.x1:T |y1:T / into that of sampling from an appropriate distribution defined on an extended
space including all the random variables underpinning the expectation above. The resulting
PIMH sampler can be shown to take the following extremely simple form, with p̂θ.y1:T / as in
equation (9).

Step 1: initialization, i=0—run an SMC algorithm targeting pθ.x1:T |y1:T /, sample X1:T .0/∼
p̂θ.·|y1:T / and let p̂θ.y1:T /.0/ denote the corresponding marginal likelihood estimate.
Step 2: for iteration i�1,

(a) run an SMC algorithm targeting pθ.x1:T |y1:T /, sample XÅ
1:T ∼ p̂θ.·|y1:T / and let p̂θ.y1:T /Å

denote the corresponding marginal likelihood estimate, and
(b) with probability

1∧ p̂θ.y1:T /Å

p̂θ.y1:T /.i−1/
, .11/

set X1:T .i/ = XÅ
1:T and p̂θ.y1:T /.i/ = p̂θ.y1:T /Å; otherwise set X1:T .i/ = X1:T .i − 1/ and

p̂θ.y1:T /.i/= p̂θ.y1:T /.i−1/.

Theorem 2 in Section 4.2 establishes that the PIMH update leaves pθ.x1:T |y1:T / invariant
and theorem 3 establishes that under weak assumptions the PIMH sampler is ergodic. Note
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in addition that, as expected, the acceptance probability in equation (11) converges to 1 when
N →∞ since both p̂θ.y1:T /Å and p̂θ.y1:T /.i−1/ are, again under mild assumptions, consistent
estimates of pθ.y1:T /.

2.4.2. Particle marginal Metropolis–Hastings sampler
Consider now the scenario where we are interested in sampling from p.θ, x1:T |y1:T / defined in
equation (4). We focus here on an approach which jointly updates θ and x1:T . Assume for the
time being that sampling from the conditional density pθ.x1:T |y1:T / for any θ∈Θ is feasible and
recall the standard decomposition p.θ, x1:T |y1:T /=p.θ|y1:T / pθ.x1:T |y1:T /. In such situations it
is natural to suggest the following form of proposal density for an MH update:

q{.θÅ, xÅ
1:T /|.θ, x1:T /}=q.θÅ|θ/pθÅ.xÅ

1:T |y1:T /,

for which the proposed xÅ
1:T is perfectly ‘adapted’ to the proposed θÅ, and the only degree

of freedom of the algorithm (which will affect its performance) is q.θÅ|θ/. The resulting MH
acceptance ratio is given by

p.θÅ, xÅ
1:T |y1:T /

p.θ, x1:T |y1:T /

q{.θ, x1:T /|.θÅ, xÅ
1:T /}

q{.θÅ, xÅ
1:T /|.θ, x1:T /} = pθÅ.y1:T /p.θÅ/

pθ.y1:T /p.θ/

q.θ|θÅ/

q.θÅ|θ/ : .12/

The expression for this ratio suggests that the algorithm effectively targets the marginal density
p.θ|y1:T /∝pθ.y1:T /p.θ/, justifying the MMH terminology. This idea has also been exploited in
Andrieu and Roberts (2009) and Beaumont (2003) for example and might be appealing since the
difficult problem of sampling from p.θ, x1:T |y1:T / is reduced to that of sampling from p.θ|y1:T /,
which is typically defined on a much smaller space. It is natural to propose a particle approxima-
tion to the MMH update where, whenever a sample from pθ.x1:T |y1:T / and the expression for
the marginal likelihood pθ.y1:T / are needed, their SMC approximation counterparts are used
instead in the PMMH update. The resulting PMMH sampler is as follows (note the change of
indexing notation for p̂θ.y1:T / compared with the PIMH case).

Step 1: initialization, i=0,

(a) set θ.0/ arbitrarily and
(b) run an SMC algorithm targeting pθ.0/.x1:T |y1:T /, sample X1:T .0/∼ p̂θ.0/.·|y1:T / and let

p̂θ.0/.y1:T / denote the marginal likelihood estimate.

Step 2: for iteration i�1,

(a) sample θÅ ∼q{·|θ.i−1/},
(b) run an SMC algorithm targeting pθÅ.x1:T |y1:T /, sample XÅ

1:T ∼ p̂θÅ.·|y1:T / and let
p̂θÅ.y1:T / denote the marginal likelihood estimate, and

(c) with probability

1∧ p̂θÅ.y1:T /p.θÅ/

p̂θ.i−1/.y1:T /p{θ.i−1/}
q{θ.i−1/|θÅ}
q{θÅ|θ.i−1/} .13/

set θ.i/ = θÅ, X1:T .i/ = XÅ
1:T and p̂θ.i/.y1:T / = p̂θÅ.y1:T /; otherwise set θ.i/ = θ.i − 1/,

X1:T .i/=X1:T .i−1/ and p̂θ.i/.y1:T /= p̂θ.i−1/.y1:T /.

Theorem 4 in Section 4.4 establishes that the PMMH update leaves p.θ, x1:T |y1:T / invariant
and that under weak assumptions the PMMH sampler is ergodic. Also note that under mild
assumptions given in Section 4.1 the acceptance probability (13) converges to equation (12) as
N →∞.
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2.4.3. Particle Gibbs sampler
An alternative to the MMH algorithm to sample from p.θ, x1:T |y1:T / consists of using the Gibbs
sampler which samples iteratively from p.θ|y1:T , x1:T / and pθ.x1:T |y1:T /. It is often possible to
sample from p.θ|y1:T , x1:T / and thus the potentially tedious design of a proposal density for θ
that is necessary in the MMH update can be bypassed. Again, sampling from pθ.x1:T |y1:T / is
typically impossible and we investigate the possibility of using a particle approximation to this
algorithm. Clearly the naive particle approximation to the Gibbs sampler where sampling from
pθ.x1:T |y1:T / is replaced by sampling from an SMC approximation p̂θ.x1:T |y1:T / does not admit
p.θ, x1:T |y1:T / as invariant density.

A valid particle approximation to the Gibbs sampler requires the use of a special type of
PMCMC update called the conditional SMC update. This update is similar to a standard SMC
algorithm but is such that a prespecified path X1:T with ancestral lineage B1:T is ensured to
survive all the resampling steps, whereas the remaining N − 1 particles are generated as usual.
The algorithm is as follows.

Step 1: let X1:T = .X
B1
1 , X

B2
2 , . . . , X

BT−1
T−1 , X

BT
T / be a path that is associated with the ancestral

lineage B1:T .
Step 2: for n=1,

(a) for k 	=B1, sample Xk
1 ∼qθ.·|y1/ and

(b) compute w1.Xk
1/ by using equation (6) and normalize the weights Wk

1 ∝w1.Xk
1/.

Step 3: for n=2, . . . , T ,

(a) for k 	=Bn, sample Ak
n−1 ∼F.·|Wn−1/,

(b) for k 	=Bn, sample Xk
n ∼q.·|yn, X

n−1
Ak

n−1/ and
(c) compute wn.Xk

1:n/ by using equation (7) and normalize the weights Wk
n ∝wn.Xk

1:n/.

For further clarity we illustrate this update on a toy example. Fig. 1 displays ancestral lineages
that were generated by a standard SMC method in a situation where N =5 and T =3: Consider
X2

1:3 = .X3
1, X4

2, X2
3/ whose ancestral lineage is B2

1:3 = .3, 4, 2/. A conditional SMC update leaving
X2

1:3 (the lighter path in Fig. 1) identical generates four new paths consistent with both X2
1:3 and

B2
1:3. One could, for example, obtain the set of new paths that is presented in Fig. 2.
A computationally more efficient way to implement the conditional SMC update is presented

in Appendix A—this is, however, not required to present our particle version of the Gibbs
sampler, the PG sampler, as follows.

Step 1: initialization, i=0—set θ.0/, X1:T .0/ and B1:T .0/ arbitrarily.
Step 2: for iteration i�1,

(a) sample θ.i/∼p{·|y1:T , X1:T .i−1/},
(b) run a conditional SMC algorithm targeting pθ.i/.x1:T |y1:T / conditional on X1:T .i−1/

and B1:T .i−1/, and
(c) sample X1:T .i/∼ p̂θ.i/.·|y1:T / (and hence B1:T .i/ is also implicitly sampled).

In theorem 5 in Section 4.5, it is shown that this algorithm admits p.θ, x1:T |y1:T / as invariant
density and is ergodic under mild assumptions.

2.5. Improvements and extensions
2.5.1. Advanced particle filtering and sequential Monte Carlo techniques
For ease of presentation, we have limited our discussion in this section to one of the sim-
plest implementations of SMC algorithms. However, over the past 15 years numerous more
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4 X1
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1

A1 = 21 A1 = 32 A1 = 53 A1 =  34 A1 = 25
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A2 = 54 A2 = 15

X2
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3 X2
4 X2
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X3
1 X3

2 X3
3 X3

4 X3
5

Fig. 2. Example of N � 1 D 4 ancestral lineages generated by a conditional SMC algorithm for N D 5 and
T D3 conditional on X2

1:3 and B2
1:3

sophisticated algorithms have been proposed in the literature to improve on such a basic scheme;
see Cappé et al. (2005) or Doucet and Johansen (2009) for recent reviews. Such techniques essen-
tially fall into two categories:

(a) techniques aiming at reducing the variance that is introduced by the resampling step of
the SMC algorithm such as the popular residual and stratified resampling procedures
(see Liu (2001), chapter 3, and Kitagawa (1996)) and

(b) techniques aiming at fighting the so-called degeneracy phenomenon which include, among
others, the auxiliary particle filter (Pitt and Shephard, 1999) or the resample–move algo-
rithm (Gilks and Berzuini, 2001).

Popular advanced resampling schemes can be used within the PMCMC framework—more
details on the technical conditions that are required by such schemes are given in Section
4.1. Roughly speaking these conditions require some form of exchangeability of the parti-
cles. Most known advanced SMC techniques falling into category (b) will also lead to valid
PMCMC algorithms. Such valid techniques can in fact be easily identified in practice but this
requires us to consider the more general PMCMC framework that is developed in Section
4.1.

2.5.2. Using all the particles
A possible criticism of the PMCMC updates is that they require the generation of N particles
at each iteration of the MCMC algorithm to propose a single sample. It is shown in theorem
6 in Section 4.6 that it is possible to reuse all the particles that are generated in the PIMH,
the PMMH and PG samplers to compute estimates of conditional expectations with respect to
pθ.x1:T |y1:T / and p.θ, x1:T |y1:T /.

3. Applications

We provide here two applications of PMCMC methods. The first model that we consider is
a popular toy non-linear SSM (Gordon et al., 1993; Kitagawa, 1996). The second model is a
Lévy-driven stochastic volatility model (Barndorff-Nielsen and Shephard, 2001a; Creal, 2008;
Gander and Stephens, 2007).
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3.1. A non-linear state space model
Consider the SSM

Xn = Xn−1

2
+25

Xn−1

1+X2
n−1

+8cos.1:2n/+Vn, .14/

Yn = X2
n

20
+Wn .15/

where X1 ∼N .0, 5/, Vn ∼IID N .0,σ2
V / and Wn ∼IID N .0,σ2

W /; here N .m,σ2/ denotes the Gauss-
ian distribution of mean m and variance σ2 and IID stands for independent and identically
distributed. We set θ= .σV ,σW /. This example is often used in the literature to assess the perfor-
mance of SMC methods. The posterior density pθ.x1:T |y1:T / for this non-linear model is highly
multimodal as there is uncertainty about the sign of the state Xn which is only observed through
its square.

We generated two sets of observations y1:100 according to model (14)–(15) with σ2
V =σ2

W =10,
and σ2

V =10 and σ2
W =1. We display in Fig. 3 the average acceptance rate of the PIMH algorithm

when sampling from pθ.x1:T |y1:T / as a function of T and N. This was computed using 50000 iter-
ations of the PIMH sampler. We used the most basic resampling scheme, i.e. the multinomial
resampling that was described in Section 2.2.1. We also used the simplest possible proposal
for SMC sampling, i.e. qθ.x1/=μθ.x1/ and qθ.xn|yn, xn−1/=fθ.xn|xn−1/ for n= 2, . . . , T . The
acceptance probabilities are higher when σ2

V =σ2
W =10 than when σ2

V =10 and σ2
W =1. This is to

be expected as in this latter scenario the observations are more informative and our SMC algo-
rithm only samples particles from a rather diffuse prior. Better performance could be obtained by
using an approximation of pθ.xn|yn, xn/ based on local linearization as a proposal distribution
qθ.xn|yn, xn−1/ (Cappé et al. (2005), page 230), and a more sophisticated resampling scheme.
However, our aim here is to show that even this off-the-shelf choice can provide satisfactory
results in difficult scenarios.

Determining a sensible trade-off between the average acceptance rate of the PIMH update
and the number of particles seems to be difficult. Indeed, whereas a high expected acceptance
probability is theoretically desirable in the present case, this does not take into account the
computational complexity. For example, in the scenario where T = 100 and σ2

V =σ2
W = 10, we
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Fig. 3. Average acceptance rate of the PIMH sampler as a function of N and T for (a) σ2
V D10 and σ2

W D10
and (b) σ2

V D10 and σ2
W D1; j, T D10; �, T D25; Å, T D50; �, T D100
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Fig. 4. Approximations of p.σV jy1:T / and p.σW jy1:T /, scatter plots and trace plots after burn-in of simulated
values for (a) the MH one at a time update, (b) the PG sampler and (c) the PMMH sampler: , true values on
the histograms; - - - - - - -, true values on the trace plots; �, true values on the scatter plots

have an average acceptance rate of 0.80 for N = 2000 whereas it is equal to 0.27 for N = 200,
resulting in a Markov chain which still mixes well. Given that the SMC proposal for N =2000
is approximately 10 times more computationally expensive than for N = 200, it might seem
appropriate to use N =200 and to run more MCMC iterations.

When θ is unknown we set the prior σ2
V ∼IG.a, b/ and σ2

W ∼IG.a, b/ where IG is the inverse
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gamma distribution and a = b = 0:01. We simulated T = 500 observations with σ2
V = 10 and

σ2
W =1. To sample from p.θ, x1:T |y1:T /, we used the PMMH sampler and the PG sampler using

for the SMC proposal the prior and stratified resampling with N =5000 particles. The PMMH
sampler uses a normal random-walk proposal with a diagonal covariance matrix. The standard
deviation was equal to 0.15 for σV and 0.08 for σW . We also compared these algorithms with a
standard algorithm where we update the state variables X1:T one at a time by using an MH step
of invariant distribution pθ.xn|yn, xn−1, xn+1/ and proposal density fθ.xn|xn−1/. In the one at
a time algorithm, we updated the state variables N times at each iteration before updating θ.
Hence all the algorithms have approximately the same computational complexity. All the sim-
ulations that are presented here are initialized by using σ.0/

V =σ
.0/
W =10. We ran the algorithms

for 50000 iterations with a burn-in of 10000 iterations. In Fig. 4, we display the estimates of the
marginal posterior densities for σV and σW , a scatter plot of the sampled values .σ

.i/
V ,σ.i/

W / and
the trace plots that are associated with these two parameters.

For this data set the MH one at a time update appears to mix well as the auto-correlation
functions (ACFs) for the parameters .σV ,σW / (which are not shown here) decrease to zero
reasonably fast. However, this algorithm tends to become trapped in a local mode of the
multimodal posterior distribution. This occurred on most runs when using initializations from
the prior for X1:T and results in an overestimation of the true value of σV . Using the same initial
values, the PMMH and the PG samplers never became trapped in this local mode. In practice,
we can obviously combine both strategies by only occasionally updating the state variables with
a PG update to avoid such traps while using more standard and cheaper updates for a large
proportion of the computational time.

We present in Fig. 5 the ACF for .σV ,σW / for the PG and PMMH samplers and various
numbers of particles N. Clearly the performance improves as N increases. In this scenario, it
appears necessary to use at least 2000 particles to make the ACF drop sharply, whereas increas-
ing N beyond 5000 does not improve performance, i.e. for N > 5000 we observe that the ACFs
(which are not presented here) are very similar to N = 5000 and probably very close to that of
the corresponding idealized MMH algorithm.

3.2. Lévy-driven stochastic volatility model
The second model that we discuss is a Lévy-driven stochastic volatility model. These models were
recently introduced in Barndorff-Nielsen and Shephard (2001a) and have become extremely pop-
ular in financial econometrics; see for example Creal (2008), Frühwirth-Schnatter and Sögner
(2008), Gander and Stephens (2007) and Roberts et al. (2004). However, performing inference
for Lévy-driven stochastic volatility models is a challenging task. We demonstrate here that
PMCMC methods can be useful in this context. The model can be described as follows. The
logarithm of an asset price yÅ.t/ is assumed to be determined by the stochastic differential
equation

dyÅ.t/=μ+β σ2.t/ dt +σ.t/dB.t/

where μ is the drift parameter, β the risk premium and B.t/ is a Brownian motion. The instanta-
neous latent variance or volatility σ2.t/ is assumed to be stationary and independent from B.t/.
It is modelled by the Lévy-driven Ornstein–Unlenbeck process

dσ2.t/=−λ σ2.t/ dt +dz.λt/ .16/

whereλ>0 and z.t/ is a purely non-Gaussian Lévy process with positive increments and z.0/=0.
We define the integrated volatility
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σ2Å.t/=
∫ t

0
σ2.u/ du

=λ−1{z.λt/−σ2.t/+σ2.0/}:

Let Δ denote the length of time between two periods of interest; then the increments of the
integrated volatility satisfy

σ2
n =σ2Å.nΔ/−σ2Å{.n−1/Δ}
=λ−1[z.λnΔ/−σ2.nΔ/− z{λ.n−1/Δ}+σ2{.n−1/Δ}]

where

.σ2.nΔ/, z.λnΔ//= .exp.−λΔ/σ2{.n−1/Δ}, z{λ.n−1/Δ}/+ηn

and

ηn
d=
(

exp.−λΔ/

∫ Δ

0
exp.λu/ dz.λu/,

∫ Δ

0
dz.λu/

)
: .17/

Here ‘=d’ means ‘equal in distribution’. By aggregating returns over a time interval of length
Δ, we have

yn =
∫ nΔ

.n−1/Δ
dyÅ.t/=yÅ.nΔ/−yÅ{.n−1/Δ};

thus, conditional on the volatility, we obtain

yn ∼N .μΔ+βσ2
n,σ2

n/:

Many publications have restricted themselves to the case where σ2.t/ follows marginally a
gamma distribution, in which cases the stochastic integrals appearing in equation (17) are finite
sums. Even in this case, sophisticated MCMC schemes need to be developed to perform Bayesian
inference (Frühwirth-Schnatter and Sögner, 2008; Roberts et al., 2004). However, it is argued
in Gander and Stephens (2007) that

‘the use of the gamma marginal model appears to be motivated by computational tractability, rather
than by any theoretical or empirical reasoning’.

We address here the case whereσ2.t/ follows a tempered stable marginal distribution T S.κ, δ,γ/.
This is a flexible class of distributions which includes inverse Gaussian distributions for κ= 1

2 .
In this case, it is shown in Barndorff-Nielsen and Shephard (2001b) that

σ2.0/
d=

∞∑
i=1

{(
aiκ

A0

)−1=κ

∧ eiv
1=κ
i

}
.18/

where A0 =2κδκ=Γ.1−κ/ and B= 1
2γ

1=κ. In equation (18), {ai}, {ei} and {vi} are independent
of one another. The {ei} are IID exponential with mean 1=B and the {vi} are standard uniform,
whereas a1 <a2 < . . . are arrival times of a Poisson process of intensity 1. It is also established in
Barndorff-Nielsen and Shephard (2001b) that z.t/ is the sum of an infinite activity Lévy process
and of a compound Poisson process such that

ηn
d=

∞∑
i=1

{(
aiκ

AλΔ

)−1=κ

∧ eiv
1=κ
i

}
.exp.−λΔri/, 1/+

N.λΔ/∑
i=1

ci.exp.−λΔrÅ
i /, 1/ .19/
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where A = 2κδκ2=Γ.1−κ/. In equation (19), {ai}, {ei}, {ri}, {rÅ
i } and {vi} are independent

of one another. The {ai}, {ei} and {vi} follow the same distributions as in equation (18), the
{ci} are IID G.1 −κ, 1=B/ where G is the gamma distribution and {ri} and {rÅ

i } are standard
uniform. Finally N.λΔ/ is a Poisson random variable of mean λΔδγκ.

Performing inference in this context is difficult as the transition prior of the latent process
Xn := .σ2.nΔ/, z.λnΔ// cannot be expressed analytically. It is actually not even possible to sam-
ple exactly from this prior as equations (18) and (19) involve infinite sums. However, it was shown
experimentally in Barndorff-Nielsen and Shephard (2001b) that these sums are dominated by
the first few terms, ‘although as κ goes to one this becomes less sharp’. Further on, we truncate
the infinite sums in equations (18) and (19) to their first 100 terms to obtain a ‘truncated’ prior.
We found that increasing the number of terms did not have any effect on our results. In Creal
(2008), an SMC method is proposed to sample from pθ.x1:T |y1:T / which uses the truncated prior
as proposal density, all the hyperparameters θ of the model being assumed known. We propose
here to use the PMMH algorithm to sample from p.θ, x1:T |y1:T / where θ= .κ, δ,γ,λ/ and we
set μ=β= 0 as in Creal (2008). Our SMC method to sample from pθ.x1:T |y1:T / is similar to
Creal (2008) and simply uses the truncated prior as a proposal. We do not know of any realistic
alternative in the present context. Indeed, if the truncated prior was not used, it follows from
equation (19) that a proposal density on a space of dimension more than 400 would have to be
designed.

We first simulate T = 400 data from the model with Δ= 1 and .κ, δ,γ,λ/= .0:50, 1:41, 2:83,
0:10/. We assigned the following independent priors (Gander and Stephens, 2007):κ∼Be.10,10/,
δ∼G.1,

√
50/, γ∼G.1,

√
200/ and λ∼G.1, 0:5/. Here Be denotes the beta distribution. We used

a normal random-walk MH proposal to update the parameters jointly, the covariance of the
proposal being the estimated covariance of the target distribution which was obtained in a pre-
liminary run. It is also possible to use an adaptive MCMC strategy to determine this covariance
on the fly (Andrieu and Thoms (2008), section 5.1). The results for N = 200 are displayed in
Fig. 6. Using N =200 might appear too small for T =400 but it is sufficient in this scenario as
the observations are weakly informative. For example, the posterior for κ is almost identical
to the prior. We checked that indeed the likelihood function for this data set is extremely flat
in κ. We also ran the PMMH algorithm for N = 50, 100, 200 to monitor the ACF for the four
parameters and to check that the ACFs decrease reasonably fast for N =200.

