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Bayesian Deconvolution of Noisy Filtered Point
Processes

Christophe Andrieu, Éric Barat, and Arnaud Doucet

Abstract—The detection and estimation of filtered point
processes using noisy data is an essential requirement in many
seismic, ultrasonic, and nuclear applications. In this paper, we
address this joint detection/estimation problem using a Bayesian
approach, which allows us to easily include any relevant prior
information. Performing Bayesian inference for such a complex
model is a challenging computational problem as it requires the
evaluation of intricate high-dimensional integrals. We develop
here an efficient stochastic procedure based on a reversible jump
Markov chain Monte Carlo method to solve this problem and
prove the geometric convergence of the algorithm. The proposed
model and algorithm are demonstrated on an application arising
in nuclear science.

Index Terms—Bayesian methods, deconvolution, model selec-
tion, reversible jump MCMC.

I. INTRODUCTION

NUMEROUS phenomena arising in a variety of fields
of science involve isolated-in-time events occurring at

random instants. Typical examples include the study of traffic
processes, queuing processes, neuronal electrical activity,
seismic phenomena, and radioactivity, among others. Point
processes provide a suitable representation for these highly dis-
continuous phenomena [24]. Unfortunately, in many cases, the
point processes cannot be directly observed as they are filtered
and corrupted by observation noise [7], [10], [15], [17], [20],
[24]. Although the relevant information is typically contained
in the point processes, this information is degraded, thereby
resulting in a difficult detection/estimation problem. This is
the case of the application addressed in this paper (see Section
III). These difficulties have led many researchers to investigate
various methods to solve this complex inverse problem.

One should distinguish between point processes that take
their values in discrete and continuous sets. The deconvolution
of discrete point processes has been extensively studied by
researchers since the mid-1980s, with particular emphasis on
Bernoulli–Gaussian type processes [7], [10], [17], [20]. In
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this framework, optimal deconvolution mainly boils down to
solving a combinatorial optimization problem. Nevertheless,
discrete point processes often model approximations of real
phenomena that are continuous by nature. When considering
continuous modeling, the point process deconvolution problem
appears more clearly as a very complex model selection
problem. The oldest and most popular detection method for
filtered point processes is probably based on the matched filter
[19]. This method may perform poorly when the impulse re-
sponse depends on a stochastic parameter and/or when several
pulses overlap. More recently, classical statistical methods
have been applied to solve this model selection problem,
using the Akaike information criterion (AIC) [1] or minimum
description length (MDL) [22]. This is the approach proposed
in [16] and [18] for related deconvolution problems. In practice,
it requires maximum likelihood (ML) parameter estimation
and the evaluation of the criterion for each possible model.
Subsequently, the best scoring model is selected. However,
this approach requires reliable ML procedures and does not
appear efficient as soon as the problem to be solved is complex.
When state-space modeling is available, optimal filtering and
smoothing approaches have been proposed. Unfortunately,
filtering and smoothing of the process require solving complex
stochastic differential equations for which there is no satisfac-
tory approximate numerical solution (see, for example, [24]
and references therein).

Here, we adopt a continuous-time model that is a more accu-
rate representation of the physical phenomena under considera-
tion. To address the detection/estimation problem, we follow a
full Bayesian approach where not only the unknown parameters,
including the locations of the events and their amplitudes, but
also their number are regarded as random with given prior dis-
tributions. This framework proves to be very flexible and suit-
able for the modeling of uncertainty concerning physical phe-
nomena. Furthermore, the Bayesian framework allows us to ad-
dress the problem of model selection in a simple and consistent
way as the prior information available for any parameter of the
model is taken into account in the model selection process. De-
spite its many theoretical advantages, the main problem of the
Bayesian approach is that it requires the evaluation of high-di-
mensional integrals that do not admit any closed-form analytical
expressions. In some cases, for example under the assumption
of a low intensity rate of the underlying point process [15], it is
possible to develop tractable forms of the likelihood by means
of suitable analytical approximations. These approximations are
difficult to quantify and are not valid in the interesting cases
where the number of available data is small or overlapping due
to high intensity events occurs. If one wants to perform Bayesian
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inference in these important cases, it is necessary to numeri-
cally approximate these integrals. To evaluate the joint poste-
rior distribution of the number of pulses and their parameters,
we propose a flexible and efficient stochastic algorithm based on
reversible jump Markov chain Monte Carlo (MCMC) methods
[13]. MCMC methods are powerful stochastic algorithms that
have revolutionized applied statistics over the last decade; see
[6] and [27] for some reviews.