We now apply our algorithm to the Standard & Poors 500 data from January 12th, 2002
to December 30th, 2005, which have been standardized to have unit variance. We assign the
following independent priors (Gander and Stephens, 2007): κ∼Be.4, 36/, δ∼G.1,

√
50/, γ∼

G.1,
√

200/ and λ∼G.1, 0:5/. We have T = 1000 and we use N = 1000 particles. We also use a
normal random-walk MH proposal, the covariance of the proposal being the estimated covari-
ance of the target distribution which was obtained in a preliminary run. In this context, 1000
particles appear sufficient to obtain good performance. The results are presented in Fig. 7.

Gander and Stephens (2007) proposed an MCMC method to sample from the posterior
p{θ,σ2.0/, η1:T |y1:T } which updates one at a time σ2.0/ and the terms ηn by using the trun-
cated prior as a proposal. The algorithm has a computational complexity of order O.T 2/ for
updating η1:T as it requires recomputing xn:T each time that ηn is modified to evaluate the
likelihood of the observations appearing in the MH ratio. For the two scenarios that were
discussed above, we also designed MCMC algorithms using such a strategy to update σ2.0/

and η1:T . We tried various updating strategies for θ but they all proved rather inefficient with
the ACF of parameters decreasing much more slowly towards zero than for the PMMH
update. It appears to us that designing efficient MCMC algorithms for such models requires
considerable model-specific expertise. In this respect, we believe that the PMCMC methodology
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is less demanding as we could design reasonably fast mixing MCMC algorithms with little user
input.

4. A generic framework for particle Markov chain Monte Carlo methods

For ease of exposition we have so far considered one of the simplest implementations of the
SMC methodology that is used in our PMCMC algorithms (see Section 2). This implementa-
tion does not exploit any of the possible standard improvements that were mentioned in Section
2.5 and might additionally suggest that the PMCMC methodology is only applicable to the
sole SSM framework. In this section, we consider a more general and abstract framework for
PMCMC algorithms which relies on more general SMC algorithms that are not specialized
to the SSM scenario. This allows us to consider inference in a much wider class of statistical
models but also to consider the use of advanced SMC techniques in a unified framework. This
can be understood by the following simple arguments.

First note that the SMC algorithm for SSMs that was described in Section 2.2.1 aims to
produce sequentially approximate samples from the family of posterior densities {pθ.x1:n|y1:n/;
n= 1, . . . , T} defined on the sequence of spaces {X n; n= 1, . . . , T}. It should be clear that this
algorithm can be straightforwardly modified to sample approximately from any sequence of
densities {πn.x1:n/; n=1, . . . , P} defined on {X n; n=1, . . . , P} for any P �1. This points to the
applicability of SMC, and hence PMCMC, methods beyond the sole framework of inference
in SSMs to other statistical models. This includes models which naturally have a sequential
structure (e.g. Liu (2001)), but also models which do not have such a structure and for which
the user induces such a structure (e.g. Chopin (2002) and Del Moral et al. (2006)).

Second, as described in Doucet and Johansen (2009), the introduction of advanced SMC
techniques for SSMs such as the auxiliary particle filter (Pitt and Shephard, 1999) or the res-
ample–move algorithm (Gilks and Berzuini, 2001) can be naturally interpreted as introducing
additional intermediate, and potentially artificial, target densities between, say, pθ.x1:n|y1:n/

and pθ.x1:n+1|y1:n+1/. These additional intermediate densities might not have a physical inter-
pretation but are usually chosen to help to bridge samples from pθ.x1:n|y1:n/ to samples from
pθ.x1:n+1|y1:n+1/. Such strategies can therefore be recast into the problem of using SMC meth-
ods to sample sequentially from a sequence of densities {πn.x1:n/; n=1, . . . , P} for some integer
P �T .

4.1. A generic sequential Monte Carlo algorithm
Consider the problem of using SMC methods to sample from a sequence of densities {πn.x1:n/;
n = 1, . . . , P} such that for n = 1, . . . , P the density πn.x1:n/ is defined on X n. Each density
is only assumed known up to a normalizing constant, i.e. for πn.x1:n/ = γn.x1:n/=Zn where
γn : X n → R+ can be evaluated pointwise but the normalizing constant Zn is unknown. We
shall use the notation Z for ZP . For the simple SMC algorithm for SSMs in Section 2, we have
γn.x1:n/ := pθ.x1:n, y1:n/ and Zn := pθ.y1:n/. An SMC algorithm also requires us to specify an
importance density M1.x1/ on X and a family of transition kernels with associated densities
{Mn.xn|x1:n−1/; n=2, . . . , P} to extend x1:n−1 ∈X n−1 by sampling xn ∈X conditional on x1:n−1
at time instants n=2, . . . , P . To describe the resampling step, we introduce a family of probabil-
ity distributions on {1, . . . , N}N , {r.·|w/; w ∈ [0, 1]N}. In Section 2.2 the sampling distributions
are Mn.xn|x1:n−1/ :=qθ.xn|yn, xn−1/ and r.·|w/ :=ΠN

i=1F.·|w/. As in Section 2.2 we use the nota-
tion An := .A1

n, . . . , AN
n / where the variable Ak

n−1 indicates the index of the ‘parent’ at time n−1
of particle Xk

1:n for n=2, . . . , P . The generic SMC algorithm proceeds as follows.
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Step 1: for n=1,

(a) sample Xk
1 ∼M1.·/ and

(b) compute and normalize the weights

w1.Xk
1/ := γ1.Xk

1/

M1.Xk
1/

,

Wk
1 = w1.Xk

1/

N∑
m=1

w1.Xm
1 /

:

Step 2: for n=2, . . . , P ,

(a) sample An−1 ∼ r.·|Wn−1/,
(b) sample Xk

n ∼Mn.·|X1:n−1
Ak

n−1/ and set Xk
1:n = .X

Ak
n−1

1:n−1, Xk
n/, and

(c) compute and normalize the weights

wn.Xk
1:n/ := γn.Xk

1:n/

γn−1.X
Ak

n−1
1:n−1/ Mn.Xk

n|X
Ak

n−1
1:n−1/

,

Wk
n = wn.Xk

1:n/

N∑
m=1

wn.Xm
1:n/

:
.20/

This algorithm yields an approximation to π.dx1:P/ and its normalizing constant Z through

π̂N.dx1:P/ :=
N∑

k=1
Wk

PδXk
1:P

.dx1:P/,

Ẑ
N

:=
P∏

n=1

{
1
N

N∑
k=1

wn.Xk
1:n/

}
:

.21/

Again the role of the vector An is to parameterize a random mapping on {1, . . . , N} →
{1, . . . , N}N , and the standard resampling procedure is hence interpreted here as being the oper-
ation by which offspring particles at time n choose their parent particles at time n−1 according to
a probability distribution r.·|Wn−1/ parameterized by the parents’ weights Wn−1. For any n�1
we shall hereafter use Ok

n to denote ΣN
m=1I{Am

n =k}, the number of offspring of particle k at time
n, and s.·|Wn/ to denote the corresponding probability distribution of On = .O1

n, O2
n, . . . , ON

n /.
We shall make extensive use of the notion of ancestral lineage Bk

1:P = .Bk
1, Bk

2, . . . , Bk
P−1, Bk

P =k/

of a path Xk
1:P = .X1

Bk
1 , X2

Bk
2 , . . . , X

P−1
Bk

P−1 , X
P
Bk

P / already introduced in Section 2. We recall that
Bk

P :=k and for n=P −1, . . . , 1 we have Bn
k :=An

Bk
n+1 . This notation is necessary to establish the

mathematical validity of PMCMC algorithms since it allows us to describe precisely and simply
the various probabilistic objects that are involved. For example it will be useful in what fol-
lows to describe the probability density ψ.x̄1, . . . , x̄P , a1, . . . , aP−1/ of all the random variables
generated by the generic SMC algorithm above. Letting X̄n denote .X1

n, . . . , XN
n / ∈ X N , the

set of N simulated X -valued random variables at time n, for n= 1, . . . , P , it is straightforward
to establish that the joint density of X̄1, . . . , X̄P , A1, . . . , AP−1 defined onX PN ×{1, . . . , N}.P−1/N

is

ψ.x̄1, . . . , x̄P , a1, . . . , aP−1/=
{

N∏
m=1

M1.xm
1 /

}
P∏

n=2

{
r.an−1|wn−1/

N∏
m=1

Mn.xm
n |xam

n−1
1:n−1/

}
: .22/
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We shall make extensive use of this result in the remainder of the paper. Note in particular that
a sample X1:P that is drawn from π̂N.dx1:P/ in equation (21) has a distribution qN.dx1:P/ :=
Eψ{π̂N.dx1:P/} where Eψ.·/ denotes the expectation with respect to ψ.

Not all choices of {πn}, {M1.x1/, Mn.xn|x1:n−1/; n= 2, . . . , P} and r.·|w/ will lead to a con-
sistent SMC algorithm, i.e. to an algorithm such that π̂N and Ẑ

N
respectively converge to π

and Z in some sense as N →∞. We shall rely on the following standard minimal assumptions.
The following notation will be needed to characterize the support of the target and proposal
densities. We define

Sn ={x1:n ∈X n :πn.x1:n/> 0} for n�1,

Qn ={x1:n ∈X n :πn−1.x1:n−1/ Mn.xn|x1:n−1/> 0} for n�1,

with the convention π0.x1:0/=1 and M1.x1|x1:0/=M1.x1/. The required set of minimal assump-
tions is as follows.

Assumption 1. For n=1, . . . , P , we have Sn ⊆Qn.

Assumption 2. For any k =1, . . . , N and n=1, . . . , P the resampling scheme satisfies

E.Ok
n|Wn/=NWk

n .23/

and

r.Ak
n =m|Wn/=Wm

n : .24/

Assumption 1 simply states that it is possible to use the importance density πn−1.x1:n−1/ ×
Mn.xn|x1:n−1/ to approximate πn.x1:n/. Assumption 2 is related to the resampling scheme. The
‘unbiasedness’ condition in equation (23) is satisfied by the popular multinomial, residual
and stratified resampling procedures. The condition in equation (24) is not usually satisfied
as in practice, for computational efficiency, On is usually drawn first according to a proba-
bility distribution s.·|Wn/ such that equation (23) holds (i.e. without explicit reference to An)
and the offspring then matched to their parents. More precisely, once On has been sampled,
this is followed by a deterministic allocation procedure of the offspring particles to the
parents, which defines indices; for example the O1

n first-offspring particles are associated
with the parent particle number 1, i.e. A1

n = 1, . . . , An
O1

n = 1, and likewise for the O2
n follow-

ing offspring particles and the parent particle number 2, i.e. An
O1

n+1 = 2, . . . , An
O1

n+O2
n = 2 etc.

However, condition (24) can be easily enforced by the addition of a random permutation of
these indices.

We provide here some results concerning the precision of SMC estimates of key quantities that
are involved in the implementation of PMCMC algorithms as a function of both P and N. We
point to the fact that some of these results rely on relatively strong conditions, but their interest
is nevertheless twofold. First they provide some quantitative insight into the reasons why using
the output of SMC algorithms as proposals might be a good idea and how performance might
scale with respect to both P and N. Second these results correspond to current understanding
of SMC methods and have been empirically observed to extend beyond the scenarios that are
detailed below.

Assumption 3.There is a sequence of constants {Cn; n=1, . . . , P̄} for some integer P̄ such that
for any x1:n ∈Sn

wn.x1:n/�Cn: .25/
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Assumption 4. There are μ.·/ a probability density on X and 0 < w, w̄, ", "̄ <∞ such that, for
any n=1, . . . , P̄ and any x1:n ∈Sn,

w �wn.x1:n/� w̄ and "μ.xn/�Mn.xn|x1:n−1/� "̄μ.xn/:

Theorem 1. Assume assumption 1 for P = 1, . . . , P̄ and some P̄ > 0, and assumption 3. For
the multinomial resampling scheme, for any P =1, . . . , P̄ there are C.P/ and D.P/ such that
for any N �1 the variance of ẐN=Z satisfies

V

(
Ẑ

N

Z

)
� C.P/

N
, .26/

and such that the distribution of a sample from qN.dx1:P/ :=Eψ{π̂N.dx1:P/} satisfies for any
N �1

‖qN.·/−π.·/‖� D.P/

N
, .27/

where ‘‖·‖’ denotes the total variation distance.
If in addition assumption 4 is satisfied then there are constants C, D > 0, depending on

w, w̄, ", "̄ and μ but not P, such that the results above hold with

C.P/=CP and D.P/=DP: .28/

Assumption 3 is related to the standard boundedness condition for importance weights in
classical importance sampling. The results in equations (26) and (27) have been established very
early on in the literature; see for example Del Moral (2004). However, these results are rather
weak since C.P/ and D.P/ are typically exponential functions of P. Assumption 4 imposes
a practically realistic pattern of dependence on the components of X1:P , namely a forgetting
property, which turns out to be beneficial in that it mitigates the propagation of error in the
SMC algorithm. As a result the linear bounds in expression (28) can be established (Cérou
et al. (2008) and personal communication with Professor Pierre Del Moral). As discussed in
more detail in the next sections these results have direct implications on the performance of
PMCMC algorithms. In particular expression (28) suggests that approximations of idealized
algorithms requiring exact samples from π.dx1:P/ by algorithms which instead use a particle
X1:P drawn from π̂N.dx1:P/ in equation (21) are likely to scale linearly with increasing dimen-
sions under assumption 4. This should be contrasted with the typical exponential deterioration
of performance of classical IS approaches.

4.2. The particle independent Metropolis–Hastings update
To sample from π.x1:P/, we can suggest a PIMH sampler which is an IMH sampler using an
SMC approximation π̂N.dx1:P/ of π.x1:P/ as proposal distribution. The algorithm is similar to
the algorithm that was discussed in Section 2.4.1 where P =T and where we substitute π̂N.dx1:P/

and ẐN respectively in place of p̂θ.dx1:T |y1:T / and p̂θ.y1:T /, with the notation given in equation
(21).

Given .X1:P , Ẑ
N

/, the PIMH update consists of running an SMC algorithm targeting π.x1:P/

to obtain an approximation π̂N,Å.dx1:P/ and ẐN,Å respectively for π.dx1:P/ and Z, sampling
XÅ

1:P ∼ π̂N,Å.·/. We set .X′
1:P , Ẑ′N/= .XÅ

1:P , ẐN,Å/ with probability

1∧ ẐN,Å=ẐN .29/

and .X′
1:P , Ẑ′N/= .X1:P , ẐN/ otherwise.



292 C. Andrieu, A. Doucet and R. Holenstein

We now prove that a sequence {X1:P.i/} generated by a PIMH sampler, i.e. by iterating the
PIMH update (initialized with the output X1:P.0/∼ π̂N.·/, ẐN.0/ of an SMC algorithm target-
ing π.x1:P/), has π.x1:P/ as the desired equilibrium density for any N �1. The key to establishing
this result is to reformulate the PIMH update as a standard IMH update defined on an extended
state space X with a suitable invariant density. First we establish the expression for the density of
the set of random variables generated to construct XÅ

1:P above. In the light of the discussion of
Section 4.1 the SMC algorithm generates the set of random variables X̄1, . . . , X̄P , A1, . . . , AP−1
and the selection of XÅ

1:P among the particles {Xm
1:P ; m=1, . . . , N} involves sampling a random

variable K with distribution F.·|WP/. From equation (22) we deduce that this density takes the
simple form

qN.k, x̄1, . . . , x̄P , a1, . . . , aP−1/ :=wk
P ψ.x̄1, . . . , x̄P , a1, . . . , aP−1/ .30/

and is defined on X =X PN ×{1, . . . , N}.P−1/N+1. Here wk
P is the realization of the normalized

importance weight WK
P . The less obvious point is to identify the density π̃N on X targeted by

the PIMH algorithm which is given by

π̃N.k, x̄1, . . . , x̄P , a1, . . . , aP−1/= π.xk
1:P/

NP

ψ.x̄1, . . . , x̄P , a1, . . . , aP−1/

M1.x
bk

1
1 /

P∏
n=2

r.bk
n−1|wn−1/ Mn.x

bk
n

n |xbk
n−1

1:n−1/

, .31/

where we remind the reader that xk
1:P = .x

bk
1

1 , x
bk

2
2 , . . . , x

bk
P−1

P−1 , x
bk

P
P / and note that π.xk

1:P/=NP is
the marginal probability density π̃N.xk

1:P , bk
1:P/. Note the important property that, for a sample

K, X̄1, . . . , X̄P , A1, . . . , AP−1 from this distribution, XK
1:P is distributed according to the distribu-

tion of interest π. For any i�0, let LN.X1:P.i/∈ ·/ denote the distribution of X1:P.i/ generated
by the PIMH sampler with N �1 particles. Our main result is the following theorem, which is
proved in Appendix B.

Theorem 2. Assume assumption 2. Then for any N �1 the PIMH update is a standard IMH
update on the extended space X with target density π̃N defined in equation (31) and proposal
density qN defined in equation (30).

Proving this theorem simply consists of checking that under our assumptions the ratio
between the extended target π̃N and the extended proposal qN is, whenever qN > 0, equal
to ẐN=Z, and deduce that the acceptance ratio of an IMH update with target and proposal
densities π̃N and qN takes the form in equation (29). Note that, although assumption 1 is
not needed to establish this theorem, this condition is, however, required both to ensure
that Ẑ

N
is a consistent estimator of Z (and hence that the PIMH is a consistent ‘exact

approximation’) and that the corresponding sampler is ergodic. This result implies that if
.K, X̄1, . . . , X̄P , A1, . . . , AP−1/∼ π̃N , and in particular XK

1:P ∼π, then after an IMH update the
resulting sample .K′, X̄

′
1, . . . , X̄

′
P , A′

1, . . . , A′
P−1/ ∼ π̃N , and in particular X′K′

1:P ∼π. In addition
formulating the PIMH sampler as an IMH algorithm in disguise targeting π̃N allows us to use
standard results concerning the convergence properties of the IMH sampler to characterize
those of the PIMH sampler.

Theorem 3. Assume assumptions 1 and 2. Then

(a) the PIMH sampler generates a sequence {X1:P.i/} whose marginal distributions
{LN{X1:P.i/∈ ·}} satisfy

‖LN{X1:P.i/∈ ·}−π.·/‖→0 as i→∞,
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(b) if additionally assumption 3 holds, then there exists ρP ∈ [0, 1/ such that for any i�1 and
x1:P ∈X P

‖LN{X1:P.i/∈ ·|X1:P.0/=x1:P}−π.·/‖�ρi
P : .32/

The first statement is a direct consequence of theorem 2, standard convergence properties of
irreducible MCMC algorithms and the fact that {X1:P.i/}={X

K.i/
1:P .i/}. The second statement,

leading to equation (32), simply exploits the well-known fact that the IMH sampler converges
geometrically if and only if the supremum of the ratio of the target density to the proposal
density (here Ẑ

N
=Z) is finite.

This latter result nevertheless calls for some comments since ρP is—perhaps surprisingly—
independent of N , implying the rather negative property that increasing N does not seem to
improve convergence of the algorithm. Again the IMH nature of the PIMH sampler sheds some
light on this point. In simple terms, the convergence properties of an IMH sampler are governed
by the large values of the ratio of the target density to the proposal density. Indeed, leaving a
state with such a large ratio is difficult and results in a slowly mixing Markov chain exhibiting
a ‘sticky’ behaviour. What the second result above tells us is that the existence of such sticky
states is not eliminated by the PIMH strategy when N increases. However, the probability of
visiting such unfavourable states can be made arbitrarily small by increasing N by virtue of the
results in theorem 1 and the application of Tchebychev’s inequality. In fact, as a particular case
of Andrieu and Roberts (2009), it is possible to show that for any ", η>0 there exists an N0 such
that for any N �N0 and any i�1

‖LN
Å {X1:P.i/∈ ·}−π.·/‖� "

withψ-probability larger than 1−η, where LN
Å {X1:P.i/∈·} denotes the conditional distribution

of X1:P.i/ given the random variables generated at iteration 0 by the SMC algorithm.

4.3. The conditional sequential Monte Carlo update
The expression

ψ.x̄1, . . . , x̄P , a1, . . . , aP−1/

M1.x
bk

1
1 /

P∏
n=2

r.bk
n−1|wn−1/ Mn.x

bk
n

n |xbk
n−1

1:n−1/

.33/

appearing in π̃N given in equation (31) is the density under π̃N of all the variables that are gener-
ated by the SMC algorithm conditional on .XK

1:P =xk
1:P , BK

1:P =bk
1:P/. Although this sheds some

light on the structure of π̃N , sampling from this conditional density can also be of a practical
interest. As we shall see, it is a key element of the PG sampler discussed in Sections 2.4.3 and 4.5
and can also be used to update sub-blocks of x1:P . Given .XK

1:P =xk
1:P , BK

1:P =bk
1:P/ the algorithm

to sample from the distribution above proceeds as follows.

Step 1: n=1,

(a) for m 	=BK
1 , sample Xm

1 ∼q1.·/ and
(b) compute w1.Xm

1 / and normalize the weights Wm
1 ∝w1.Xm

1 /:

Step 2: for n=2, . . . , P ,

(a) sample A−BK
n

n−1 ∼ r.·|Wn−1, A
BK

n

n−1 =BK
n−1/,

(b) for m 	=Bn
K, sample Xm

n ∼Mn.·|X1:n−1
An−1

m
/ and set Xm

1:n = .X1:n−1
Am

n−1 , Xm
n /, and

(c) compute wn.Xm
1:n) and normalize the weights Wm

n ∝wn.Xm
1:n/.
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Here we have used the notation A−BK
n

n−1 := An−1\{A
BK

n

n−1}. We explain in Appendix A how to
sample efficiently from r.·|Wn−1, A

n−1
BK

n /. Intuitively this update can be understood as updat-
ing N − 1 particles together with their weights while keeping one particle fixed in π̂N.dx1:P/.
Going one step further, one can suggest sampling X′K′

1:P from this updated empirical distribu-
tion π̂′N.dx1:P/. The remarkable property here is that, whenever .K, XK

1:P , BK
1:P−1/∼π.xk

1:P/=NP

(corresponding to the marginal π̃N.k, xk
1:P , bk

1:P−1/), then X′K′
1:P ∼ π. This stems from the fact

that the conditional SMC update followed by sampling from π̂′N.dx1:P/ can be interpreted as
a standard Gibbs update on the distribution π̃N . Indeed, as mentioned earlier, the conditional
SMC update samples from π̃N.k, x̄1, . . . , x̄P , a1, . . . , aP−1/=π̃N.k, xk

1:P , bk
1:P−1/ and it can easily

be checked from equation (41) that π̃N.k|x̄1, . . . , x̄P , a1, . . . , aP−1/= wk
P , which is precisely the

probability involved in sampling from π̂′N.dx1:P/. We stress the crucial fact that a single particle
.K, XK

1:P , BK
1:P−1/ is needed to initialize this Gibbs update.