The paper is organized as follows. In Section II, the filtered
point process model is presented, and the detection/estima-
tion objectives are specified. In Section III, we describe our
real-world application and the Bayesian model motivated
by physical considerations [4]. In Section IV, we detail the
Bayesian computation. We recall briefly the basics of MCMC
algorithms and then describe an algorithm that allows us to
solve the problem addressed. The geometric convergence of
this algorithm is established. In Section V, we demonstrate the
performance of the model and algorithm on real data. Finally,
some conclusions are drawn in Section VI. Appendix A con-
tains the notation used in the paper. The proof of convergence
of the algorithm is given in Appendix B.

II. FILTERED POINT PROCESSPROBLEM

A. Problem Statement

We assume that the continuous time observations
, where is the observation time, can be

modeled by one of the following continuous-time models :

These models correspond either to noise only
( ) or to the superposition of pulses

corrupted by noise ( ). The im-
pulse response of the system depends on the possibly
random parameters called the marks [24]. The

with for are the occur-
rence times of the underlying point process, andis random.
In practice, the only available data are regularly sampled
observations of real data samples , where

is the sampling period. The elements of may then
be represented by different models

and where . Given the data set , our ob-
jective is to determine the number of pulsesand estimate the
associated parameters .

B. Bayesian Detection/Estimation Aims

We follow a Bayesian approach where the unknownand the
set of unknown parameters, say, are regarded as being drawn

from an appropriate prior distribution . This prior dis-
tribution reflects our degree of belief on the relevant values
of the parameters [5]. The Bayesian inference ofand is
based on the joint posterior distribution ob-
tained from Bayes’ theorem. Our aim is to estimate this joint
distribution from which, by standard probability marginaliza-
tion and transformation techniques, one can “theoretically” ob-
tain all posterior features of interest. In particular, it allows us
to evaluate the posterior model probability , which
can be used to perform model selection by selecting the model
order as . In addition,
it allows us to perform parameter estimation by computing, for
example, the conditional expectation . How-
ever, it is usually impossible to obtain these quantities analyti-
cally, and one has to resort to numerical methods; see Section
IV.

III. PROBLEM IN RADIATION MEASUREMENTS

We focus here on a complex problem arising in nuclear sci-
ence. Nevertheless, we point out that the proposed methodology
can be easily adapted to many other applications where noisy
filtered point processes arise.

A. Physical Phenomenon and Objectives

The physical phenomenon can be briefly described as fol-
lows. Neutrons are impinging onto a Si(Li) sensor, i.e., a sili-
cium (in a lithium network) sensor, and extract electrons from
the medium. An electrical field attracts the electrons toward
the anode and, thus, creates an electric current. Neutroncreates
a current with intensity , which we assume constant with un-
known starting time . This current excites a resistor-capacitor
(RC) circuit and is null after a random finite time. Note that
from physical considerations, we knowa priori that cannot
exceed a value . This current is corrupted by an additive
electronic noise.

Based on the output signal, the objectives of physicists are to
detect these particles and to accurately estimate the associated
quantities and to perform spectroscopy.