An important practical application of this property is concerned with the sampling of sub-
blocks of x1:P when P is so large that a prohibitive number of particles might be required to
lead to an efficient global update. In such situations, we can simply divide the sequence x1:P
into large sub-blocks and use a mixture of Gibbs sampler updates as described above. Given
a sub-block Xc:d =xc:d for 1 < c < d < P such an update leaving π.xc:d |x1:c−1, xd+1:P/ invariant
proceeds as follows.

(a) Sample an ancestral lineage Bc:d uniformly in {1, . . . , N}d−c+1:

(b) Run a conditional SMC algorithm targeting π.xc:d |x1:c−1, xd+1:P/ conditional on Xc:d
and Bc:d:

(c) Sample Xc:d ∼ π̂N.·|x1:c−1, xd+1:P/:

4.4. The particle marginal Metropolis–Hastings update
We now consider the case where we are interested in sampling from a density

π.θ, x1:P/=γ.θ, x1:P/=Z .34/

with γ :Θ×X P →R+ assumed known pointwise and Z a possibly unknown normalizing con-
stant, independent of θ∈Θ. In the case of the simple SMC algorithm for SSMs that was con-
sidered in Section 2.4.2, we have P = T ,π.θ, x1:P/ = p.θ, x1:T |y1:T /,γ.θ, x1:P/ = p.θ, x1:T , y1:T /

given in equation (4) and Z=p.y1:T /. Following the developments of Section 2.4.2 we can sug-
gest the use of a PMMH sampler which consists of approximating an MMH algorithm with
proposal density q.θÅ|θ/πθÅ.xÅ

1:P/ and target density π.θ, x1:P/=π.θ/ πθ.x1:P/ where πθ.x1:P/=
γ.θ, x1:P/=γ.θ/ withγ.θ/ :=∫X P γ.θ, x1:P/dx1:P andπ.θ/=γ.θ/=Z; we haveγ.θ/= pθ.y1:T /p.θ/
in Section 2.4.2. We use an SMC algorithm to sample approximately from πθ.x1:P/ and approx-
imately compute its normalizing constant γ.θ/. This requires introducing a family of bridging
densities {πθn.x1:n/; n=1, . . . , P}, each of them known up to a normalizing constant, such that
πθP.x1:P/ =πθ.x1:P/ and a family of IS densities {Mθ

n.xn|x1:n−1/}. We shall use π̂N
θ .dx1:P/ and

γ̂N.θ/ respectively to denote the SMC approximation to πθ.dx1:P/ and γ.θ/.
The PMMH update consists at iteration i of sampling a candidate θÅ ∼ q{·|θ.i − 1/}, then

running an SMC sampler to obtain π̂N
θÅ.dx1:P/, γ̂N.θÅ/ and sampling XÅ

1:P ∼ π̂N
θÅ.·/. We set

.θ.i/, X1:P.i/, γ̂N{θ.i/}/= .θÅ, XÅ
1:P , γ̂N.θÅ// with probability

1∧ γ̂N.θÅ/

γ̂N{θ.i−1/}
q{θ.i−1/|θÅ}
q{θÅ|θ.i−1/} .35/

and .θ.i/, X1:P.i/, γ̂N{θ.i/}/= .θ.i−1/, X1:P.i−1/, γ̂N{θ.i−1/}/ otherwise. We formulate very
mild and natural assumptions which will guarantee convergence for any N �1, i.e. ensure that
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the sequence {θ.i/, X1:P.i/} that is generated by the PMMH sampler will have π.θ, x1:P/ as
asymptotic density. For any θ∈Θ, we define

Sθn ={x1:n ∈X n ∈X n :πθn.x1:n/> 0} for n=1, . . . , P ,

Qθ
n ={x1:n ∈X n :πθn−1.x1:n−1/ Mθ

n.xn|x1:n−1/> 0} for n=1, . . . , P ,

with the convention πθ0.x1:0/ := 1 and Mθ
n.x1|x1:0/ := Mθ

1.x1/, and S = {θ ∈ Θ : π.θ/ > 0}. We
make the following assumptions.

Assumption 5. For any θ∈S, we have Sθn ⊆Qθ
n for n=1, . . . , P .

Assumption 6. The MH sampler of target density π.θ/ and proposal density q.θÅ|θ/ is irre-
ducible and aperiodic (and hence converges for π almost all starting points).

Again assumption 5 is needed to ensure that πθn−1.x1:n−1/ Mθ
n.xn|x1:n−1/ can be used as an

importance density to approximate πθn.x1:n/ for any θ∈Θ such that π.θ/>0 whereas assumption
6 ensures that the associated MH algorithm converges. Our main result is the following theorem,
which is proved in Appendix B.

Theorem 4. Assume assumption 2. Then for any N �1

(a) the PMMH update is an MH update defined on the extended space Θ×X with target
density

π̃N.θ, k, x̄1, . . . , x̄P , a1, . . . , aP−1/ := π.θ, xk
1:P/

NP

ψθ.x̄1, . . . , x̄P , a1, . . . , aP−1/

Mθ
1.x

bk
1

1 /
P∏

n=2
r.bk

n−1|wn−1/Mθ
n.x

bk
n

n |xbk
n−1

1:n−1/

,

.36/

where

ψθ.x̄1, . . . , x̄P , a1, . . . , aP−1/ :=
{

N∏
m=1

Mθ
1.xm

1 /

}
P∏

n=2

{
r.an−1|wn−1/

N∏
m=1

Mθ
n.xm

n |xam
n−1

1:n−1/

}
, .37/

and proposal density

q.θÅ|θ/wÅk
P ψθ

Å
.x̄Å

1 , . . . , x̄Å
P , aÅ

1 , . . . , aÅ
P−1/

where wÅk
P consists of the realization of the normalized importance weights that are asso-

ciated with the proposed population of particles, and
(b) if additionally assumptions 5 and 6 hold, the PMMH sampler generates a sequence

{θ.i/, X1:P.i/} whose marginal distributions {LN{.θ.i/, X1:P.i//∈ ·}} satisfy

‖LN{.θ.i/, X1:P.i//∈ ·}−π.·/‖→0 as i→∞:

4.5. The particle Gibbs update
The PG sampler aims to solve the same problem as the PMMH algorithm, i.e. sampling from
π.θ, x1:P/ defined on some space Θ×X P →R+ as defined in equation (8) in the situation where
an unormalized version γ.θ, x1:P/ is accessible. A Gibbs sampler for this model would typically
consist of alternately sampling from π.θ|x1:P/ and πθ.x1:P/. To simplify our discussion we shall
assume here that sampling exactly from π.θ|x1:P/ is possible. However, sampling from πθ.x1:P/

is naturally impossible in most situations of interest, but motivated by the structure and prop-
erties of π̃N.θ, k, x̄1, . . . , x̄P , a1, . . . , aP−1/ defined in equation (36) we can suggest performing a
Gibbs sampler targeting precisely this density. We choose the following sweep:

(a) θÅ|.k, xk
1:P , bk

1:P−1/∼ π̃N.·|k, xk
1:P , bk

1:P−1/=π.·|xk
1:P/,
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(b) .X̄
Å,−bk

1
1 , . . . , X̄

Å,−bk
P

P , A
Å,−bk

2
1 , . . . , A

Å,−bk
P

P−1 /∼ π̃N.·|θÅ, k, xk
1:P , bk

1:P−1/,
(c) Pr.KÅ = l|θÅ, x̄1

Å,−bk
1, . . . , x̄P

Å,−bk
P , a1

Å,−bk
2, . . . , aP−1

Å,−bk
P , xk

1:P , bk
1:P−1/=wl

P .

Steps (a) and (c) are straightforward to implement. In the light of the discussion of Section 4.3,
step (b) can be directly implemented thanks to a conditional SMC algorithm. Note that step
(a) might appear unusual but leaves π̃N.θ, k, x̄1, . . . , x̄P , a1, . . . , aP−1/ invariant and is known
in the literature under the name ‘collapsed’ Gibbs sampler (Liu (2001), section 6.7). We remind
the reader that a detailed particular implementation of this algorithm in the context of SSMs
with multinomial resampling is given in Section 2.4.3. We now state a sufficient condition for
the convergence of the PG sampler and provide a simple convergence result which is proved in
Appendix B.

Assumption 7. The Gibbs sampler that is defined by the conditionals π.θ|x1:P/ and πθ.x1:P/

is irreducible and aperiodic (and hence converges for π almost all starting points).

We have the following result.

Theorem 5. Assume assumption 2. Then

(a) the PG update defines a transition kernel on the extended space Θ× X of invariant density
π̃N defined in equation (36) for any N �1, and

(b) if additionally assumptions 5–7 hold, the PG sampler generates a sequence {θ.i/, X1:P.i/}
whose marginal distributions {LN{.θ.i/, X1:P.i//∈ ·}} satisfy for any N �2

‖LN{.θ.i/, X1:P.i//∈ ·}−π.·/‖→0 as i→∞:

4.6. Reusing all the particles
Standard theory of MCMC algorithms establishes that under our assumptions .1=L/ΣL

i=1f{θ.i/,
X1:P.i/} will almost surely converge to Eπ.f/ whenever Eπ.|f |/<∞ as the number L of PMMH
or PG iterations goes to ∞. We show here that it is possible to use all the particles that are
involved in the construction of π̂N to estimate this expectation, but also rejected sets of particles.
The application to the PIMH sampler is straightforward by ignoring θ in the notation, replacing
γ̂N.θ/ with Ẑ

N
and the acceptance ratios below with their counterparts in expression (29).

Theorem 6. Assume assumptions 2–5 and let f :Θ×X P →R be such that Eπ.|f |/<∞. Then
as soon as the PMMH sampler or the PG sampler is ergodic then, for any N � 1 or N � 2
respectively,

(a) the estimate

1
L

L∑
i=1

[
N∑

k=1
Wk

P.i/ f{θ.i/, Xk
1:P.i/}

]
.38/

converges almost surely towards Eπ.f/ as L→∞ where {Wk
P.i/, Xk

1:T .i/, θ.i/} corresponds
to the set of normalized weights and particles used to compute γ̂N{θ.i/},

(b) and for the PMMH sampler, denoting by {WÅk
P .i/, XÅk

1:P.i/, θÅ.i/; k =1, . . . , N} the set of
proposed weighted particles at iteration i (i.e. before deciding whether or not to accept
this population) and γ̂N{θÅ.i/} the associated normalizing constant estimate

1
L

L∑
i=1

(
α{θ.i−1/, θÅ.i/}

N∑
k=1

WÅk
P .i/ f{θÅ.i/, XÅk

1:P.i/}

+ [1−α{θ.i−1/, θÅ.i/}]
N∑

k=1
Wk

P.i−1/ f{θ.i−1/, Xk
1:P.i−1/}

)
, .39/
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with for any θ, θ′ ∈Θ

α.θ, θ′/ :=1∧ γ̂N.θ′/
γ̂N.θ/

q.θ|θ′/
q.θ′|θ/ , .40/

converges almost surely towards Eπ.f / as L→∞.

The proof can be found in Appendix B and relies on ‘Rao–Blackwellization’-type arguments.
The estimator in equation (39) is in the spirit of the ideas of Frenkel (2006) and tells us that it is
also possible to recycle all the candidate populations that are generated by the PMMH sampler.

5. Discussion and extensions

5.1. Discussion and connections to previous work
The PIMH algorithm is related to the configurational-biased Monte Carlo (CBMC) method,
which is a very popular method in molecular simulation (Siepmann and Frenkel, 1992). How-
ever, in contrast with the PIMH algorithm, the CBMC algorithm does not propagate N particles
in parallel. Indeed, at each time step n, the CBMC algorithm samples N particles but the
resampling step is such that a single particle survives, to which a new set of N offspring is then
attached. The problem with this approach is that it is somewhat too greedy and that if a ‘wrong’
decision is taken too prematurely then the proposal will most likely be rejected. It can be shown
that the acceptance probability of the CBMC algorithm does not converge to 1 for P > 1 as
N →∞ in contrast with that of the PIMH algorithm. It has been more recently proposed in
Combe et al. (2003) to improve the CBMC algorithm by propagating several particles simulta-
neously in the spirit of the PIMH algorithm. Combe et al. (2003) proposed to kill or multiply
particles by comparing their unnormalized weights wn.Xk

1:n/ with respect to some prespecified
lower and upper thresholds; i.e. the particles are not interacting and their number is a random
variable. In simulations, the performance of this algorithm is very sensitive to the values of
these thresholds. Our approach has the great advantage of bypassing the delicate choice of such
thresholds. In statistics, a variation of the CBMC algorithm known as the multiple-try method
has been introduced in the specific case where P =1 in Liu et al. (2000). Our methodology differs
significantly from the multiple-try method as it aims to build efficient proposals using sequential
and interacting mechanisms for cases where P �1.

The idea of approximating an MMH algorithm which samples directly from π.θ/, by approx-
imately integrating out the latent variables x1:P , was proposed in Beaumont (2003) and then
generalized and studied theoretically in Andrieu and Roberts (2009). The present work is a simple
mechanism which opens up the possibility of making this approach viable in high dimensional
problems. Indeed in this context the SMC estimate that is used by the PMMH algorithm is
expected to lead to approximations of π.θ/ (up to a normalizing constant) with a much lower
variance than the IS estimates that were used in Andrieu and Roberts (2009) and Beaumont
(2003). The results in Andrieu and Roberts (2009) suggest that this is a property of paramount
importance to design efficient marginal MCMC algorithms. Recently it has been brought
to our attention by Professor Neil Shephard that a simple version of the PMMH sampler
has been proposed independently in the econometrics literature in Fernandez-Villaverde and
Rubio-Ramirez (2007). However, their PMMH sampler is suggested as a heuristic approxima-
tion to the MMH algorithm and the crucial point that it admits the correct invariant density is
not established.

Note finally that it is possible to establish in a few lines that the PMMH sampler admits
π.θ/ as marginal invariant density. Indeed if equation (23) and assumption 5 hold then γ̂N.θ/
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is an unbiased estimate of γ.θ/ (Del Moral (2004), proposition 7.4.1). It was established in
Andrieu et al. (2007) that it is only necessary to have access to an unbiased positive estimate
of an unnormalized version of a target density to design an MCMC algorithm admitting this
target density as invariant density. The two-line proof given in Andrieu et al. (2007) is as follows.
Let U denote .X̄1, . . . , X̄P , A1, . . . , AP−1/, the set of auxiliary variables distributed according
to the density ψθ.u/ given in equation (37) that is necessary to compute the unbiased estimate
γ̂N.θ/; we write here γ̂N.θ/ = γ̂N.θ, U/ to make this dependence explicit. The extended target
density π̃N.θ, u/ ∝ γ̂N.θ, u/ ψθ.u/ admits by construction π.θ/ as a marginal density in θ. To
sample from π̃N.θ, u/, we can consider a standard MH algorithm of proposal q.θÅ|θ/ ψθÅ

.uÅ/.
The resulting acceptance ratio is given by

1∧ π̃N.θÅ, uÅ/

π̃N.θ, u/

q.θ|θÅ/ψθ.u/

q.θÅ|θ/ψθÅ
.uÅ/

=1∧ γ̂N.θÅ, uÅ/

γ̂N.θ, u/

q.θ|θÅ/

q.θÅ|θ/ ,

which corresponds to equation (35). The algorithm that was proposed in Møller et al. (2006)
can also be reinterpreted in the framework of Andrieu et al. (2007), the unbiased estimate of the
inverse of an intractable normalizing constant being obtained in this context by using IS. How-
ever, we emphasize that the PMCMC methodology goes further by introducing an additional
random variable K and establishing that the associated extended target density π̃N.k, θ, u/ ∝
γ̂N.θ, u/ψθ.u/wk

P can be rewritten as in equation (36). For example, identifying this target density
shows that we obtain samples not only from the marginal density π.θ/ but also from the joint
density π.θ, x1:P/. Moreover this formulation naturally suggests the use of standard MCMC
techniques to sample from this extended target distribution. This is a key distinctive feature of
our work. This has allowed us, for example, to develop the conditional SMC update of Section
4.3 which leads to a novel MCMC update directly targeting πθ.x1:P/ or any of its conditionals
πθ.xc:d |x1:c−1, xd+1:P/.

5.2. Extensions
We believe that many problems where SMC methods have already been used successfully could
benefit from the PMCMC methodology. These include contingency tables, generalized linear
mixed models, graphical models, change-point models, population dynamic models in ecology,
volatility models in financial econometrics, partially observed diffusions, population genetics
and systems biology. The CBMC method, to which our approach is related, is a very popular
method in computational chemistry and physics, and PMCMC algorithms might also prove a
useful alternative in these areas. We are already aware of recent successful applications of PM-
CMC methods in econometrics (Flury and Shephard, 2010) and statistics (Belmonte et al., 2008).

From a methodological point of view, there are numerous possible extensions. Given that we
know the extended target distributions that the PMCMC algorithms are sampling from, it is
possible to design many other sampling strategies. For example, we can sample only a propor-
tion of the particles at each iteration or a part of their paths instead of sampling a whole new
population at each iteration. It would be also interesting to investigate the use of dependent
proposals to update the latent variables. In practice, the performance of the PIMH and PMMH
algorithms is closely related to the variance of the SMC estimates of the normalizing constants.
Adaptive strategies to determine the number of particles that is necessary to ensure that the
average acceptance rate of the algorithms is reasonable could also be proposed.

From a theoretical point of view, it is possible to study how ‘close’ the PMCMC algorithms are
to the idealized MCMC algorithms that they are approximating—corresponding to N →∞—
using and refining the techniques that are developed in Andrieu and Roberts (2009).



Particle Markov Chain Monte Carlo Methods 299

Acknowledgements

The authors thank the referees and the Research Section Committee for their valuable comments
which have helped to improve the manuscript. We thank Paul Fearnhead for pointing out an
error in Appendix A of an earlier version of the manuscript. Christophe Andrieu’s research
is supported by an Engineering and Physical Sciences Research Council Advanced Research
Fellowship.

Appendix A: Conditional sequential Monte Carlo implementation

The delicate step in practice to implement the conditional SMC procedure is that of sampling from
r.·|Wn−1, BK

n−1/. As discussed in Section 4.1, the resampling procedure is usually defined in terms of the
number of offspring On−1 of the parent particles from iteration n. In this case, a generic algorithm consists
of the following two steps.

(a) Sample the numbers of offspring On−1 ∼ s.·|Wn−1, BK
n−1/.

(b) Sample the indices of the N −1 ‘free’ offspring uniformly on the set {1, . . . , N}\{BK
n−1}.

To sample from s.·|wn−1, bK
n−1/, we can use the fact that

s.on−1|wn−1, bk
n−1/= s.o

bk
n−1

n−1 |wn−1, bk
n−1/ s.o

−bk
n−1

n−1 |wn−1, o
bk

n−1
n−1 /

where

s.o
bk

n−1
n−1 |wn−1, bk

n−1/∝ s.bk
n−1|wn−1, o

bk
n−1

n−1 / s.o
bk

n−1
n−1 |wn−1/

with
s.bk

n−1|wn−1, o
bk

n−1
n−1 / = o

bk
n−1

n−1=N:

In the multinomial resampling case, denoting M.a, b/ the multinomial distribution, this is equivalent
to the following procedure.

Sample On−1 ∼M.N −1, Wn−1/; then set O
BK

n−1
n−1 = O

BK
n−1

n−1 +1:

Appendix B: Proofs

B.1. Proof of theorem 2
We can easily check that equations (30) and (31) sum to 1. Note that the factor 1=NP corresponds to
the uniform distribution on the set {1, . . . , N}P for the random variables K, A1

BK
2 , . . . , AP−1

BK
P . Now the

acceptance ratio of an IMH algorithm is known to depend on the following importance weight which is
well defined because of assumption 1:

π̃N.k, x̄1, . . . , x̄P , a1, . . . , aP−1/

qN.k, x̄1, . . . , x̄P , a1, . . . , aP−1/
= N−Pπ.xk

1:P /

wk
P M1.x

bk
1

1 /
P∏

n=2
r.bk

n−1|wn−1/ Mn.x
bk

n
n |xbk

n−1
1:n−1/

= N−Pπ.xk
1:P /

M1.x
bk

1
1 /

P∏
n=2

Mn.x
bk

n
n |xbk

n−1
1:n−1/

P∏
n=1

wbk
n

n

=
π.xk

1:P /N−P
P∏

n=1

{
N∑

m=1
wn.xm

1:n/

}

M1.x
bk

1
1 /

P∏
n=2

Mn.x
bk

n
n |xbk

n−1
1:n−1/

P∏
n=1

wn.x
bk

n
1:n/

= Ẑ
N

Z
.41/

where Ẑ
N

is given in equation (21). In the manipulations above we have used assumption 2 on the second
line whereas the final result is obtained thanks to the definitions of the incremental weights (20) and of



300 C. Andrieu, A. Doucet and R. Holenstein

the normalizing constant estimate (21). It should now be clear that the PIMH algorithm that is described
above corresponds to sampling particles according to qN defined in equation (30) and that the acceptance
probability (29) corresponds to that of an IMH algorithm with target density π̃N given by equation (31).

B.2. Proof of theorem 3
Under the assumptions the PIMH defines an irreducible and aperiodic Markov chain with invariant density
π̃N from theorem 2. Since X1:P .i/=X

K.i/
1:P .i/ we conclude the proof from the properties of π̃N . To establish

the second statement, we note that under assumption 3

π̃N.k, x̄1, . . . , x̄P , a1, . . . , aP−1/

qN.k, x̄1, . . . , x̄P , a1, . . . , aP−1/
= Ẑ

N

Z
<Z−1

P∏
n=1

Cn <∞

for all x̄1, . . . , x̄P , a1, . . . , aP−1. For an IMH algorithm this implies uniform geometric ergodicity towards
π̃N , with a rate at least 1−Z=ΠP

n=1Cn; see for example Mengersen and Tweedie (1996), theorem 2.1. This,
together with a reasoning similar to above concerning X1:P .i/, allows us to conclude the proof.

B.3. Proof of theorem 4
The proof of the first part of theorem 4 is similar to the proof of theorem 2 and is not repeated here.
The second part of the proof is a direct consequence of theorem 1 in Andrieu and Roberts (2009) and
assumptions 5 and 6.

B.4. Proof of theorem 5
The algorithm is a Gibbs sampler targeting equation (36). We hence focus on establishing irreducibility
and aperiodicity of the corresponding transition probability. Let D ∈B.Θ/, E ∈B.X P /, F ∈B.X .N−1/P ×
{1, . . . , N}.N−1/.P−1//, k ∈ {1, . . . , N} and i ∈ {1, . . . , N}P−1 be such that π̃N.{k} × D × E × {i} × F/ > 0.
From assumption 5 it is possible to show that accessible sets for the Gibbs sampler are also marginally
accessible by the PG sampler, i.e. more precisely if D×E∈B.Θ/×B.X P / is such that LG{.θ.j/, X1:P .j//∈
D×E}>0 for some finite j>0 then also LPG{.K.j/, θ.j/, X1:P .j/, B.j//∈{k}×D×E×{i}}>0 for all k∈
{1, . . . , N} and i∈{1, . . . , N}P . From this and the assumed irreducibility of the Gibbs sampler in assump-
tion 7, we deduce that if π{.θ, X1:P /∈D×E}> 0 then there is a finite j such that LPG{.K.j/, θ.j/, X1:P .j/,
B.j// ∈ {k} × D × E × {i}} > 0 for all k ∈ {1, . . . , N} and i ∈ {1, . . . , N}P . Now, because π{.θ, X1:P / ∈
D×E}> 0 and step (b) corresponds to sampling from the conditional density of π̃N , we deduce that

LPG{X̄
−B

K.j+1/
1

1 .j +1/, . . . , X̄
−B

K.j+1/
P

P .j +1/, K.j +1/, θ.j +1/, X1:P .j +1/,

B.j +1/, A
−B

K.j+1/
2

1 .j +1/, . . . , A
−B

K.j+1/
P

P−1 .j +1/∈{K}×D×E×{i}×F}> 0

and the irreducibility of the PG sampler follows. Aperiodicity can be proved by contradiction. Indeed
from assumption 5 we deduce that, if the PG sampler is periodic, then so is the Gibbs sampler, which
contradicts assumption 7.

B.5. Proof of theorem 6
To simplify the presentation, we shall use the notation v :=.θ, x̄1, . . . , x̄P , a1, . . . , aP−1/ and for f :Θ×X P →
R we define the function

F.k, v/ :=
N∑

m=1
f.θ, xm

1:P /I{m=k}:

Note, using two different conditionings, that the following equalities hold:

Eπ̃N {F.K, V/}=Eπ̃N [Eπ̃N {F.K, V/|K}]=
N∑

m=1

1
N

Eπ̃N {f.θ, Xm
1:P /|K =m}

=
N∑

m=1

1
N

Eπ{f.θ, X1:P /}=Eπ̃N [Eπ̃N {F.K, V/|V}]

=Eπ̃N

{
N∑

m=1
Wm

P f.θ, Xm
1:P /

}
,

.42/
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where we have used that π̃N.k, θ, xk
1:P / = π.θ, xk

1:P /=N and π̃N.k|v/ = wk
P by using an identity similar to

equation (41). The first statement follows from the ergodicity assumption on both the PMMH and the
PG samplers and the resulting law of large numbers involving {K.i/, V.i/}. To prove the second result in
equation (39) we introduce the transition probability Q that is associated with the PMMH update. More
precisely, with Ψ.v, v′/ :=q.θ, θ′/ψθ

′
.x̄′

1, . . . , x̄′
P , a′

1, . . . , a′
P−1/ and α.v, v′/ the acceptance probability of the

PMMH update, the conditional expectation of F with respect to the distribution Q.k, v; ·/ is given by

Q.F/.k, v/ :=
N∑

k′=1
w′k′

P

∫
Ψ.v, v′/α.v, v′/ F.k′, v′/dv′ +

[
N∑

m=1

∫
w̄m

P Ψ.v, v̄/{1−α.v, v̄/}dv̄
]
F.k, v/, .43/

where w̄m
P denotes the normalized weights that are associated with v̄. By construction Q leaves π̃N invariant,

which from equation (42) leads to Eπ̃N {Q.F/.K, V/} = Eπ̃N {F.K, V/} = Eπ{f.X1:P /}. Now, noting that
Ψ.v, v′/α.v, v′/ does not depend on k′ for the PMMH we can rewrite equation (43) as

Q.F/.k, v/=
∫

Ψ.v, v′/α.v, v′/
N∑

k′=1
w′k′

P F.k′, v′/dv′ +
[∫

Ψ.v, v̄/{1−α.v, v̄/}dv̄
]
F.k, v/:

Using the definition of F , the fact that Ψ.v, v̄/ α.v, v̄/ does not depend on k and equation (42) lead to

Eπ̃N {Q.F/.K, V/}=Eπ̃N

{∫
Ψ.V, v′/ α.V, v′/

N∑
m=1

W ′m
P f.θ′, X′m

1:P /dv′
}

+Eπ̃N

([∫
Ψ.V, v̄/{1−α.V, v̄/} dv̄

]
N∑

m=1
Wm

P f.θ, Xm
1:P /

)
,

and we again conclude the proof from the assumed ergodicity of {K.i/, V.i/}. Note that the proofs
suggest that theorem 6 still holds for a more general version of the PMMH sampler for which the proposal
distribution for θ′ is allowed to depend on v (i.e. all the particles), but on neither k nor k′.
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Discussion on the paper by Andrieu, Doucet and Holenstein

Paul Fearnhead (Lancaster University)
I see great potential for particle Markov chain Monte Carlo (MCMC) methods—as the strengths of particle
filters and of MCMC sampling are in many ways complementary. For example, in work on mixture models
(Fearnhead, 2004), particle filter methods can perform well at finding different modes of the posterior,
whereas MCMC methods do well at exploring the posterior within a mode. Similarly particle methods do
well for analysing state space models conditional on known parameters and can analyse models which you
can simulate from but cannot calculate transition densities, whereas MCMC methods are better suited to
mixing over different parameter values. This is the first work to use particle filters within MCMC sampling
in a principled and theoretically justified way.

The paper describes several particle MCMC methods, and I shall concentrate the rest of my comments
on just one of these: particle Gibbs sampling.

To understand the mixing properties of particle Gibbs sampling it helps to look at the set of paths that
can be sampled from at the end of a conditional sequential Monte Carlo (SMC) update: Fig. 8(a) gives
an example. The conditional SMC update is an SMC algorithm conditioned on a specific path surviving,
which I shall call the conditioned path. The set of paths can be split into those which coalesce with the
conditioned path, and those which do not and hence are independent of it. For the particle Gibbs sampler
to mix well we want the probability of sampling one of these latter independent paths to be high.
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Fig. 8. (a) Example realization of paths of conditional SMC updates ( , conditioned path; , paths
which coalesce with the conditioned path; . . . . . . ., independent paths) and (b) probability of sampling an inde-
pendent path for multinomial (broken curves) and stratified (full curves) sampling, as a function of N=T for
various values of T ( , – – –, T D50; , , T D200; , , T D400)

For this, we would like to minimize the number of times that the particle of the conditioned path is
resampled at each iteration. Consider time n, and assume that the conditioned path consists of the first
particle at both times n and n+1 (in the notation of the paper Bn =1 and Bn+1 =1). Let On be the number
of times that the first particle at time n is resampled. Then under the conditional SMC algorithm we are
interested in

Pr.On =x|A1
n =1/= Pr.On =x/ Pr.A1

n =1|On =x/

Pr.A1
n =1/

= Pr.On =x/x=N
N∑

x=1
Pr.On =x/x

;

thus it is easy to show that E.On|A1
n = 1/ = E.On/ + var.On/=E.On/. Hence we see the importance of

choosing a resampling scheme that minimizes the variance of the number of times that each particle is
resampled; or of not resampling every time step.

To illustrate this empirically, I considered a simple toy model X0 ∼N .0, 100/,

Xn|xn−1 =Xn−1 ∼
{

N .xn−1,σ2/ with probability 0.99,
N .xn−1, 1/ otherwise,

Yn|Xn =xn ∼N .xn, 1/:

We simulated data for σ= 0:1. Fig. 8(b) shows how the probability of sampling an independent path in
the conditional SMC step depends on T , N and the type of resampling. Results are given for multinomial
resampling and for stratified resampling (Kitagawa, 1996; Carpenter et al., 1999), which is known to
minimize var.On/. We see that stratified sampling requires much smaller values of N to have the same
performance as for multinomial sampling. Also, as pointed out in the paper, you want N to increase lin-
early with T to have a roughly constant performance (this suggests that the central processor unit cost of
SMC scales as O.T 2/; this sounds competitive with or better than standard MCMC sampling; see Roberts
(2009)).

I have two other comments on particle Gibbs sampling. Firstly it seems that how you initialize the con-
ditional SMC update is important. Naive strategies of sampling particles from the prior will lead to many
initial particles being sampled in poor areas of the state space. Care needs to be taken even when a better
proposal for the initial particles is used, as initially particles in the mode of this proposal will have small
weights and resampling may remove many of these particles sampled unless the resampling probabilities
are chosen appropriately (Chen et al., 2005; Fearnhead, 2008). Also, within particle Gibbs sampling are
there extra ways of learning a good proposal for the initial particles: could you learn this from the history
of the MCMC run or use the information of the conditioned path?

Secondly, you can use particle Gibbs sampling to update jointly parameters and the states by using a
conditional SMC update with particles being both the state of the system and the parameters. Again care
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needs to be taken in terms of the proposal distribution for the parameters, and how resampling is done.
On the above toy example it was possible to use the conditional SMC update to sample jointly new X1:T -
and σ-values—with moves where σ changed by more than an order of magnitude more than that of a
Gibbs sampler which updates σ|X1:T . For such an implementation, can you use MCMC methods within
the conditional SMC update (Fearnhead, 1998, 2002; Gilks and Berzuini, 2001; Storvik, 2002)?

It feels like the theory behind the efficiency of particle Gibbs sampling may be very different from that for
the other particle MCMC methods. Whereas the latter seems related to the variance of the SMC estimates
of the marginal likelihood, the efficiency of particle Gibbs sampling seems related to rates of coalescences
of paths in the conditional SMC update (and reminiscent of Kingman (l982)). Are these related, or is there
a fundamental difference between particle Gibbs and other particle MCMC methods?

This has been a fascinating paper, and I look forward to see future developments and application of
particle MCMC methods. It gives me great pleasure to propose the vote of thanks.

Simon Godsill (University of Cambridge)
In seconding the vote of thanks on this paper I congratulate the authors on a fine contribution to Bayesian
computational methods. The techniques that they propose allow us to combine, in a principled way, the
two most successful tools that we currently have available in this field: the particle filter and the Mar-
kov chain Monte Carlo (MCMC) method. Other attempts in this area have focused on incorporating
MCMC methods into sequential updating with particle filters. The current contribution, however, intro-
duces the full power of particle filters into batch MCMC schemes. This has been done before, using
empirical justifications (see Fernandez-Villaverde and Rubio-Ramirez (2007), which implements precisely
the particle marginal Metropolis–Hastings update), but here we have a full theoretical justification for
this usage, which will reassure practitioners and should increase the uptake of such methods widely. By
adopting a fully principled approach, which identifies an augmented target distribution which is at the
heart of the particle marginal Metropolis–Hastings approach, we gain significant extra mileage, notably
through the particle Gibbs algorithm, a method that applies Gibbs sampling to the same augmented target
distribution. This particle Gibbs algorithm goes significantly beyond what has been applied before and
allows inference in intractable models where the only feasible state sampling approach is particle filtering.
It should be highlighted, however, that the approach is one of the most computationally demanding
methods proposed to date. In its basic form it requires a full particle filtering run for each iteration of
the MCMC algorithm, which for a complex model with many static parameters could prove infeasi-
ble. The algorithm is also slightly wasteful in that all but one particle and its back-tracking lineage are
discarded in each step of the algorithm (even though the discarded samples can be used in the final
Monte Carlo estimates, as shown by the authors in Section 4.6). This latter point raises the possibil-
ity that one might adapt a parallel chain or population Monte Carlo scheme to the particle MCMC
framework, to utilize fully in the MCMC algorithm more than one stream of output from the particle
filter.

To conclude, I wonder whether the authors have considered adaptations of their approach which incor-
porate particle smoothing, both Viterbi style (Godsill et al., 2001) and backward sampling (Godsill et al.,
2004). These could improve the quality of the proposals from the particle filter at relatively small cost
(at least in the backward sampling case, which is O.NT/ per sample path, as for the basic particle filter).
This latter approach typically gives better diversity of backward sample paths than those arising from
the standard filter output—hence I wonder also whether we can gain something by including multiple
path imputations from the smoother into the particle MCMC approach—see my earlier comment about
parallel chain or population MCMC methods.

The vote of thanks was passed by acclamation.

Nicolas Chopin (Ecole Nationale de la Statistique et de l’Administration Economique, Paris)
Two interesting metrics for the influence of a paper read to the Society are

(a) the number of previous papers that it affects in some way and
(b) the number of interesting theoretical questions that it opens.

In both respects, this paper fares very well.
Regarding (a), in many complicated models the only tractable operations are state filtering and likelihood

evaluation; see for example the continuous time model of Chopin and Varini (2007). In such situations,
the particle Hastings–Metropolis (PHM) algorithm offers Bayesian estimates ‘for free’, which is very nice.
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Similarly, Chopin (2007) (see also Fearnhead and Liu (2007)) formulated change-point models as state
space models, where the state xt = .θt , dt/ comprises the current parameter θt and the time since last change
dt . Then we may use sequential Monte Carlo (SMC) methods to recover the trajectory x1:T , i.e. all the
change dates and parameter values. It works well when xt forgets its past sufficiently quickly, but this
forbids hierarchical priors for the durations and the parameters. PHM removes this limitation: Chopin’s
(2007) SMC algorithm may be embedded in a PHM algorithm, where each iteration corresponds to differ-
ent hyperparameters. This comes at a cost, however, as each Markov chain Monte Carlo (MCMC) iteration
runs a complete SMC algorithm.

Regarding (b), several questions, which have already been answered in the standard SMC case, may be
asked again for particle MCMC methods. Does residual resampling outperform multinomial resampling?
Is the algorithm with N +1 particles strictly better than that with N particles? What happens about Rao–
Blackwellization, or the choice of the proposal distribution? One technical difficulty is that marginalizing
out components always reduces the variance in SMC sampling, but not in MCMC sampling. Another
difficulty is that particle MCMC methods retains only one particle trajectory x1:T ; hence the effect of
reducing variability between particles is less obvious.

Similarly, obtaining a single trajectory x1:T from a forward filter is certainly much easier than obtaining
many of them, but it may still be demanding in some scenarios, i.e. there may be so much degeneracy in
x1 that not even one particle contains an x1 in the support of p.x1|y1:T /.

Rong Chen (Rutgers University, Piscataway)
It is a pleasure to congratulate the authors on an impressive, timely and important paper. The problem of
parameter estimation for complex dynamic systems by using sequential Monte Carlo methods has been
known as a very difficult problem. The authors provide a clean and powerful way to deal with such a
problem. The method will certainly become a popular and powerful tool for solving complex problems.

I wish to concentrate my discussion on one aspect—the resampling scheme. The current paper seems
to insist on resampling by using the current weights (e.g. assumption 2). We note that the procedure
proposed actually works for more flexible resampling schemes. In a way, we can view that a flexible
resampling scheme is in effect changing the intermediate distributions. More specifically, in the nota-
tion of the paper, a flexible resampling scheme operates as follows. At times n= 2, . . . , T , first construct
αn−1 = .α.X1

1:n−1/, . . . ,α.Xk
1:n−1//. Then

(a) sample Ak
n−1 ∼F.·|αn−1/,

(b) sample Xk
n ∼Mn.·|Xn−1

An−1
k

/ and set Xk
1:n := .X

Ak
n−1

1:n−1, Xk
n/, and

(c) compute and normalize the weights

wn.Xk
1:n/ := γn.Xk

1:n/Wn−1.X
Ak

n−1
1:n−1/

γn−1.X
Ak

n−1
1:n−1/Mn.Xk

n|X
Ak

n−1
1:n−1/αn−1.X

Ak
n−1

1:n−1/

and

Wk
n =wn.Xk

1:n/

/
N∑

m=1
wn.Xm

1:n/:

This is not a new idea. For example, Liu (2001) mentioned the use of αn−1.X1:n−1/ = wα
n−1.X1:n−1/ for

some α∈ .0, 1/ to reduce the sudden impact of large jumps in the system. Shephard (private conversation)
suggested the use of an incremental weight spreading technique,

αn−1.X1:n−1/=
L∏

l=1

{
γn−l.X1:n−l/

γn−l−1.X1:n−l−1/Mn−l|X1:n−l−1

}1=L

:

The auxiliary particle filter of Pitt and Shephard (1999) in a way can be thought of as using

αn−1.X1:n−1/=wn−1.X1:n−1/ γn.μ̂n|X1:n−1/

where μ̂n is a prediction of the future state Xn. Similarly, we can also use delayed sampling (Chen et al.,
2000; Wang et al., 2002) and block sampling (Doucet et al., 2006) ideas to design the resampling schemes,
bringing in future information in the resampling scheme. Lin et al. (2010) constructed the resampling
scores by using backward pilots in generating Monte Carlo samples of diffusion bridges.

The flexible resampling scheme is essentially changing the intermediate distribution γt−1.xt −1/ (which
is defined in Section 4.1) to
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n−1∏
i=1

Mi.xi|x1:i−1/ αi.x1:i−1/;

hence all the theoretical properties of standard particle filters work. It also works inside the particle Markov
chain Monte Carlo algorithm.

Mark Girolami (University of Glasgow)
This is a potentially very important contribution to Markov chain Monte Carlo (MCMC) methodology.
The capabilities of existing MCMC techniques are being severely stretched, because in part of the increasing
awareness of the importance of statistical issues surrounding the mathematical modelling of complex
stochastic non-linear dynamical systems in areas such as computational finance and biology. The pro-
posed particle Markov chain Monte Carlo (PMCMC) framework of algorithms provides very general and
powerful novel methodology which may allow inference to proceed over increasingly complex models in
a more efficient manner and as such this is a most welcome addition to the literature.

The use of an approximate posterior to improve proposal efficiency in terms of producing large moves
with high probability of acceptance is a strategy that has been demonstrated to great effect in rever-
sible jump MCMC methods where approximate posteriors for model proposals ensure high acceptance
of between-model moves (Lopes and West, 2004; Zhong and Girolami, 2009). A similar strategy is to
consider a proposal process as the outcome of forward simulation of a stochastic differential equa-
tion which has the desired target distribution as its ergodic stationary distribution. Simulating from
the stochastic differential equation numerically incurs errors which can then be corrected for, as with
PMCMC sampling, by employing the Hastings ratio, e.g. the Metropolis adjusted Langevin algorithm
(Roberts and Stramer, 2003). The alternative method is numerically to forward-simulate a deterministic
system based on a Hamiltonian and to employ a Metropolis accept–reject step to correct for discrete
integration errors, as in the hybrid Monte Carlo methods which have been shown to perform well on
high dimensional problems that were similar to those studied in this paper (Neal, 1993; Girolami et al.,
2009).

The correctness of the algorithms is established with extensive and detailed proofs; therefore my
comments have a practical focus. The strategy that is adopted is to employ an approximate, potentially
non-equilibrium sequential Monte Carlo (SMC) procedure to make high dimensional proposals for the
Metropolis method. In many ways the issue of designing a proposal mechanism is pushed back to designing
importance distributions for the SMC method so that difficulties may yet arise in terms of tuning the SMC
parameters to obtain a high rate of acceptance. Sampling from the joint posterior p.θ, x1:T |y1:T / within
the PMCMC framework may still require the undesirable design of a proposal for the parameters θ as
employed in the particle marginal Metropolis–Hastings sampler although the particle Gibbs sampler
employing conditional SMC updates appears a promising though largely untested alternative.

Nick Whiteley (University of Bristol)
I offer my thanks to the authors for an inspirational paper. Their approach to constructing extended
target distributions is powerful and can be exploited further and applied elsewhere. A key ingredient
is the elucidation of the probability model underlying a sequential Monte Carlo (SMC) algorithm and
the genealogical tree structures that it generates. Two further developments on this theme are described
below.

Firstly, at the end of one conditional SMC run in the particle Gibbs algorithm, the authors suggest
sampling K from its full conditional under π̃N , then deterministically tracing back the ancestral lineage of
XK

T , to yield

XK
1:T := .X

BK
1

1 , X
BK

2
2 , . . . , X

BK
T

T /: .44/

There is an alternative. Having sampled K , for n=T −1, . . . , 1, we could sample from

π̃N = .bk
n|x̄1, . . . , x̄n, a1, . . . , an−1, xk

n+1:T , bk
n+1:T , θ/,

with XK
1:T defined as before according to expression (44), but with newly sampled ancestor indices.

The advantage of this ‘backward’ sampling is that it enables exploration of all possible ancestral lineages
and not only those obtained during the ‘forward’ SMC run. This offers a chance to circumvent the path
degeneracy phenomenon and to obtain a faster mixing particle Gibbs kernel, albeit at a slightly increased
computational cost.
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When pθ.x1:T , y1:T / arises from a state space model, it is straightforward to verify that

π̃N.bk
n|x̄1, . . . , x̄n, a1, . . . , an−1, xk

n+1:T , bk
n+1:T , θ/∝wbk

n
n f.x

bk
n+1

n+1 |xbk
n

n /,

which uses the importance weights that are obtained during the forward SMC run. In this case, the above
procedure coincides with one draw using the smoothing method of Godsill et al. (2004).

Secondly, I believe that the particle Markov chain Monte Carlo framework can be adapted to accom-
modate the particle filter of Fearnhead and Clifford (2003), which is somewhat different from the SMC
algorithm that is considered in the present paper. Owing to constraints on space I provide no specifics
here, but I believe that suitable formulation of the probability model underlying the algorithm of Fearn-
head and Clifford (2003) allows it to be manipulated as part of a particle Markov chain Monte Carlo
algorithm.

Gareth Roberts (University of Warwick, Coventry)
I add my congratulations to the authors for this path breaking work. In this discussion, I shall expand on
comments in the paper linking the methods introduced to a generic framework for Markov chain Monte
Carlo (MCMC) methods which can be applied to missing data problems and other situations where the
target density is unavailable but can be estimated unbiasedly by using an auxiliary variable construction.
This work can be found in Andrieu and Roberts (2009), generalizing an idea that was introduced in
Beaumont (2003).