B. Model of the Observations

After standard manipulations, it can be shown that the re-
sponse of the RC circuit to a constant step of lengthand am-
plitude is of the form

where the characteristic time constant RC of the circuit is
known. The process is assumed to be corrupted by an additive
white Gaussian noise due to the electronic
equipment. In components vector–matrix form, we have

(1)

where we denote as the matrix
,

which thus does not depend on the amplitudes ,

and T, T,
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T, T.
Our aim is to determine and estimate the parameters

T in a Bayesian framework. We will also

use the notation T.

C. Prior Distributions

We now specify the prior distributions. There is a natural hi-
erarchical structure to this setup [13], which we formalize by
modeling the joint distribution of all variables as

where
prior model probability conditional on
some hyperparameter [5];
parameter prior conditional on and ;
hyperparameter prior distribution, which
will be described later on;
likelihood, which does not depend on.

From the model given in Section III-B, the likelihood is

T

For the conditional distribution of the parameters, we assume
the following structure:

where is a scale parameter assumed to be distributed
according to a conjugate inverse-Gamma prior distribution

[11]. When and ,
we obtain Jeffreys’ uninformative prior [5]. For

, we introduce the following prior distribution:

T

(2)

where T for , and we adopt the following

conventions for : T and .
will be described later. The prior probability model distribu-

tion is a truncated Poisson distribution of parameter;
therefore, . Conditional upon , the arrival times
and durations are assumed uniformly distributed on

, being given by the physics of the phenomenon
[4]. Finally, conditional upon , the amplitudes are as-
sumed zero-mean Gaussian with covariance . This prior
can be obtained using a maximum entropy principle and was
motivated by Zellner in [28]. Note that this prior distribution is
invariant by rescaling of the observations. Proportionality in (2)
comes from the fact that . The terms and can
be, respectively, interpreted as an expected signal-to-noise ratio

and the expected number of pulses and, if considered as random
themselves, will lead to robust estimation.

The prior distribution for the hyperparameteris now spec-
ified. The values of these hyperpriors could be fixed by the user
if prior information was available. However, we chose here to
include these hyperparameters in the estimation and thus assign
them with prior distributions. This is the approach adopted, for
example, in [14], which proves to be robust in practice. As
is a scale parameter, we ascribe a vague conjugate prior density
(the variance is infinite [5]) to it
and , and we apply the same method toby setting an
uninformative conjugate prior [5]

.
From the description of the model given above, the param-

eter space is , where can be written as a finite
union of subspaces , , and

with

for and1 . By convention,
, and we denote .

Remark 1: Note that other priors could be used to describe
the physical phenomenon, depending on the prior knowledge
available. It could be possible, for example, to model more com-
plex nonhomogeneous point processes; see, for example, [3] for
a scenario where the point process is not convolved. It could be
possible to take other priors on the marks as well [24].

D. Integration of the Nuisance Parameters and

The proposed Bayesian model allows for the integration of
the so-called nuisance parametersand and, subsequently,
to obtain an expression of up to a
normalizing constant. Indeed Bayes’ theorem yields

T

T

(3)

with

T T and
T (4)

that do not depend on . The integration of (normal distri-
bution) and then of (inverse-Gamma distribution) yields

T

1The following constraintk < T is added because otherwise, the columns
of H are necessarily linearly dependent, and the parameters��� may not be
uniquely defined in terms of the data; see (1).
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This posterior distribution is highly nonlinear in the param-
eters , and an expression of cannot
be obtained in closed form. We develop in the next section
MCMC methods to estimate the required posterior distribution

and its features of interest.

IV. BAYESIAN COMPUTATION

In this section, we recall the basic principles of MCMC sim-
ulation (see Section IV-A) and describe an algorithm to address
our specific problem (see Sections IV-B and IV-C).