For MCMC sampling, enlargement of state spaces comes at a price. Consider, for instance an ‘optimized’
Metropolis–Hastings algorithm on π.θ, z/. Typically this converges slower than its rival counterpart on
the marginalized distribution π.θ/. This suggests that we might mimic the marginalized algorithm through
Monte Carlo sampling . Here I shall describe the simplest version of the pseudomarginal approach.

Choose Z∈RN ∼IID qθ, and set

π̃N.θ/= 1
N

N∑
i=1

π.θ, Zi/

qθ.Zi/
:

Consider two options for using π̃N within an MCMC framework: Monte Carlo within Metropolis and
generalized importance Metropolis–Hastings.

Step Marginal Monte Carlo Generalized
within importance

Metropolis Metropolis–Hastings
0: given θ and π.θ/ θ and π.θ/ θ, Z and π̃N.θ/
1: sample θÅ ∼q.θ, ·/ θÅ ∼q.θ, ·/ θÅ ∼q.θ, ·/

Z∼qN
θ , ZÅ ∼qN

θÅ ZÅ ∼qN
θÅ .·/

2: compute π.θÅ/ π̃N.θ/ and π̃N.θÅ/ π̃N.θÅ/

3: compute r
π.θÅ/ q.θÅ, θ/
π.θ/ q.θ, θÅ/

π̃.θÅ/ q.θÅ, θ/
π̃.θ/ q.θ, θÅ/

π̃.θÅ/ q.θÅ, θ/
π̃.θ/ q.θ, θÅ/

4: with probability 1∧ r ϑ=θÅ ϑ=θÅ ϑ=θÅ, Z=ZÅ

otherwise ϑ=θ ϑ=θ ϑ=θ, Z=Z

The Monte Carlo within Metropolis approach biases the MCMC algorithm so that the marginal sta-
tionary distribution of θ under the scheme is typically not π (if it exists at all). However, the generalized
importance Metropolis–Hastings approach has the following invariant distribution:

1
N

N∑
k=1

π{θ, z.k/}
N∏

l=1;l 	=k

qθ{z.l/}:

The θ-marginal of this chain is π.θ/.
Thus there is no Monte Carlo bias in generalized importance Metropolis–Hastings sampling (though

of course there is still Monte Carlo error) and, under weak regularity conditions, as N →∞ the algorithm
‘converges’ to the true marginal algorithm.

Drawing Z as an independent and identically distributed sample can be significantly improved on, e.g.
by letting Z denote a sample path of a Markov chain with invariant distribution π.z|θ/ (or even a particle
approximation as in the present paper).

Andrieu and Roberts (2009) applies this idea in simple examples and explores some of the theoretical
properties of the method. One important and promising application of the idea involves a substantial
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generalization of reversible jump MCMC sampling which improves the potentially problematic step of
choosing appropriate between-dimension moves.

In modified form, this construction is also an ‘exact’ and efficient computational solution to doubly
intractable problems (see Andrieu et al. (2008)),

fθ.x/= h.θ, x/

K.θ/
,

for unknown K.·/ as well as θ.

Miguel A. G. Belmonte (University of Warwick, Coventry) and Omiros Papaspiliopoulos (Universitat
Pompeu Fabra, Barcelona)
We congratulate the authors for a remarkable paper, which addresses a problem of fundamental practical
importance: parameter estimation in state space models by using sequential Monte Carlo (SMC) algo-
rithms. In Belmonte et al. (2008) we fit duration state space models to high frequency transaction data and
we require a computational methodology that can handle efficiently time series of length T =O.104–105/.
We have experimented with particle Markov chain Monte Carlo (PMCMC) methods and with the smooth
particle filter (SPF) of Pitt (2002). The latter is also based on the use of SMC algorithms to derive maxi-
mum likelihood parameter estimates; it is, however, limited to scalar signals. Therefore, in the context of
duration modelling this limitation rules out multifactor or multi-dimensional models, and we believe that
PMCMC methods can be very useful in such cases.

In this contribution we present a preliminary simulation study which contrasts particle marginal Met-
ropolis–Hastings (PMMH), particle Gibbs (PG) and the SPF methods on simulated data from a linear
single-factor state space model:

Table 1. Comparison of estimates by the SPF, PMMH and PG methods against the KF for various T †

Results for the following values of T:

100 200 500 1000 2000 5000 10000

KF
μ̂KF 0.658 0.826 0.417 0.605 0.757 0.752 0.759
l.μ̂KF/ −93.75 −208.44 −502.56 −1031.78 −2037.27 −5132.14 −10211.19
V̂.μ̂KF/ 0.441 0.255 0.112 0.058 0.030 0.012 0.006

SPF
Relative error −0.120 0.019 0.049 −0.011 0.058 0.008 −0.007
Likelihood difference −0.0110 −0.0122 −0.0037 −0.0004 −0.0125 −0.0014 −0.0000
Ratio of variance 0.999 1.000 0.954 0.984 0.968 0.983 0.982

PMMH
Relative error 0.056 0.024 −0.007 −0.030 −0.023 0.070 −0.022
Likelihood difference −0.0015 −0.0008 −0.0000 −0.0027 −0.0049 −0.0972 −0.0222
Ratio of variance 1.009 0.980 0.888 0.989 1.280 1.151 1.352
Acceptance probability 0.606 0.409 0.217 0.071 0.034 0.004 0.003
Efficiency 5.77 5.41 5.26 11.98 28.21 165.85 178.91

PG
Relative error 0.0163 −0.0026 −0.0115 −0.0041 0.0007 −0.0020 −0.0010
Likelihood difference −0.0001 −0.0000 −0.0001 −0.0000 −0.0000 −0.0000 −0.0000
Ratio of variance 0.985 0.990 0.998 0.986 0.980 0.994 0.989
Efficiency 1.02 1.01 1.00 1.00 1.00 1.01 1.00

†The particle algorithms set N = 500, with σ2
" = 0:20. Exact estimates are reported for the KF. For the particle

methods we compute the relative error .μ̂− μ̂KF/=μ̂KF, log-likelihood difference l.μ̂/ − l.μ̂KF/ and the ratio of
variance V̂.μ̂/=V̂.μ̂KF/. l.·/ denotes the exact KF log-likelihood. Efficiency for the PMMH and PG methods is
measured by the following approximation to the integrated auto-correlation time 1=.1− ρ̂/, where ρ̂ is the MCMC
sample correlation at lag 1.
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Xt =μ.1−φ/+φXt−1 +σηηt ηt , ∼NID.0, 1/,
Yt =Xt +σ""t , "t ∼NID.0, 1/, t =1, . . . , T:

.45/

Parameter values are set to μ= 0:75, φ= 0:95 and σ2
η + σ2

" = 0:35 and various values for T and the
signal-to-noise ratio σ2

" =.σ2
" +σ2

η/ are tried. When Bayesian inference with PMCMC sampling is made for
μ, an improper flat prior is used. We adopt a pragmatic point of view according to which the practitioner,
especially for a small number of parameters, is invariant to maximum likelihood or Bayesian inference but
is mostly worried about the comptutational efficiency of the methods. Our simulation and prior specifica-
tion set-up is such that the posterior mean and precision estimates coincide with the maximum likelihood
and observed information estimates respectively, and the exact values are available by using the Kalman
filter (KF). The bootstrap filter is used in all the SMC algorithms.

For various values of T , Table 1 shows a comparison of parameter estimates by the particle methods
and KF. In this problem the SPF and PG methods show remarkable robustness to the length of the series
in terms of the accuracy of the estimates. The mixing time of the latter does not show deterioration with
T (note that the mixing time of the limiting algorithm with T =∞ does not arbitrarily deteriorate with T
either; see Papaspiliopoulos et al. (2003) for details). We also varied the signal-to-noise ratio and report
our findings in Table 2.

We also consider two different parameterizations under which we applied PG sampling: the so-called
centred .X1, . . . , XT , θ/ and non-centred .X1 −θ, . . . , XT −θ, θ/; see Papaspiliopoulos et al. (2003). When

Table 2. Comparison of estimates by the SPF, PMMH and PG methods against the KF for combinations of
signal-to-noise ratio†

Results for the following signal-to-noise ratios:

0.05 0.23 0.41 0.59 0.77 0.95

KF
μ̂KF 0.537 0.559 0.582 0.608 0.641 0.695
l.μKF/ −920.806 −978.023 −1014.000 −1031.784 −1032.964 −993.820
V̂.μKF/ 0.128 0.104 0.080 0.056 0.031 0.007

SPF
Relative error 0.211 0.000 −0.063 −0.056 −0.000 0.004
Likelihood difference −0.0501 −0.0000 −0.0085 −0.0103 −0.0000 −0.0005
Ratio of variance 0.918 0.927 0.940 0.942 0.966 0.985

PMMH
Relative error −0.108 0.109 0.027 0.008 −0.014 −0.003
Likelihood difference −0.0131 −0.0178 −0.0016 −0.0002 −0.0012 −0.0002
Ratio of variance 1.574 1.049 1.101 1.058 1.071 0.961
Acceptance probability 0.023 0.097 0.159 0.218 0.231 0.161
Efficiency 138.94 20.62 12.18 6.57 5.06 4.64

Centred PG
Relative error −0.015 0.004 0.004 0.003 0.002 0.001
Likelihood difference −0.0002 −0.0000 −0.0000 −0.0000 −0.0000 −0.0001
Ratio of variance 0.988 0.988 0.989 0.987 0.990 0.990
Efficiency 1.00 1.00 1.00 1.01 1.01 1.05

Non-centred PG
Relative error −0.093 −0.099 −0.436 0.181 0.047 0.010
Likelihood difference −0.0098 −0.0148 −0.4028 −0.1083 −0.0141 −0.0032
Ratio of variance 0.000 0.018 0.345 1.356 1.088 1.006
Efficiency 1.77 22.19 166.99 366.05 126.63 22.02

†The total variance σ2
" +σ2

η is fixed at 0.35. The larger the ratio the larger the observation variance is. T = 1000
observations and N = 1000 particles. The non-centred PG algorithm subtracts proposed μ from the trajectory
drawn from the smoothing density p.x0:T |μ, y0:T /.
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the state has so high persistence it is known (Papaspiliopoulos et al., 2003) that the centred Gibbs sampler
(for T =∞) has better mixing. The robustness of PG sampling is again very promising. Note that the SPF
and PMMH methods have worse performance for small values of the ratio, which is due to the deteriora-
tion of the bootstrap filter with decreasing observation error. This deterioration appears to have no effect
on PG sampling in this simple setting.

Krzysztof Łatuszyński (University of Toronto) and Omiros Papaspiliopoulos (Universitat Pompeu
Fabra, Barcelona)
We congraulate the authors for a beautiful paper. A fundamental idea is the interplay between unbiased
estimation (by means of importance sampling in this paper) and exact simulation. We show how unbiased
estimation relates to exact simulation of events of unknown probability s ∈ [0, 1]. Details, proofs and an
application to the celebrated Bernoulli factory problem (Nacu and Peres, 2005) can be found in Łatuszński
et al. (2009).

We wish to simulate the binary random variable Cs such that P [Cs =1]= s. If Ŝ is a realizable unbiased
estimator of s taking values in [0, 1], we use the following algorithm 1.

Step 1: simulate G0 ∼U.0, 1/:
Step 2: obtain Ŝ:
Step 3: if G0 � Ŝ set Cs :=1; otherwise set Cs :=0:
Step 4: output Cs.

If l1, l2, . . . and u1, u2, . . . are sequences of lower and upper bounds converging monotonically to s then
we can resort to the following algorithm 2.

Step 1: simulate G0 ∼U.0, 1/; set n=1:
Step 2: compute ln and un:
Step 3: if G0 � ln set Cs :=1:
Step 4: if G0 >un set Cs :=0:
Step 5: if ln <G0 �un set n :=n+1 and go to step 2.
Step 6: output Cs:

We can combine these ideas to have unbiased estimators Ln and Un of ln and un. The estimators live on
the same probability space and have the following properties:

P.Ln �Un/=1 for every n=1, 2, . . . ; .46/

P.Ln ∈ [0, 1]=1 and P.Un ∈ [0, 1]/=1 for every n=1, 2, . . . ; .47/

E.Ln/= ln ↗ s and E .Un/=un ↘ s; .48/

P.Ln−1 �Ln/=1 and P.Un−1 �Un/=1: .49/

Let

F0 ={∅, Ω},
Fn =σ{Ln, Un},

Fk,n =σ{Fk, Fk+1, . . . , Fn} k �n:

Under these assumptions we can use the following algorithm 3.

Step 1: simulate G0 ∼U.0, 1/; set n=1.
Step 2: obtain Ln and Un given F0,n−1:
Step 3: if G0 �Ln set Cs :=1:
Step 4: if G0 >Un set Cs :=0:
Step 5: if Ln <G0 �Un set n :=n+1 and go to step 2.
Step 6: output Cs.

The final step is to weaken condition (49) and to let Ln be a reverse time supermartingale and Un a
reverse time submartingale with respect to Fn,∞. Precisely, assume that for every n=1, 2, . . . we have

E.Ln−1|Fn,∞/=E.Ln−1|Fn/�Ln almost surely, .50/

E.Un−1|Fn,∞/=E.Un−1|Fn/�Un almost surely: .51/
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Consider the following algorithm 4, which uses auxiliary random sequences L̃n and Ũn constructed
on line.

Step 1: simulate G0 ∼U.0, 1/; set n=1; set L0 ≡ L̃0 ≡0 and U0 ≡ Ũ0 ≡1:
Step 2: obtain Ln and Un given F0,n−1:
Step 3: compute LÅ

n =E.Ln−1|Fn/ and UÅ
n =E.Un−1|Fn/:

Step 4: compute

L̃n = L̃n−1 + Ln −LÅ
n

UÅ
n −LÅ

n

.Ũn−1 − L̃n−1/, .52/

Ũn = Ũn−1 − UÅ
n −Un

UÅ
n −LÅ

n

.Un−1 − L̃n−1/: .53/

Step 5: if G0 � L̃n set Cs :=1:
Step 6: if G0 >Ũn set Cs :=0:
Step 7: if L̃n <G0 � Ũn set n :=n+1 and go to step 2.
Step 8: output Cs.

Thomas Flury and Neil Shephard (University of Oxford)
We congratulate Christophe Andrieu, Arnaud Doucet and Roman Holenstein for this important contri-
bution to the sequential Monte Carlo and Markov chain Monte Carlo (MCMC) literature. At the base of
their paper is the deceivingly simple looking idea of combining two powerful and well-known Monte Carlo
algorithms to create a truly Herculean tool for statisticians. They use sequential Monte Carlo methods to
generate high dimensional proposal distributions for MCMC algorithms.

We focus our discussion on one very specific insight: one can use an unbiased simulation-based estimator
of the likelihood inside an MCMC algorithm to perform Bayesian inference. For dynamic models this esti-
mator is obtained from a standard particle filter. Importantly, this means that the particle filter now offers
a complete extension of the Kalman filter: it can carry out filtering and now direct parameter estimation.

We are particularly impressed with the minimalistic assumptions that we need to perform likelihood-
based inference in dynamic non-linear and non-Gaussian state space models, which is of great interest for
microeconometrics, macroeconometrics and financial econometrics. In the particle marginal Metropolis–
Hastings algorithm we only need to be able to evaluate the measurement density and to sample from the
state transition density. Another advantage is that we do not need an infinite number of simulation draws
for consistency: all theoretical results hold from as little as N � 1 particles. Practical implementation is
also very easy as one only needs to change very few lines of code to estimate a different model.

In Flury and Shephard (2010) we showed the power of this method on four famous examples in econo-
metrics. Other applications, such as in repeated auctions, will also become important. Our experience
is that these methods work, are quite simple to implement, general purpose and highly computationally
demanding. The last point is important; they take so long to run that it is tempting to use the phrase
‘computationally brutal’.

Christian P. Robert and Pierre Jacob (Centre de Recherche en Economie et Statistique and Université
Paris Dauphine, Paris), Nicolas Chopin (Ecole Nationale de la Statistique et de l’Administration
Economique, Paris) and Håvard Rue (Norwegian University for Science and Technology, Trondheim)
We congratulate the authors for opening a new vista for running Markov chain Monte Carlo (MCMC)
algorithms in state space models. Being able to devise a correct Markovian scheme based on a particle
approximation of the target distribution is a genuine tour de force that deserves enthusiastic recognition!
This is all the more impressive when considering that the ratio

p̂θ.x
Å
1:T |y1:T /=p̂θ{x1:T .i−1/|y1:T } .54/

is not unbiased and thus invalidates the usual importance sampling solutions, as demonstrated by Beau-
mont et al. (2009). Thus, the resolution of simulating by conditioning on the lineage truly is an awesome
resolution of the problem!

We implemented the particle Hastings–Metropolis algorithm for the (notoriously challenging) stochastic
volatility model

yt |xt ∼N{0, exp.xt/}, xt =μ+ρ.xt−1 −μ/+σ"t ,

based on 500 simulated observations. With parameter moves
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μÅ ∼N .μ, 20−2/,
ρÅ ∼N .ρ, 20−2/,

log.σÅ/∼N{log.σ/, 20−2},

and state space moves derived from the auto-regressive AR(l) prior, we obtained good mixing properties
with no calibration effort, using N =102 particles and 104 Metropolis–Hastings iterations, as demonstrated
by Figs 9 and 10. Other runs (which are not reproduced here) exhibited multimodal configurations that
the particle MCMC algorithm managed to handle satisfactorily within 104 iterations.

Our computer program (which is available at http://code.google.com/p/py-pmmh/) may be
adapted to any state space model by simply rewriting two lines of codes, which

(a) computes p.yt |xt/ and
(b) simulates xt+1|xt:

Contemplating a different model does not even require the calculation of full conditionals, in contrast
with Gibbs sampling. Another advantage of the particle Hastings–Metropolis algorithm is that it is trivial
to parallelize. (Adding a comment before the loop over the particle index is enough, by using the OpenMP
technology.)

Finally, we mention possible options for a better recycling of the numerous simulations that are pro-
duced by the algorithm. This dimension of the algorithm deserves deeper study, maybe to the extent of
allowing for a finite time horizon overcoming the MCMC nature of the algorithm, as in the particle Monte
Carlo solution of Cappé et al. (2008).

A more straightforward remark is that, owing to the additional noise that is brought by the resampling
mechanism, more stable recycling would be produced both in the individual weights wn.X1:n/ by Rao–
Blackwellization of the denominator in equation (7) as in Iacobucci et al. (2009) and over past iterations
by a complete reweighting scheme like AMIS (Cornuet et al., 2009). Another obvious question is whether
or not the exploitation of the wealth of information that is provided by the population simulations is
manageable via adaptive MCMC methods (Andrieu and Robert, 2001; Roberts and Rosenthal, 2009).

Finally, since

p̂θ.y1:T /= p̂θ.y1/
T∏

n=2
p̂θ.yn|y1:n−1/

is an unbiased estimator of pθ.y1:T /, there must be direct implications of the method towards deriving
better model choice strategies in such models, as exemplified in the population Monte Carlo method of
Kilbinger et al. (2009) in a cosmology setting.

The following contributions were received in writing after the meeting.

Anindya Bhadra (University of Michigan, Ann Arbor)
The authors present an elegant theory for novel methodology which makes Bayesian inference practical
on implicit models. I shall use their example, a sophisticated financial model involving a continuous time
stochastic volatility process driven by Lévy noise, to compare their methodology with a state of the art
non-Bayesian approach. I applied iterated filtering (Ionides et al., 2006, 2010) implemented via the mif
function in the R package pomp (King et al., 2008).

Fig. 11 shows some results from applying the iterated filtering algorithm with 1000 particles to the
simulation study that is described by the authors in Section 3.2. If θ denotes the parameter vector of
interest, the algorithm generates a sequence of parameter estimates θ̂1, θ̂2, . . . converging to the maximum
likelihood estimate θ̂. As a diagnostic, the log-likelihood of θ̂i is plotted against i (Fig. 11(a)). We see that
the sequence of log-likelihoods rapidly converges. On simulation studies like this, a quick check for suc-
cessful maximization is to observe that the maximized log-likelihood typically exceeds the log-likelihood
at the true parameter value by approximately half the number of estimated parameters (Fig. 11(a)). We
can also check for successful local maximization by sliced likelihood plots (Figs 11(b)–11(e)), in which
the likelihood surface is explored along one of the parameters, keeping the other parameters fixed at the
estimated local maximum. The likelihood surface is seen to be flat as λ varies, which is consistent with the
authors’ observation that parameter combinations are weakly identified in this model. A profile likelihood
analysis could aid the investigation of the identifiability issue. Owing to the quick convergence of iterated
filtering with a relatively small number of particles, many profile likelihood plots can be generated at the
computational expense of, say, one Markov chain Monte Carlo run of length 50000.
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Fig. 11. Diagnostic plots for iterated filtering: (a) likelihood at each iteration, evaluated by sequential Monte
Carlo sampling (- - - - - - -, likelihood at the truth); (b)–(e) likelihood surface for each parameter sliced through
the maximum (�, parameter values, where the likelihoods were evaluated; j, maximum likelihood estimate;
, true parameter value)

The decision about whether one wishes to carry out a Bayesian analysis should depend on whether
one wishes to impose a prior distribution on unknown parameters. Here, I have shown that likelihood-
based non-Bayesian methodology provides a computationally viable alternative to the authors’ Bayesian
approach for complex dynamic models.

Luke Bornn and Aline Tabet (University of British Columbia, Vancouver)
We congratulate the authors on this very important contribution to stochastic computation in statistics.
Whereas the authors have explored and discussed several applications in the paper, we would like to high-
light the benefits of using particle Markov chain Monte Carlo (PMCMC) methods as a way to extend
sequential Monte Carlo (SMC) methods which employ sequences of distributions of static dimension.
Through PMCMC sampling, we can separate the variables of interest into those which may be easily sam-
pled by using traditional MCMC techniques and those which require a more specialized SMC approach.
Consider for instance the use of simulated annealing in an SMC framework (Neal, 2001; Del Moral
et al., 2006). Rather than finding the posterior maximum a posteriori estimate of all parameters, PMCMC
sampling now allows practitioners to combine annealing with traditional MCMC methods to maximize
over some dimensions simultaneously while exploring the full posterior in others.

When variables are highly correlated, SMC methods may be used as an efficient alternative to MCMC
sampling. For instance, SMC samplers (Del Moral et al., 2006) and other population-based methods (Jasra
et al., 2007) proceed by working through a sequence of auxiliary distributions until a particle-based approx-
imation to the posterior is reached. In non-identifiable or weakly identifiable models, SMC sampling is used
to construct a sequence of tempered distributions allowing particles to explore fully the resulting ridges
in the posterior surface of the non-identifiable variables. However, because SMC algorithms often rely on
importance sampling, they can suffer in high dimensions owing to increased variability in the importance
weights. Many non-identifiable models contain only a small portion of variables with identifiability issues,
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and hence it may be adding unnecessary complication to build the tempered distributions in all dimensions.
In this case, PMCMC sampling gives the option to explore some parameters by using MCMC sampling
while exploring others (such as those which are highly correlated or non-identifiable) with SMC sampling,
and hence limit variance in the SMC importance weights. There are several options for performing this in
the PMCMC framework: both the particle Gibbs and the particle Metropolis–Hastings variants could be
used; the choice largely depends on the correlation between the identifiable and non-identifiable subsets of
variables. In conclusion, we feel that, as much as PMCMC sampling provides Monte Carlo solutions to
a unique class of problems, it also provides a flexible framework allowing practitioners to mix and match
Monte Carlo strategies to suit their particular application.

Olivier Cappé (Telecom ParisTech and Centre National de la Recherche Scientifique, Paris)
I congratulate the authors for this impressive piece of work which, I believe, is a very significant contribution
to the toolbox of Markov chain Monte Carlo and sequential Monte Carlo (SMC) methods.

For brevity, I focus on the particle independent Metropolis–Hastings (PIMH) algorithm which is the
basic building block for the other samplers that are presented in the paper. Although theorem 2 also
covers the more involved case of SMC sampling, the core idea is the auxiliary construction which shows
that a proper Markov chain Monte Carlo algorithm may be obtained from sampling–importance re-
sampling (Rubin, 1987), irrespectively of the number N of particles. This idea, however, does seem to be
quite different both from the multiple-try (Liu et al., 2000) and the pseudomarginal (Beaumont, 2003)
approaches and I encourage the authors to discuss in more detail its connections, if any, with earlier ideas
in the literature.

Fig. 3 (in Section 3.1) is very promising as it suggests that the approach is practicable in large dimensional
settings for which a ‘causal’ factorization of the likelihood is available. In particular, I wonder whether it is
possible to predict the relationship between the dimension T and the number N of particles that is implicit
in Fig. 3. In an attempt to answer this question, I conducted a toy numerical experiment in the spirit of the
scaling construction (Roberts and Rosenthal, 2001), where the target πT is a product probability density
function and SMC sampling is also carried out by using successive independent proposals—clearly, the
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Fig. 12. PIMH acceptance rate as a function of the dimension T of the target and the number N of particles:
the target probability density function is πT .x1,. . ., xT/DΠT

tD1π.xt/, where π is the normal probability density
function truncated to the range [�4, 4]; the SMC proposal ‘kernel’ q is an independent proposal, uniformly dis-
tributed in the range [�4, 4]; to assess the difficulty of the simulation task, note that for direct self-normalized
importance sampling targeting πT the effective sample size statistic (Kong et al., 1994), normalized by N ,
tends to 2:26�T (2:26D∫ 4�4 8π2.x/ dx/ as N increases, which is about 10�6 for T D17
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latter situation is very specific, although it satisfies assumptions 1–4 that were made in the paper. In this
example, any method based on direct importance sampling, including the PIMH algorithm using an SMC
algorithm without resampling (i.e. sequential importance sampling), is bound to fail for all feasible values
of N when T is larger than, say, 17 (see the caption of Fig. 12). In contrast, Fig. 12 shows that the PIMH
algorithm using an embedded SMC algorithm with resampling at each step (as described in Section 2.2.1)
can cope with dimensions as large as T =103. In addition, Fig. 12 also suggests that increasing N as O.T/
is sufficient to stabilize the acceptance rate. I would be happy to hear the authors’ comments on whether
the behaviour of PIMH sampling in this simple scenario can be inferred from known results about SMC
methods regarding the rate of convergence of ẐN=Z as N increases.

J. Cornebise (Statistical and Applied Mathematical Sciences Institute, Durham) and G. W. Peters
(University of New South Wales, Sydney)
Our comments on adaptive sequential Monte Carlo (SMC) methods relate to particle Metropolis–Hastings
(PMH) sampling, which has acceptance probability given in equation (13) of the paper for proposed state
.θÅ, XÅ

1:T /, relying on the estimate

p̂θÅ .y1:T /=
T∏

n=1

1
N

N∑
k=1

wn.x
Å,k
1:n /:

Although a small N suffices to approximate the mode of a joint path space distribution, producing a
reasonable proposal for x1:T , it results in high variance estimates of p̂θÅ .y1:T /. We study the population
dynamics example from Hayes et al. (2010), model 3 excerpt, involving a log-transformed θ-logistic state
space model; see Wang (2007), equations 3(a) and 3(b), for parameter settings and Figs 13–15 for an
illustration of the algorithm’s behaviour. Particle Markov chain Monte Carlo (PMCMC) performance
depends on the trade-off between degeneracy of the filter, N , and design of the SMC mutation kernel.
Regarding the latter, we note the following.

(a) A Rao–Blackwellized filter (Doucet et al., 2000) can improve acceptance rates; see Nevat et al.
(2010).

(b) Adaptive mutation kernels, which in PMCMC methods can be considered as adaptive SMC pro-
posals, can reduce degeneracy on the path space, allowing for higher dimensional state vectors xn.
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Fig. 13. Sequence of simulated states and observations for the population dynamic log-transformed
θ-logistic model from Wang (2007), with static parameter θD .r, ζ, K/ under constraints K > 0, r < 2:69 and
ζ∈R (the state transition is fθ.xnjxn�1/DN .xnI xn�1 C r[1�{exp.xt�1/=K}ζ ], 0.01), and the local likelihood
is gθ.ynjxn/ D N .ynI xn, 0:04/, for T D 100 time steps): , generated latent state realizations; - - - - - - - ,
generated observations
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Fig. 14. Path of three sampled latent states (a) x2, (b) x37 and (c) x93, and of the sampled parameters
(d) r, (e) K and (f) ζ, over 100000 PMH iterations based on N D 200 particles by using a simple sampling–
importance resampling filter—the one-dimensional state did not call for Rao–Blackwellization: note also the
effect of the adaptive MCMC proposal for θD .r, ζ, K/, set up to start at iteration 5000, which is particularly
visible on the mixing of parameters K; the most noticeable property of the algorithm is the remarkable mixing of
the chain, in spite of the high total dimension of the sampled state;each iteration involves a proposal of .X1:T , θ/
of dimension 103
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Fig. 15. Convergence of the distribution of the path of latent states x1:T (note the change in vertical scale;
initializing PMH sampling on a very unlikely initial path does not prevent the minimum mean-square error
estimate of the latent states from converging; as few as 10 PMH iterations already begin to concentrate the
sampled paths around the true path (. . . . . . .), which is assumed here to be close to the mode of the pos-
terior distribution thanks to the small observation noise, with very satisfactory results after 20000 iterations):
(a) initialized PMH state for x1:T ( ); (b) average posterior mean path estimate for X1:T ( ), PMH
Markov chain iteration i D10 and N D200 particles; (c) average posterior mean path estimate for X1:T , PMH
Markov chain iteration i D20000 and N D200 particles

Adaption can be local (within filter) or global (sampled Markov chain history). Though currently
particularly designed for approximate Bayesian computation methods, the work of Peters et al.
(2010) incorporates into the mutation kernel of SMC samplers (Del Moral et al., 2006) the partial
rejection control (PRC) mechanism of Liu (2001), which is also beneficial for PMCMC sampling.
PRC adaption reduces degeneracy by rejecting a particle mutation when its incremental importance
weight is below a threshold cn. The PRC mutation kernel

qÅ
θ .xn|yn, xn−1/= r.cn, xn−1/

−1 min
{

1, Wn−1.xn−1/
wn.xn−1, xn/

cn

}
qθ.xn|yn, xn−1/

can also be used in PMH algorithms, where qθ.xn|yn, xn−1/ is the standard SMC proposal, and

r.cn, xn−1/=
∫

min
{

1, Wn−1.xn−1/
wn.xn−1, xn/

cn

}
qθ.xn|yn, xn−1/ dxn:

As presented in Peters et al. (2010), algorithmic choices for qÅ
θ .xn|yn, xn−1/ can avoid evaluation

of r.cn, xn−1/. Cornebise (2010) extends this work, developing PRC for auxiliary SMC samplers,
which are also useful in PMH algorithms. Threshold cn can be set adaptively: locally either at each
SMC mutation or Markov chain iteration, or globally based on chain acceptance rates. Addition-
ally, cn can be set adaptively via quantile estimates of pre-PRC incremental weights; see Peters et al.
(2010).

Cornebise et al. (2008) stated that adaptive SMC proposals can be designed by minimizing func-
tion-free risk theoretic criteria such as Kullback–Leibler divergence between a joint proposal in a
parametric family and a joint target. Cornebise (2009), chapter 5, and Cornebise et al. (2010) use
a mixture of experts, adapting kernels of a mixture on distinct regions of the state space separated
by a ‘softmax’ partition. These results extend to PMCMC settings.
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Drew D. Creal (University of Chicago) and Siem Jan Koopman (Vrije Universiteit Amsterdam)
We congratulate the authors on writing an interesting paper. They demonstrate how arguments from
Markov chain Monte Carlo (MCMC) theory can be extended to include algorithms where proposals are
made from the path realizations that are produced by sequential Monte Carlo (SMC) algorithms such
as the particle filter. As with all good ideas, this basic idea is simple and quite clever at the same time.
The implementation requires a particle filter routine, which is generally easy to code. Various MCMC
strategies such as Metropolis–Hastings steps can then be adopted to accept–reject paths proposed from
the discrete particle approximations that are created by the particle filter. The resulting particle MCMC
algorithms widen the applicability of SMC methods. The authors also provide a theoretical justification
for why the methods work. In practice for complex models, it may be easier to design an SMC algorithm
and to include it within an MCMC algorithm rather than design an alternative, perhaps more intricate
MCMC algorithm that is computationally less expensive.

The examples in Section 3 are interesting. The first example concerns a non-linear state space model
which is used to compare the new method with a more standard MCMC algorithm. A numerical exercise
reveals that the new method outperforms the other slightly. It should be noted that the model is intricate
since the corresponding filtering and smoothing distributions are multimodal. The second example is
the most interesting since other MCMC algorithms proposed in the literature can be tedious to imple-
ment. The difficulty arises because the transition density p{x.t/|x.t − 1/; θ}, with x.t/=σ2.t/ as given by
equations (16), is not known in closed form, making it difficult to implement a good MCMC algorithm.
The authors show convincingly that their methods are effective for filtering and smoothing. A minor
comment is that the time series dimensions for the simulated data sets .T = 400/ and for the Standard
& Poors 500 data (T = 1000) are rather short and atypical. It appears to confirm our suspicion that the
method is computationally time intensive, which is due to the repeated loops in the algorithm. However,
designing and coding the algorithm are easy anyway.

In the conclusion, the authors state that the performance of particle MCMC algorithms will depend
on the variance of the SMC estimates of the normalizing constants. Can they provide some discussion on
when practitioners may encounter problems such as this? For example, how does the dimension of the
state vector (or state space) affect the algorithm? This is particularly of interest in financial time series
where we would like to build multivariate volatility models for high dimensional data. Secondly, how does
the specification of the transition equation affect the estimates? For example, many economists specify
state space models with unobserved random-walk components.

Despite these somewhat critical but constructive questions, we have enjoyed reading the paper and we
are impressed by the results.

Dan Crisan (Imperial College London)
This is an authoritative paper which brings together two of the principal statistical tools for producing
samples from high dimensional distributions. The authors propose an array of methods where sequential
Monte Carlo (SMC) algorithms are used to design high dimensional proposal distributions for Markov
chain Monte Carlo (MCMC) algorithms. The following are some comments that perhaps can suggest
future research or improvements in this area.

Firstly the authors present not just the numerical verification of the proposed methodology but also
(very laudably) its theoretical justification. They make the point that the theorems that are presented in
the paper rely on relatively strong conditions, even though the methods have been empirically observed to
apply to scenarios beyond the conditions assumed. In particular, assumption 4 is a very restrictive condi-
tion that is rarely satisfied in practice. It amounts (virtually) to the assumption that the state space of the
hidden Markov state process is compact. The need for such an assumption is imposed by the preference
for a framework where the posterior distribution exhibits stability properties, as discussed in Del Moral
and Guionnet (2001). However, in recent years this assumption has been considerably relaxed. Le Gland
and Oudjane (2003) have introduced the idea of truncating the posterior distribution, which was further
exploited in Oudjane and Rubenthaler (2005) and in Crisan and Heine (2008) to produce stability criteria
under quite natural conditions. The theorems in the paper under discussion are likely to hold under the
same conditions as those contained, for example, in Crisan and Heine (2008), with proofs that will follow
similar steps.

Secondly, the authors concentrate on SMC algorithms where the resampling step is the multinomial
step. They make the point that more sophisticated algorithms have been proposed where the multinomial
resampling step can be replaced by a stratified resampling procedure and prove the results under conditions
that cover other SMC algorithms. However, the optimal choice for the resampling step is the tree-based
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branching algorithm that was introduced by Crisan and Lyons (2002). This algorithm has several opti-
mality properties (see also Künsch (2005) for additional details) and satisfies the conditions (assumptions
1 and 2) that are required by the theoretical results in the paper.

Thirdly, the trade-off between the average acceptance rate for the particle independent Metropolis sam-
pler and the number of particles that is used to produce the SMC proposal warrants further analysis. The
numerical results suggest some deterministic relationship between the two quantities, one that perhaps
holds only asymptotically. It would be beneficial to find this relationship and to see what it can tell us
about the optimal choice for distributing the computational effort between the SMC and the MCMC
steps.

David Draper (University of California, Santa Cruz)
I have two questions on Monte Carlo efficiency for the authors of this interesting paper.

(a) Has the authors’ methodology reached a sufficiently mature state that they can give us general advice
on how to use their methods to obtain the greatest amount of information per central processor unit
second about the posterior distribution under study (because this is of course the real performance
measure on which users need to focus), and if so what would that advice be? (The authors made a
start on this task in Section 3.1; it would be helpful to potential users of their methodology if they
could expand on those remarks.)

(b) People often measure Monte Carlo improvement in Markov chain Monte Carlo samplers by how
well a new method can drive positive auto-correlations (in the sampled output for the monitored
quantities, viewed as time series) down towards zero, but it is sometimes possible (e.g. Dreesman
(2000)) to do even better. Is there any scope in the authors’ work for achieving negative auto-
correlations in the Markov chain Monte Carlo output?

Richard Everitt (University of Bristol)
I congratulate the authors on this significant paper. My comments relate to the use of the marginal
variant of the algorithm for parameter estimation in undirected graphical models and, more generally, the
computational cost of the methods.

Let us consider the following factorization into clique potentials φ1:M on cliques C1:M of a joint proba-
bility density function over variables X1:T given parameters θ1:M :

pθ1:M .X1:T /= 1
Zθ1:M

M∏
j=1

φj.X∈Cj|θj/

where

Zθ1:M =
∫

X1:T

M∏
j=1

φj.X∈Cj|θj/ dX1:T :

As in a state space model, the variables X1:T are observed indirectly through observations y1:T of random
variables Y1:T , which are assumed conditionally independent given X1:T and are identially distributed as
Yi|X1:T ∼ g.·|X1:T /. Our aim is to estimate the unknown θ given the observations, ascribed prior p.θ/
by simulating from the posterior p.θ|y1:T /. It is well known that Gibbs sampling from p.θ, X1:T |y1:T / is
not feasible since the intractable normalizing ‘constant’ Zθ1:M must be evaluated when updating θ (other
standard approaches also fail for the same reason).

As an alternative, consider the direct application of a marginal particle Markov chain Monte Carlo
(PMCMC) move where, as in the paper, the proposal q.·|θ/ is used to draw a candidate point θÅ, the latent
variables X1:T are sampled using a sequential Monte Carlo (SMC) algorithm targeting pθÅ

1:M
.X1:T |y1:T /

(as, for example, in Hamze and de Freitas (2005)) and the move is accepted with the probability given in
equation (35). Note that (owing to the use of the SMC algorithm) this approach has the advantage that
at no point does Zθ1:M need to be evaluated directly. A similar approach may be used in the context of
MCMC updates on the space of graphical model structures.

The computational cost of PMCMC methods in general is likely to be high (particularly so in application
to the model above). Alleviating this through reusing particles from each run of the SMC algorithm seems
intuitively possible. Also, it is worth considering the implementation of PMCMC methods on a graphical
processing unit to exploit the parallel nature of the algorithm. The work of Maskell et al. (2006) on graphical
processing unit implementations of particle filters is directly applicable here (also see recent work by Lee
et al. (2009)).
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Andrew Golightly and Darren J. Wilkinson (Newcastle University)
We thank the authors for a very interesting paper. Consider a d-dimensional diffusion process Xt governed
by the stochastic differential equation

dXt =α.Xt , θ/ dt +√
β.Xt , θ/ dWt

where Wt is standard Brownian motion. It is common to work with the Euler–Maruyama approximation
with transition density fθ.·|x/ such that

.Xt+Δt |Xt =x/∼N{x+α.x, θ/Δt,β.x, θ/Δt}:

For low frequency data, the observed data can be augmented by adding m−1 latent values between every
pair of observations. For observations on a regular grid, y1:T = .y1, . . . , yT /′ that are conditionally inde-
pendent given {Xt} and have marginal probability density gθ.y|x/, inferences are made via the posterior
distribution θ, x1:T |y1:T by using Bayesian Markov chain Monte Carlo techniques. Owing to high depen-
dence between x1:T and θ, care must be taken in the design of a Markov chain Monte Carlo scheme. A
joint update of θ and x1:T or a carefully chosen reparameterization (Golightly and Wilkinson, 2008) can
overcome the problem. The particle marginal Metropolis–Hastings (PMMH) algorithm that is described
in the paper allows a joint update of parameters and latent data. Given a proposed θÅ, the algorithm can
be implemented by running a sequential Monte Carlo algorithm targeting p.x1:T |y1:T , θÅ/ using only the
ability to forward-simulate from the Euler–Maruyama approximation.

To compare the performance of the PMMH scheme with the method of Golightly and Wilkinson (2008)
(henceforth referred to as the GW scheme), consider inference for a stochastic differential equation gov-
erning Xt = .X1, t , X2, t /

′ with

α.Xt , θ/=
(
θ1X1, t −θ2X1, tX2, t
θ2X1, tX2, t −θ3X2, t

)
,

β.Xt , θ/=
(
θ1X1, t +θ2X1, tX2, t −θ2X1, tX2, t

−θ2X1, tX2, t θ2X1, tX2, t +θ3X2, t

)
:

This is the diffusion approximation of the stochastic Lotka–Volterra model (Boys et al., 2008). We anal-
yse a simulated data set of size 50 with θ= .0:5, 0:0025, 0:3/, corrupted by adding zero-mean Gaussian
noise. Independent uniform U.−7, 2/ priors were taken for each log.θi/. The GW scheme and the PMMH
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Fig. 16. Auto-correlation function of θ1 from the output of the GW scheme ( ) and PMMH schemes
with N D200 (-- - - - - - ), N D500 (. . . . . . .) and N D1000 (� - � - � - �)
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sampler were implemented for 500000 iterations, using a random-walk update with normal innovations to
propose log.θÅ/, with the variance of the proposal being the estimated variance of the target distribution,
obtained from a preliminary run. The PMMH scheme was run for N =200, N =500 and N =1000 particles
and, in all cases, discretization was set by taking m=5.

Computational cost scales roughly as 1:8:20:40 for GW:PMMH (N = 200:500:1000). For N = 1000
particles, the mixing of the chain under the PMMH scheme is comparable with the GW scheme; Fig. 16.
Despite the extra computational cost of the PMMH scheme, unlike the GW scheme the PMMH algorithm
is easy to implement and requires only the ability to forward-simulate from the model. This extends the
utility of particle Markov chain Monte Carlo methods to a very wide class of models where evaluation of
the likelihood is difficult (or even intractable), but forward simulation is possible.

Edward L. Ionides (University of Michigan, Ann Arbor)
The authors are to be congratulated on an exciting methodological development. An attractive feature of
this new methodology is that it has an algorithmic implementation in which the only operation applied to
the underlying Markov process model is the generation of draws from fθ.xn|xn−1/. This property has been
called plug and play (He et al., 2009; Bretó et al., 2009) since it permits simulation code, which is usually
readily available, to be plugged straight into general purpose software. I would like to add some additional
comments to the authors’ coverage of this aspect of their work.

The plug-and-play property has been developed in the context of complex system analysis with the
terminology equation free (Kevrekidis et al., 2004). For optimization methodology, the analogous term
gradient free is used to describe algorithms which are based solely on function evaluations. Plug-and-play
inference methodology has previously been proposed for state space models (including Kendall et al.
(l999), Liu and West (200l), Ionides et al. (2006), Toni et al. (2008) and Andrieu and Roberts (2009)). This
paper is distinguished by describing the first plug-and-play algorithm giving asymptotically exact Bayesian
inference for both model parameters and unobserved states.

We should expect plug-and-play approaches to require additional computational effort compared with
rival methods that have access to closed form expressions for model properties such as transition densities
or their derivatives. However, advances in computational capabilities and algorithmic developments are
making plug-and-play methodology increasingly accessible for state space models. The great flexibility in
model development that is permitted by the generality of plug-and-play algorithms is enabling scientists to
ask and answer scientific questions that were previously inaccessible (e.g. King et al. (2008)). The method-
ology that is developed here (and other approaches which inherit the plug-and-play property from the basic
sequential Monte Carlo algorithm) will benefit from further research into improvements and extensions of
sequential Monte Carlo methods that fall within the plug-and-play paradigm: reduced variance resampling
schemes are consistent with plug-and-play methods, but most other existing refinements are not.

Pierre Jacob (Centre de Recherche en Economie et Statistique and Université Paris Dauphine, Paris),
Nicolas Chopin (Ecole Nationale de la Statistique et de l’Administration Economique, Paris), Christian
Robert (Centre de Recherche en Economie et Statistique and Université Paris Dauphine, Paris) and
Håvard Rue (Norwegian University for Science and Technology, Trondheim)
This otherwise fascinating paper does not cover the calculation of the marginal likelihood p.y/, which
is the central quantity in model choice. However, the particle Markov chain Monte Carlo (PMCMC)
approach seems to lend itself naturally to the use of Chib’s (1995) estimate, i.e.

p.y/= p.θ/p.y|θ/
p.θ|y/

for any θ. Provided that the p.θ|x, y/ density admits a closed form expression, the denominator may be
estimated by

p.θ|y/=
∫

p.θ|x, y/p.x|y/ dx≈ 1
M

M∑
i=1

p.θ|x=xi, y/

where the xis, i=1, . . . , M, are provided by the MCMC output.
The novelty here is that p.y|θ/ in the numerator needs to be evaluated as well. Fortunately, each iteration

provides a Monte Carlo estimate of p.y|θ=θi/, where θi is the parameter value at MCMC iteration i. Some
care may be required when choosing θi; for example selecting the θi with largest (evaluated) likelihood may
lead to a biased estimator.
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We did some experiments to compare the approach described above with integrated nested Laplace
approximations (Rue et al., 2009) and nested sampling (Skilling (2006); see also Chopin and Robert (2010)),
using the stochastic volatility example of Rue et al. (2009). Unfortunately, our PMCMC program requires
more than 1 day to complete (for a number N of particles and a number M of iterations that are sufficient
for reasonable performance), so we cannot include the results in this discussion. A likely explanation is
that the cost of PMCMC sampling is at least O.T 2/, where T is the sample size (T =945 in this example),
since, according to the authors, good performance requires that N =O.T/, but our implementation may
be suboptimal as well.

Interestingly, nested sampling performs reasonably well on this example (reasonable error obtained in
1 h), and, as reported by Rue et al. (2009), the integrated nested Laplace approximation is fast (1 s) and
very accurate, but more work is required for a more meaningful comparison.

Michael Johannes (Columbia University, New York) and Nick Polson and Seung M.-Yae (University
of Chicago)
We would like to comment on a few aspects of the paper. First, for several years, macroeconomics has used
a related algorithm (e.g. Fernandez-Villaverde and Rubio-Ramerez (2005)) to estimate dynamic general
equilibrium models by using a random-walk Metropolis algorithm proposing new parameter values and
accepting or rejecting the draws via marginal likelihoods from sequential Monte Carlo (SMC) sampling.
This now quite large literature encountered a serious problem in models with more than a few parameters.
In these cases, Metropolis algorithms often converge very slowly, and the combination of slow convergence
and repeated iteration between SMC and Markov chain Monte Carlo (MCMC) sampling often requires
that algorithms run for days, even when coded efficiently in C++. This experience provides a caution-
ary note to those using these algorithms in high dimensions. In the authors’ defence, these problems are
extremely difficult, and the computationally expensive SMC–MCMC approach may be the only feasible
strategy.

Second, the authors consider learning σ and σx in the non-linear state space model

yt = |xt |α
20

+σwt ,

xt+1 =β1xt +β1
xt

1+x2
t

+β3 cos.1:2t/+σxvt ,

assuming α=2, β1 =0:5, β2 =25 and β3 =8. It is disappointing that all these parameters are constrained,
as a more realistic test of their algorithm would estimate all the unknown parameters.

The authors compare with an MCMC algorithm using single-state updating. We suggest two more
realistic competing algorithms. The first assumes α=2 and

(a) generates a full vector of latent states, x1:T , by using SMC sampling, accepting or rejecting these
draws via Metropolis updates and then

(b) updates the parameters by using p.θ|x1:T , y1:T /.

This algorithm exploits the fact that the conditional posterior, p.θ|x1:T , y1:T /, is a known distribution and
simple to sample. This algorithm would probably perform better than the current algorithm combining
SMC with random-walk Metropolis sampling.

The second algorithm is the approach of Johannes et al. (2007) that

(a) solely relies on SMC methods,
(b) uses slice variables to induce sufficient statistics,
(c) estimates all the parameters .α,β1,β2,β3,σ,σx/ for similar sized data sets and
(d) solves the sequential problem by approximating p.θ, xt |y1:t / for each time t.

Fig. 17 provides an example of the output.
The algorithm of Johannes et al. (2007) relies on similar SMC methods but is computationally simpler.

To obtain a sense of the computational demands, the current paper uses 60000 MCMC iterations and
5000 particles whereas we obtain accurate parameter estimates (verified via simulation studies), using one
run of 300000 particles, using roughly l/1000th of the computational cost. We would be interested in a
direct horse-race of these competing methods in this specification.

Finally, the approach in the paper can have attractive convergence properties under various assump-
tions, including assumption 4. We would like to ask the authors whether assumption 4 is satisfied in the
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Fig. 17. Posterior distribution and learning of the parameters in the non-stationary growth model (the particle
size is 300000): (a) α; (b) β1; (c) β2; (d) β3; (e) σ; (f) σx
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examples that are considered in the paper. In particular, does it hold for various signal-to-noise ratio
combinations of σ and σx?

Adam M. Johansen and John A. D. Aston (University of Warwick, Coventry)
We congratulate the authors on an exciting paper which combines the novel idea of incorporating sequen-
tial Monte Carlo proposals within Markov chain Monte Carlo samplers with a synthesis of ideas from
disparate areas. It is clear that the paper is a substantial advance in Monte Carlo methodology and is of
substantially greater value than a collection of its constituent parts.

However, one constituent which has received little attention in the literature seems to us to be interesting:
although it is computationally rather expensive to do so, equations (27)–(28) suggest that it is possible to
obtain samples which characterize the path space distribution well, at least in the case of mixing dynamic
systems when we are interested in marginal distributions of bounded dimension, albeit at the cost of
running an independent sequential Monte Carlo algorithm for every sample. In practice some reuse of
samples is likely to be possible.

Typically, such a strategy might be dismissed (perhaps correctly) as being of prohibitive computational
cost. However, in an era in which Monte Carlo algorithms whose time cost scales superlinearly in the
number of samples employed are common, might there be other situations in which this strategy finds a
role?

A rather naive approach to smoothing, for example, would be to employ an ensemble of independent
particle filters and to sample one trajectory from each independent filter. For simplicity, consider employing
a bootstrap filter in the univariate case, with fθ.xn|xn−1/=N .xn; xn−1, 1/ and gθ.yn|xn/=N .yn|xn, 1/. To
assess performance, consider the estimated covariance of Xn:n+1 (and the determinant of that covariance, to
provide a compact summary). Fig. 18 shows covariance estimates obtained by using a 100-filter ensemble,
each of 100 particles, a single particle filter of equal cost (using 10000 particles) and the exact solution
(Kalman smoothing). This illustrates the degeneracy and consequent failure to represent sample path
variability of a single filter adequately and contrasts it with the estimate obtained by using an ensemble
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of filters. Each of the Monte Carlo algorithms required approximately 30 s over 1000 time steps using
SMCTC (Johansen, 2009) and a 1.33-GHz Intel laptop.

Might it be possible to employ such a strategy to provide simple-to-implement algorithms with better
path space performance? Can the error ‖L.Xn:n+L ∈·|y1:T /−π.·/‖ be controlled uniformly for bounded L?

Anthony Lee and Chris Holmes (University of Oxford)
We congratulate the authors on a major contribution to practical statistical inference in a variety of models.
An important application is approximating the posterior distribution of static parameters in state space
models. The particle marginal Metropolis–Hastings (PMMH) algorithm is perhaps the simplest of the
algorithms introduced, relying only on the unbiasedness of the marginal likelihood estimator. Denoting
by y the observations, z the set of all auxiliary random variables used in the filter and θ the static parameters,
the likelihood estimator is a joint density p.y, z|θ/ satisfying

∫
Z

p.y, z|θ/ dz =p.y|θ/: .55/

An interesting feature of the sequential Monte Carlo class of methods is that the choice of auxiliary
variables z is flexible. For example, we can perform multinomial resampling in a variety of ways without
affecting condition (55). Let x1:T be the latent variables in the state space model. When xt is univariate,
sorting the particles before resampling as in Pitt (2002) but without interpolation gives an empirical distri-
bution function for particle indices F̂ .j/=Σj

i=1W
.i/
t that is identical to the empirical distribution function

for xt itself. We can then construct a Metropolis–Hastings Markov chain targeting p.θ, z|y/ by proposing
moves of the form .θ, z/→ .θ′, z/ and .θ, z/→ .θ, z′/. For the first type, this amounts to a use of common
random variables so that in the acceptance ratio

α=min
{

1,
p.y, z|θ′/p.θ′/q.θ′, θ/
p.y, z|θ/p.θ/q.θ, θ′/

}

the terms p.y, z|θ′/ and p.y, z|θ/ are positively correlated. We can therefore expect the resulting Markov
transition kernel to be closer to that of the true marginal Metropolis–Hastings algorithm on θ, suggesting
superior performance over standard PMMH algorithms.

We ran both a PMMH algorithm and this correlated variant CPMMH on a linear Gaussian state space
model with univariate latent variables xt and a single unknown parameter. We used an improper prior with
p.θ/∝1 and a random-walk proposal. Since we can compute p.y|θ/ for this model, we can also compute the
acceptance probabilities of the marginal algorithm and analyse how both algorithms move compared with
the marginal algorithm. In a 50000-step chain, the PMMH algorithm differed from the true marginal
algorithm 13065 times whereas CPMMH differed only 2333 times in terms of accepting or rejecting a
move. Fig. 19 shows the differences between the acceptance probabilities for both the PMMH and the
CPMMH algorithms against the marginal algorithm. Although CPMMH does not extend trivially to the
multivariate case, tree-based resampling schemes as in Lee (2008) that generalize the methodology in Pitt
(2002) give similar improvements.

Finally, many people at the meeting commented on the heavy computational burden of particle Markov
chain Monte Carlo methods. However, the emerging use of parallel architectures such as graphics cards
can alleviate this burden via parallelization of the particle filtering algorithm itself, as in Lee et al. (2009).

Simon Maskell (QinetiQ, Malvern)
This paper provides, to the sequential Monte Carlo (SMC) sampling specialist, a mechanism to perform
parameter estimation by using Markov chain Monte Carlo (MCMC) sampling. To the MCMC sampling
specialist, this paper offers a route to efficient proposals in very high dimensional problems. Both contri-
butions are significant in isolation. To achieve the two simultaneously is a significant achievement.

The paper’s approach is to extend the space of variables of interest to include auxiliary variables that
are necessarily involved in the algorithmic process of drawing samples from an SMC sampler. The tactic
is to extend the state space such that the problem of interest is expressed as a projection of some larger
problem (which is easier to consider) onto a smaller dimensional space. There are a number of such larger
problems that project onto the same smaller dimensional space. It is therefore surprising that the authors
focus on a relatively restrictive structure for their samplers that target the joint distribution of x1:T and
θ: the particle marginal Metropolis–Hastings sampler considers a sampler of the form q.θÅ|θ/q.xÅ

1:T|θÅ/
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and the particle Gibbs sampler considers a sampler that alternates between q.θÅ|x1:T / and q.xÅ
1:T|θ/. These

samplers therefore avoid the possibility of proposals of the form q.θÅ|θ/q.xÅ
1:T|θÅ, x1:T /.

It is natural to ask what such proposal distributions would offer (apart from more complex variants of
the MCMC acceptance ratios). SMC samplers are recursive algorithms, i.e. xt is sampled conditionally
on x1:t−1 for each t. As touched on in the paper, the statistical efficiency of SMC algorithms is coupled to
their ability to generate samples of xt from a proposal distribution that is a good approximation to the
target density. The optimal proposal distribution is only optimal in terms of its ability to exploit previous
samples (and data) to generate the current sample xt : the notion of optimality is intricately tied to the
recursive application of an SMC sampler. In the context of particle MCMC methods, SMC samplers are
still applied recursively, but we also have a previous sample of the entire trajectory, x1:T . This trajectory
encodes information about ‘future’ target distributions and samples that will turn out to be efficient in
hindsight. It therefore seems plausible that a different notion of an optimal proposal distribution is needed
for particle MCMC sampling and that this should include dependence on the previous sample of the
trajectory.

This paper seems likely to seed a unified research direction that facilitates a combined effort between
practitioners and researchers who are associated with both MCMC and SMC methods. Such extensions
can therefore be expected.

Lawrence Murray, Emlyn Jones, John Parslow, Eddy Campbell and Nugzar Margvelashvili
(Commonwealth Scientific and Industrial Research Organisation, Canberra)
We thank the authors for their work on what we agree is a very compelling approach to parameter esti-
mation in state space and other models. We have been investigating similar ideas in the context of marine
biogeochemistry, with encouraging results for a toy Lotka–Volterra predator–prey model (Jones et al.,
2009). Our approach uses random-walk Metropolis–Hastings steps in parameter space, with a particle
filter employed to calculate likelihoods for the Metropolis–Hastings acceptance term. It is essentially an
instance of the method described here as particle marginal Metropolis–Hastings (PMMH) sampling. The
approach does seem computationally expensive, and we observe some potential consistency problems in
the use of a particle filter to estimate likelihoods.

Biogeochemical models characterize the interaction of phytoplankton and zooplankton species and the
conserved cycle of nutrients such as nitrogen, carbon and oxygen through an ecosytem. They are generally
described by using ordinary differential equations, with our own formulation introducing stochasticity via
interaction terms at discrete time intervals. They are one specific case of a wide variety of physical–statis-
tical models obtained via the introduction of stochasticity to existing deterministic models in a Bayesian
hierarchical framework.

These models fall into a broad class where the transition density pθ.xn|xn−1/ is not available in closed
form. This precludes use of some of the advanced proposal and resampling techniques that are mentioned
by the authors, owing to the need to cancel the intractable transition density in the numerator and denom-
inator in expression (7). In particular, the optimal proposal pθ.xn|yn, xn−1/ is not available. We find the
iteration of a particle filter in the PMMH framework for these models to be very expensive computa-
tionally, mostly because of numerical integration of the ordinary differential equations with the limited
availability of these advanced techniques confounding the matter further.

We find it necessary to use many more samples for PMMH sampling than we would with the same
particle filter used only for state tracking, to deliver consistent likelihood estimates. Although a particle
filter may momentarily fail to track the state adequately at a particular time but then recover (e.g. in a
form of mild degeneracy where the effective sample size is low) the likelihood contribution at that time
will be unreliable. In the worst case, iterating the particle filter with the same parameter configuration
but different sample sets from the prior pθ.x1|y1/ can produce wildly different likelihood estimates in the
presence of such anomalies.

G. W. Peters (University of New South Wales, Sydney) and J. Cornebise (Statistical and Applied
Mathematical Sciences Institute, Durham)
This paper will clearly have a significant influence on scientific disciplines with a strong interface with
computational statistics and non-linear state space models. Our comments are based on practical expe-
rience with particle Markov chain Monte Carlo (MCMC) implementation in latent process multifactor
stochastic differential equation models for commodities (Peters et al., 2010), wireless communications
(Nevat et al., 2010) and population dynamics (Hayes et al., 2010), using Rao–Blackwellized particle filters
(Doucet et al., 2000) and adaptive MCMC methods (Roberts and Rosenthal, 2009).



330 Discussion on the Paper by Andrieu, Doucet and Holenstein

(a) From our implementations, ideal use cases consist of highly non-linear dynamic equations for a
small dimension dx of the state space, large dimension dθ of the static parameter and potentially
large length T of the time series. In our cases dx was 2 or 3, dθ up to 20 and T between 100 and 400.

(b) In particle Metropolis–Hastings (PMH) sampling, non-adaptive MCMC proposals for θ (e.g. tuned
according to presimulation chains or burn-in iterations) would be costly for large T and require
that N is kept fixed over the whole run of the Markov chain. Adaptive MCMC proposals such
as the adaptive Metropolis sampler (Roberts and Rosenthal, 2009) avoid such issues and proved
particularly relevant for large dθ and T.

(c) For intractable joint likelihood pθ.y1:T |x1:T /, we could design a sequential Monte Carlo (SMC)–
approximate Bayesian computation algorithm (see for example Peters et al. (2010) and Ratmann
(2010), chapter 1) for a fixed approximate Bayesian computation tolerance ", using the approxima-
tions
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with ρ a distance on the observation space and yk
n.S/∼gθ.·|xk

n/ simulated observations. Additional
degeneracy on the path space induced by the approximate Bayesian computation approximation
should be controlled, e.g. with partial rejection control (Peters et al., 2008).

(d) Particle Gibbs (PG) sampling could potentially stay frozen on a state x1:T .i/. Consider a state space
model with state transition function almost linear in xn for some range of θ, from which y1:T is
considered to result, and strongly non-linear elsewhere. If the PG samples θ.i/ in those regions of
strong non-linearity, the particle tree is likely to coalesce on the trajectory preserved by the condi-
tional SMC sampler, leaving it with a high importance weight, maintaining .θ.i+1/, x1:T .i+1//=
.θ.i/, x1:T .i// over several iterations. Using a PMH within PG algorithm would help to escape this
region, especially using partial rejection control and adaptive SMC kernels, outlined in another
comment, to fight the degeneracy of the filter and the high variance of p̂θ.y1:T /.

Ralph S. Silva and Robert Kohn (University of New South Wales, Sydney), Paolo Giordani (Sveriges
Riksbank) and Michael K. Pitt (University of Warwick, Coventry)
We congratulate the authors on their important paper which opens the way for a unified method for
Bayesian inference using the particle filter and should allow for inference for models which are difficult to
estimate by using other methods. To establish notation and to summarize the result that is relevant to our
discussion, let p.y|θ/ be the correct but intractable likelihood with p̂.y|θ/=f.y|θ, u/ its approximation by
the particle filter, where u is a set of latent variables. By Del Moral (2004),∫

f.y|θ, u/f.u/ du=p.y|θ/:

The authors show that this implies that f.θ|y/=p.θ|y/ so a Markov chain Monte Carlo simulation based
on the posterior f.θ, u|y/ gives iterates of θ from the correct marginal posterior p.θ|y/. Our own research
reported in Silva et al. (2009) applies the fundamental insight in the current paper to study the behaviour
of adaptive sampling schemes when the particle filter is used to obtain f.y|θ, u/ for state space models.
The two adaptive samplers that we consider are a three-component version of the adaptive random-walk
proposal of Roberts and Rosenthal (2009) and the adaptive independent Metropolis–Hastings proposal
of Giordani and Kohn (2008). Combining the particle filter with adaptive sampling is attractive because
f.y|θ, u/ is a stochastic non-smooth function of θ. Our results suggest the following.

(a) It is feasible to use adaptive sampling for the particle Markov chain Monte Carlo and in particular
particle marginal Metropolis–Hastings algorithm.
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(b) It is computationally efficient to obtain a good adaptive proposal because the cost of constructing
such a proposal is negligible compared with the cost of evaluating f.y|θ, u/ by the particle filter.

(c) A well-constructed proposal can be much more efficient than an adaptive random-walk proposal.
(d) Independent Metropolis–Hastings proposals are attractive because they can be easily run in parallel,

thus significantly reducing the computation time of particle-based Bayesian inference.
(e) When the particle filter is used, the marginal likelihood of any model is obtained in an efficient and

unbiased manner, making model comparison straightforward.

Miika Toivanen and Jouko Lampinen (Helsinki University of Technology, Espoo)
We congratulate the authors for introducing the idea of combining ‘ordinary’ Markov chain Monte Carlo
(MCMC) and sequential Monte Carlo (SMC) methodologies in a novel way, namely using SMC algo-
rithms for designing proposal distributions for MCMC algorithms. We wish to share briefly our own
experience on using particle Monte Carlo methods on a static problem, related to computer vision.

Consider having a few dozen feature points and a posterior distribution of their locations in a test image,
Owing to the combinatorial explosion, approximate methods are needed to compute the integrals that
involve the posterior distribution. The multimodality of the posterior distribution complicates the approx-
imation problem. Although MCMC methods can be efficient in exploring a single mode, the probability
for them to switch a mode during the sampling is low, especially if the modes are far apart. Although some
improvements to overcome this disadvantage exist, the population Monte Carlo (PMC) scheme offers a
much more natural approach.

PMC techniques are based on the idea of representing the posterior with a weighted set of particles.
Each particle can be considered as a hypothesis about the correct location of the feature set and the weight
reveals the goodness of the hypothesis. The particles are sampled from proposal distributions, which are
allowed to differ between the particles and iterations. Hence, heuristics can safely be incorporated to guide
the sampler towards the modes of the posterior, without jeopardizing the theoretical convergence issues. In
our implementation, the proposals are Gaussian distributions, which have the previous estimate as mean
value and whose variance decreases for particles with high posterior probability. Owing to the resampling,
the weakest hypotheses die, and the resulting particle set gives often a good representation of the posterior
distribution (Toivanen and Lampinen, 2009a,b).

Also SMC methods can be applied to sample the posterior, by updating the parameter vector incre-
mentally (Toivanen and Lampinen, 2009c; Tamminen and Lampinen, 2006). The previously sampled
components guide the sampler via the conditional prior distribution and the number of distinct modes
decreases as the parameter vector expands. However, because the resampling is not based on the whole
parameter vector, unlike in PMC methods, the method is prone to lead to a particle set representing a
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fallacious minor mode which in a marginal posterior is stronger than the main mode of the full posterior.
Thus, it might be interesting to test whether PMC, instead of SMC, methods could be combined with
MCMC methods in a fashion suggested by the authors, and whether it would improve the performance
in these kinds of problem.

Jonghyun Yun and Yuguo Chen (University of Illinois at Urbana—Champaign)
We congratulate the authors on successfully combining two popular sampling tools, sequential Monte
Carlo (SMC) and Markov chain Monte Carlo (MCMC) methods. We discuss two specific implementation
issues of particle MCMC (PMCMC) algorithms.

In PMCMC sampling, proposing a single sample at each iteration requires N particles. That means
running PMCMC algorithms for L iterations needs NL particles. If we can afford to generate only a fixed
number NÅ of particles, a practical question is how to balance between N and L under the constraint
that NL=NÅ. We did a simulation study on model (14)–(15) with known parameters σ2

V =10 and σ2
W =1.

Let NÅ =1000000. We simulated 100 sequences of observations y1:300 from the model. For each sequence,
four particle independent Metropolis–Hastings (PIMH) samplers with different combinations of N and
L were applied to estimate the states x1:300. The standard SMC method in Section 2.2.1 with 1000000
particles is also included in the comparison. The performance criterion is the root-mean-squared error
RMSE between the true xi and the estimates:
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Fig. 21. Comparison of the average RMSE for the PIMH sampler and the three methods that reuse
all particles: (a) PIMH1 (�, PIMH1; C, PIMH1-Reuse1; �, PIMH1-Reuse2; �, PIMH1-Reuse3); (b)
PIMH2 (�, PIMH2; C, PIMH2-Reuse1; �, PIMH2-Reuse2; �, PIMH2-Reuse3); (c) PIMH3 (�, PIMH3;
C, PIMH3-Reuse1; �, PIMH3-Reuse2; �, PIMH3-Reuse3); (d) PIMH4 (�, PIMH4; C, PIMH4-Reuse1; �,
PIMH4-Reuse2; �, PIMH4-Reuse3)
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RMSE=
{

T −1
T∑

i=1
.x̂i −xi/

2

}1=2

:

The average RMSE and acceptance rate from 100 simulations are reported in Fig. 20. According to Fig. 20,
PIMH sampling with a small N could perform worse than standard SMC sampling. Part of the reason may
be the low acceptance rate. Increasing N seems to improve the acceptance rate and the performance, even
though L decreases correspondingly, which may affect the convergence of the Markov chain. For each
combination of N and L, the acceptance rate becomes lower as the dimension T of the state x1:T grows.

Another practical issue is about reusing all particles. Two estimates which use all particles are suggested
in Section 4.6. We compared these two estimates with the original PIMH sampler on the same model and
the same four settings as before. Denote the two estimates in equations (38) and (39) as PIMH-Reusel
and PIMH-Reuse2 respectively. We also propose a new estimate, which is denoted by PIMH-Reuse3 (see
theorem 6 for the notation):

L∑
i=1

z̃Å.i/
N∑

k=1
WÅK

T .i/f{XÅk
1:T .i/}, z̃Å.i/= ẑN,Å.i/

/
L∑

i=1
Ẑ

N,Å
.i/: .56/

This estimate is based on the N weighted particles proposed at each iteration before the accept–reject step.
PIMH-Reuse3 can be used when there are no unknown parameters in the model, and its convergence
can be proved. The comparison of the average RMSE in Fig. 21 shows that PIMH-Reusel has almost the
same performance as PIMH-Reuse2, and both outperform the original PIMH sampler. The relationship
between PIMH-Reuse3 and the other methods is not so clear.

The authors replied later, in writing, as follows.

We thank the discussants for their very interesting comments.

What the users say
Perhaps the most important feedback that we have received is the confirmation by several discussants
(Belmonte and Papaspiliopoulos, Bhadra, Flury and Shephard, Cappé, Robert, Jacob and Chopin, and
Golightly and Wilkinson) that the approach is not only conceptually simple but also more importantly
that it is relatively easy to implement in practice and able to produce satisfactory results. We were par-
ticularly interested in the reported simulations and user experience of Golightly and Wilkinson. They
indicate that particle Markov chain Monte Carlo (PMCMC) methods can lead to performance that is
similar to that obtained with a carefully handcrafted (and possibly complex) algorithm and point to the
comparatively little effort that is required by the user in terms of design and implementation. Naturally,
except in situations where such implementational simplicity cannot be avoided, this ease comes at the
expense of ‘computational brutality’, which might currently deter or prevent some users from using the
approach (Chopin, and Flury and Shephard). However, as pointed out by Lee and Holmes, and Everitt,
recent advances in the use of cheap graphical processing units and other multicore computing machines
(such as game consoles) for scientific computing offer good hope that ever more complex problems can
be routinely attacked with PMCMC methods. We naturally realize that the notion of ‘difficult problems’
is not static and do not believe in black boxes and silver bullets: ultimately very difficult problems at the
frontier of what current technology can achieve will always require more thinking by the user. In relation
to this we are looking forward to seeing applications of PMCMC sampling in the context of approximate
Bayesian computations (Cornebise and Peters, and Peters and Cornebise) and general graphical models
(Everitt).

Correctness and sequential Monte Carlo implementations
For brevity and to ensure simplicity of exposition the algorithms that were presented throughout the paper
focus on some of the simplest implementations, and our discussion of general validity was confined to
Section 2.5 and the beginning of Section 4. Not surprisingly quite a few comments focus on this aspect.

Valid sequential Monte Carlo implementations
Although the design of efficient MCMC algorithms can be facilitated by the use of sequential Monte Carlo
(SMC) sampling as proposal mechanisms, the performance of the latter will naturally affect the perfor-
mance of the former and one might wonder what standard SMC improvement strategies are legitimate?
One can complement and summarize the rules of Section 2.5 and the beginning of Section 4 as follows. In
broad terms PMCMC algorithms are valid
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(a) when unbiasedness in the resampling step holds and this includes very general and popular schemes
(e.g. Chopin, Fearnhead and Crisan) and

(b) for all enhancement methods involving additional artificial intermediate distributions; examples
include the popular auxiliary particle filter approach (Pitt and Shephard, 1999) and resample–move
algorithms (Gilks and Berzuini, 2001) (in other words MCMC-within-SMC methods), but, also as
pointed out by Chen, the use of flexible resampling strategies.

It is worth mentioning here that the exchangeability property (assumption 2) is not needed for the
PMMH algorithm when only inference on θ is needed. Since writing the paper we have been working on
establishing that even more general resampling schemes lead to valid PMCMC algorithms. Of particular
interest are adaptive resampling schemes, which usually reduce the number of times that resampling is
needed. It has been empirically observed in the literature dedicated to SMC algorithms that such schemes
might be beneficial, and we expect this to carry on to the PMCMC framework (see the discussion below
on the influence of the variability of γ̂N.θ/ (or Ẑ

N
) on the performance of PMCMC algorithms as well as

the discussion of Fearnhead concerning the particle Gibbs (PG) sampler). It is also possible to adapt the
number N of particles within the SMC step, which might be for example of interest to moderate the effect
of outliers discussed by Murray, Jones, Parslow, Campbell and Margvelashvili.

Large state spaces
As pointed out by several discussants (Girolami, and Creal and Koopman) the design of efficient proposal
distributions for the importance sampling stage of the SMC algorithm might be difficult in situations
where the dimension of X is large. It can be shown on simple examples that such a penalty will typically be
exponential in the dimension (consider for example Cappé’s example). However, it is possible in this case
to introduce subsequences of intermediate distributions bridging for example πn and πn+1, e.g. Del Moral
et al. (2006) and Godsill and Clapp (2001). This offers the possibility of employing well-known standard
MCMC-type strategies that are well suited to high dimensional set-ups to update sub-blocks of the state
vector between two particular distributions πn and πn+1. An alternative strategy consists of updating the
state components one at a time by using conditional SMC updates.

General proposals for particle Metropolis–Hastings algorithms
Whereas the PG sampler bypasses the need for the design of a proposal distribution for θ the particle
marginal Metropolis–Hastings (PMMH) algorithm requires such a design, which might not always be
obvious as pointed out by Girolami, and Silva, Kohn, Giordani and Pitt.

As pointed out by Maskell, and Robert, Jacob, Chopin and Rue the degree of freedom that is offered by
the choice of proposal of the PMMH step, or indeed a particle independent Metropolis–Hastings (PIMH)
step, might turn out to be an opportunity which needs to be further explored. Dependence of proposals
on previous particle populations is definitely an option (Everitt, and Robert, Jacob, Chopin and Rue)
and might be beneficial to calibrate proposal distributions, but also to reduce the variability of acceptance
probabilities. Note, however, our remark on the validity of recycling strategies in such a scenario at the
very end of Appendix B.5. The work of Lee and Holmes offers an alternative variance reduction strategy
of the acceptance probability for some situations.

Another natural solution consists of using adaptive MCMC algorithms (Andrieu and Thoms, 2008).
Silva, Kohn, Giordani and Pitt report some results in this direction and in particular report better perfor-
mance of the adaptive independent MH algorithms compared with that of a particular implementation of
the AM algorithm (Haario et al., 2001; Roberts and Rosenthal, 2007). A further interesting comparison
might involve robust versions of the AM algorithm described in Andrieu amd Thoms (2008). Finally
it is worth mentioning the complementary and competitive method of Ionides et al. (2006) to compute
maximum likelihood estimates of the static parameter θ, which could be used as a useful stepping stone
towards Bayesian inference in very difficult situations.

Smoothing
The smoothing approaches that were described by Whiteley (and hinted at by Godsill) and Johansen and
Aston are very promising developments. The first approach is in the vein of existing ‘particle smoothing’
approaches which allow one to exploit the information that is gathered by all the particles generated by
a single SMC procedure within the PMCMC framework. Its interest is intuitively evident in the case of
the PG in the light of Fearnhead’s discussion, but we expect such a smoothing procedure also to have a
positive effect beyond this special case. This might for example improve the quality of samples {X1:P .i/}
that are produced by the PMMH algorithm and suggests further improvements to our suggested recycling
strategies. The second approach of Johansen and Aston, which was suggested in a non-PMCMC frame-



Discussion on the Paper by Andrieu, Doucet and Holenstein 335

work, consists of replacing a single SMC sampler using KN particles with K independent SMC samplers
using N particles, which amounts to effectively replacing π̂KN.dx/ with

π̌KN
.dx/= 1

K

K∑
k=1

π̂N
k .dx/

and use a stratified sampling strategy to sample K paths. As illustrated by Johansen and Aston, reduc-
ing particle interaction might be beneficial when smoothing is of interest. Adaptation of this idea to the
PMCMC framework seems possible and raises numerous interesting theoretical and practical questions.
This strategy, as well as that described earlier, might address the issue that was raised by Fearnhead
concerning the particle depletion phenomenon for initial values.

Performance and the choice of N: from theory to practice
The choice of the number N of particles is a difficult, but central, issue which is paramount to the good
performance of PMCMC algorithms. This question is made even more difficult when considering the
optimum trade-off between N and L for fixed computational resources, and a credible and generally valid
answer to this question is beyond our current understanding.

Dependence on N of the performance of the PMCMC algorithms that were considered in the paper
takes two different forms, at first apparently unrelated. It is first important to recall the fact that current
PMCMCs can be thought of as being ‘exact approximations’ of idealized algorithms, which might or
might not turn out to be ideal. It is indeed possible to construct examples, which are not unrelated to
reality, for which the idealized algorithm is slower than its PMCMC version, suggesting that increasing
N might not improve performance indefinitely, if at all. This partly answers Chopin’s questions related
to Rao–Blackwellization and the N versus N +1 issue. Some understanding of the idealized algorithm is
therefore necessary, and we shall assume below that this algorithm is a worthy approximation.

For the PMMH or PIMH step the variability of γ̂N.θ/ (or ẐN/ will determine how statistically close
its transition probability is to that of the idealized algorithm, and as a result some of its performance
measures. In the case of the PG, dependence of the performance on the variability of γ̂N.θ/ is less obvious,
but it seems to be governed by the coalescence structure of particle paths, as discussed by Fearnhead and
observed by Whiteley.

In relation to this discussion, residual resampling will outperform multinomial resampling (Chopin)
when closeness to the marginal algorithm is considered. Closeness to the marginal algorithm, when
achieved, also suggests how the proposal distribution of θ in the PMMH should be adjusted: a random-
walk Metropolis step should be tuned such that its acceptance probability is of the order of 0.234 etc. Some
results illustrating the effect of N on the performance of the MCMC algorithm can be found in Andrieu
and Roberts (2009).

The theoretical results of Section 4 do not unfortunately provide us with precise values but with bounds
on rates of convergence as a function of both N and P (or T ). Although we believe, and agree with Crisan,
that such results can be established under weaker assumptions, we doubt that more practical (and suffi-
ciently general) results can be obtained. We hence doubt that we can ever answer Draper’s question, which
remains largely unanswered even for standard MCMC algorithms. We find it comforting to see that the
experiments of Fearnhead, Cappé and Chen indicate that the main conclusion of the theoretical results,
i.e. that N should scale linearly with P for ‘ergodic’ models, seems to hold for quite general scenarios.
We were puzzled by the extremely positive results obtained by Belmonte and Papaspiliopoulos for the
PG sampler. We note that beyond their explanatory power these results suggest, possibly manual, ways
of choosing N by monitoring, for example, the evolution of the variance of normalizing constants as a
function of N. Naturally such nice ergodicity properties do not hold for numerous situations of interest,
such as models for which components of the state evolve in a quasi-deterministic manner. This includes
the class of dynamic stochastic equilibrium models; see Fernandez-Villaverde and Rubio-Ramirez (2007)
and Flury and Shephard (2010). This lack of ergodicity of the model probably explains the reported slow
convergence of the PMMH algorithm in the scenarios that were mentioned by Johannes, Polson and Yae.
As acknowledged in Flury and Shephard (2010), any SMC-based method will suffer from this problem and
it is expected that N will scale superlinearly with T in such scenarios. Note, however, that, in principle, the
PMCMC framework allows for the use of standard off-the-shelf MCMC remedies, e.g. tempering ideas
which might alleviate this issue by introducing bridging models with improved ergodicity.

Ideally we would like the choice of N to be ‘automatic’, in particular for the PMMH and PG algorithms.
Indeed, as suggested by the theoretical result on the variance, different values of θ might require different
values of N to achieve a set precision. Designing such a scheme which preserves π.θ, x1:P / as invariant
distribution of the MCMC algorithm proves to be a challenge. However, adaptation within the SMC
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algorithm can be achieved through look-ahead procedures and by boosting the number of particles locally
when necessary. This can help to prevent the problems that were described by Murray, Jones, Parslow,
Campbell and Margvelashvili, where a small number of outliers can have a serious effect on the estimate
of the normalizing constant or marginal likelihood and hence the PMCMC procedure.

Unbiasedness versus sampling
Several authors (Flury and Shephard, Łatuszyński and Papaspiliopoulos, Roberts, and Silva, Kohn,
Giordani and Pitt) stress the unbiasedness of γ̂N.θ/ (or ẐN ) that is produced by an SMC algorithm
as being the basic principle underpinning the validity of the PMMH algorithm, in the spirit of Beaumont
(2003), Andrieu and Roberts (2009) and Andrieu et al. (2007). This is indeed one of the two ways in which
we came up with the PMMH algorithm initially in the course of working on two separate research projects.
The other perspective, favoured in our paper, is that of ‘pseudosampling’, which in our view goes beyond
unbiasedness (in the spirit of the ‘pseudomarginal’ approach) and is in our view fertile. Indeed although,
in the context of the PMMH algorithm, the pseudomarginal perspective is appropriate when sampling
from π.θ/ is all that is needed, it is not sufficient to explain that it is possible to sample from π.θ, x1:P /
using the same output from the SMC step. We do not think that the PG, of which the conditional SMC
update is the key element, could have emerged without this perspective. It is in fact rather interesting to
re-explain what the conditional SMC update achieves in the simple situation where the target distribution
is π.x1:P / and P =1. In this situation, the extended target distribution of the paper takes the particularly
simple form (we omit the subscript 1 to simplify the notation)

π̃N.k, x1:N/= 1
N
π.xk/

N∏
j=1,j 	=k

q.xj/:

A Gibbs sampler to target this distribution consists, given xk, of sampling according to the two following
steps:

(a) π̃N.x1:N\{k}|k/=ΠN
j=1,j 	=k q.xj/ and

(b) π̃N.l|x1:N/,

which by standard arguments leave π̃N.k, x1:N/ invariant. Step (a) is a trivial instance of the conditional
SMC update whereas step (b) consists of choosing a sample in x1:N according to the empirical distribution

π̂N.dx/=
N∑

i=1

π.xi/=q.xi/
N∑

j=1
π.xj/=q.xj/

δxi .dx/:

Note the similarity of this update with the standard importance sampling–resampling procedure. The
remarkable feature here is that whenever xk ∼π then so is xl ∼π, owing to the aforementioned invariance
property. In other words the conditional SMC update followed by resampling can be thought of as being
an MCMC update leaving π invariant. Unbiasedness seems to be a (happy) by-product of the structure of
π̃N and the proposal distributions used, since it can be easily checked that

π̃N.k, x1:N/=q.k, x1:N/
N∑

j=1

π.xj/

q.xj/
,

for q.k, x1:N/=wk ΠN
j=1 q.xj/ and wk ∝π.xk/=q.xk/, ΣN

k=1 wk =1.
The PIMH and PMMH algorithms take advantage of this unbiasedness property but as illustrated above

the structure of π̃N.k, x1:N/ offers other useful applications. One interesting application is described in the
paper: assume that P is so large that the number N of particles to obtain a reliable SMC step is prohibitive,
probably at least of the order of P. Then updating large sub-blocks of x1:P is a tempting solution. In the light
of the discussion above, the conditional SMC update offers the possibility of targeting π.xa:b|x1:P\a:b/ for
1�a�b�P . Assuming for notational simplicity here that b=P and a>1, if x1:P ∼π, then .x1:a−1, x′

a:P /∼π
once the update above has been applied to xa:P . Similarly the conditional SMC algorithm can be used in
cases where the dimension, say m, of X is large in order to update, for example, π{x1:P .l/|x1:P .1 : m\{l}/}
for l=1, . . . , m:

Using sequential Monte Carlo methods with Markov chain Monte Carlo moves
As mentioned in Section 2.2.2 and by Johannes, Polson and Yae, an alternative to PMCMC methods
consists of using SMC methods with MCMC moves (Fearnhead, 1998; Gilks and Berzuini, 2001). These
methods are not applicable in complex models such as the stochastic volatility model in Section 3.2, but,
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when applicable, seem at first appealing. They are particularly elegant in scenarios where p.θ|x1:T , y1:T /
depends on x1:T , y1:T only through a set of fixed dimensional statistics and have received significant atten-
tion since their introduction and development over a decade ago; see for example Andrieu et al. (1999,
2005), Fearnhead (1998, 2002), Storvik (2002) and Vercauteren et al. (2005). Despite their appeal these
well-documented methods are widely acknowledged to be rather delicate to use, owing to the so-called
path degeneracy phenomenon and the fact that a good initialization distribution for θ seems paramount
because of the lack of ergodicity of the system. In fact such techniques rely implicitly on the approximation
of p.x1:T |y1:T / and it can be observed empirically that the algorithm might converge to incorrect values and
even sometimes drift away from the correct values as the time index T increases; see for example Andrieu
et al. (1999, 2005).

As a consequence we would recommend extreme caution when using such techniques, whose interest
might be to provide a quick initial guess for the inference problem at hand. Assessing path degeneracy is
certainly essential to evaluate the credibility of the results. A simple proxy to measure degeneracy consists
of monitoring the number of distinct particles representing p.xk|y1:T / for various values of k ∈{1, . . . , T}
(preferably low values). If this number is below a reasonable number, say 500, then the particle approxi-
mation of p.θ, x1:T |y1:T / is most probably unreliable.

Johannes, Polson and Yae propose to reconsider the example that was discussed in Section 3.1 and
to estimate the parameters .α,σ,β1,β2,β3,σx/. They use Gibbs steps within a bootstrap particle filter to
update θ := .σ,β1,β2,β3,σx/ and a slice sampler to update α. As we do not have the details of their slice
sampler, we shall limit ourselves to the estimation of p.θ, x1:T |y1:T / by using the PG sampler. We considered
their scenario and simulated T =100 data points by using the parameters that Johannes, Polson and Yae
used and we set informative priors approximately similar to theirs by checking the width of their posteriors
at time n= 0. In this context, Johannes, Polson and Yae used 300000 particles for the particle filter with
Gibbs moves and argue, on the grounds of the simulations that were discussed at the end of Section 3.1,
that PMCMC methods would require l000 times more computation to perform inference in this scenario.
We want to reassure them and the readers that this is not so. We used N = 5000 particles at the end of
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Fig. 22. Approximations of the marginal posterior distributions of (a) σx, (b) σ, (c) b1, (d) b2 and (e) b3
obtained by using 12000 PG iterations with 1000 burn-in
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Section 3.1 because we addressed a much more difficult scenario where T = 500,σ= 1 and σx = √
10,

i.e. the data set was five times larger and we used the bootstrap filter in a very unfavourable scenario
where the likelihood of the observations is peaked and the noise of the dynamic diffuse. This is in
contrast with the scenario that is considered by Johannes, Polson and Yae where σ= √

10 and σx = 1,
i.e. the likelihood is fairly diffuse and the bootstrap filter and conditional bootstrap filters can provide
good proposals for a number of particles as small as 150, which is in agreement with Fig. 3 of the paper.
Moreover our PG sampler samples only .N − 1/T random variables Xn and one set of parameters
.σ,β1,β2,β3,σx/ per MCMC iteration whereas the particle filter using Gibbs moves needs to sample
NT random variables .Xn,σ,β1,β2,β3,σx/. As a result, for the computational complexity of using the
bootstrap filter with Gibbs moves for N =300000, we can run the PG sampler for 12000 iterations using a
conditional SMC sampler using 150 particles, which is more than sufficient in this context. The MATLAB
program runs in 7 min on a desktop computer. Fig. 22 displays the results. We ran many realizations
initialized with this very informative prior and the algorithm consistently returned virtually identical
results. Using vague priors for all parameters, we observed that poorly initialized PG samplers can some-
times become trapped in some modes (and we conjecture that this might be so even for the ‘exact’ Gibbs
sampler) but also manages to escape, in which case the results are very similar, and stable.

For the same data set and the same informative prior, we ran 10 runs of the bootstrap filter with Gibbs
steps for N =100000 particles. For some parameters, the results were quite similar among runs. However,
we also observed significant variability in the estimates as illustrated in Fig. 23. As expected this variance
increases with time as a result of the path degeneracy phenomenon. Using vague priors for all parameters,
the procedure appeared unable to produce sensible approximations of the posterior.

We conjecture that the variance of the approximation error of p.θ, x1:T |y1:T / increases superlinearly with
T for such algorithms.
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Fig. 23. Estimates of (a) E.σxjy1:n/ and (b) E.b2jy1:n/ for nD1, . . . , 100 and 10 different runs of the bootstrap
filter with Gibbs steps using N D100000 particles
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Some past and future work
As mentioned in Section 5.1 of our paper and as recalled by Godsill and Johannes, Polson and Yae, a
version of the PMMH algorithm based on the bootstrap filter has been previously proposed as a natural
heuristic to sample approximately from p.θ|y1:T ) (and not p.θ, x1:T |y1:T )) by Fernandez-Villaverde and
Rubio-Ramirez (2007). As discussed earlier, beyond the (non-trivial to us) proof that this approach is in
fact exact, we hope that we have demonstrated that the PMMH algorithm is only a particular case of a
more general and useful framework which goes far beyond the heuristic. As pointed out in Section 5.1, the
PMCMC framework encompasses the MTM algorithm of Liu et al. (2000) and the configurational-based
Monte Carlo update of Siepmann and Frenkel (1992). These connections, which might not be obvious
at first sight (Cappé), are detailed in Andrieu et al. (2010), where other interesting developments are also
presented.
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