A. Principles of MCMC Computation

We propose here to use an MCMC method to perform
Bayesian computation. These techniques were introduced in
the mid-1950s in statistical physics and, more recently, in ap-
plied statistics and signal processing [6], [27]. The key idea is to
build an ergodic Markov chain whose equilibrium dis-
tribution is the desired posterior distribution . Under weak
additional assumptions, the samples generated by the Markov
chain are asymptotically distributed according to the posterior
distribution and thus allows easy evaluation of all posterior
features of interest. Indeed, in this case, for any-integrable
function , ,
almost surely and under stronger assumptions, a central
limit theorem holds with the additional assumption that

[27]. Note that marginalization
can be performed straightforwardly by setting, for example,

if . We present now the main proce-
dures that allow us to build a Markov chain whose invariant
distribution is the required distribution.

Let us assume that the dimension and the model of the
problem are fixed and that we are only interested in an estima-
tion problem. A Metropolis–Hastings (MH) step of invariant
distribution and proposal distribution, say , consists
of iterating the following mechanism. At iteration:

1) Sample .
2) Evaluate

3) with probability ; otherwise,
.

This algorithm can be very inefficient as soon as the dimension
of is high as too many candidates are rejected. A solution
to this problem consists of defining a partition of

into subvectors and applying the mechanism described above
for the conditional distributions with a new
set of proposal distributions . The components
can either be deterministically or randomly scanned [27].

Now, let the dimension of the problem (in our case,
the number of pulses present in the signal) be unknown,
meaning that model selection has to be performed. In this
case, the Bayesian computation to obtain samples from

is even more complex. One obvious

solution would consist of upper bounding by, say,
and running independent MCMC samplers, each
associated with a fixed dimension . However,
this approach suffers from severe drawbacks. First, it is compu-
tationally very expensive since can be large. Second, the
same computational effort is attributed to each value of. In
fact, some of these values are of no interest in practice because
they have a very weak posterior probability .
One solution would be to construct an MCMC sampler that
would be able to sample directly from the joint distribution on

. Standard MCMC methods are not able to “jump”
between subspaces of different dimensions.
Green has introduced a flexible class of MCMC samplers (the
so-called reversible jump MCMC that are capable of jumping
between subspaces of different dimensions [13]). This is a gen-
eral state-space MH algorithm for which dimension matching
between different spaces is obtained by extending them with
extra components and defining invertible mappings between
these subspaces. Then, the mechanism described for a fixed
dimension can be applied, where the proposal distributions now
contain the possibly artificial components, and the acceptance
ratio now includes the absolute value of the determinant of the
Jacobian of the deterministic transformation. Note that another
class of MCMC algorithms relying on jump diffusions was
earlier proposed by Grenander and Miller; see [25] for an appli-
cation and further references. Note that the sequence
obtained using a given prior distributions on the parameters and
an MCMC algorithm can be reused via importance sampling
and thus allows for other prior distributions to be tested at a
minimum computational cost [27].

These methods virtually allow us to address any problem of
the kind described in Section II-A in a Bayesian framework.
However, we will now focus on the specific problem described
in Section III-B. We then present, in Section IV-C, an algorithm
for the more complex case whereis unknown.

B. Hybrid MCMC Sampler for a Fixed Dimension Model

We propose to use a hybrid MCMC sampler that combines
Gibbs steps and MH steps; see [6] and [27, Sec. 2.4].is a real
number satisfying .

MCMC algorithm for filtered point processes estimation
1. Initialization. Set

and .
2. Iteration

For
Update according to a MH step admitting

as invariant distribution (see Section IV-B1).
Update according to a MH step admitting
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as invariant distribution (see Section IV-B1).
End For.
Sample

; (see2 Section IV-B2).
3. and go to 2.

These different steps are detailed in the following subsec-
tions. In order to simplify notation, we drop the superscript
from all variables at iteration.

1) Updating of : Sampling the starting times and du-
ration times of the electrical currents is difficult because the dis-
tribution is nonlinear in these parameters. We have chosen here
to sample these using a “one-at-a-time” strategy with mixtures
of MH steps [27]. In our application, the target distributions are
the so-called full conditional distributions:

T

or

T

For the arrival times, we chose a random walk, i.e.,
, whereas for the duration times, we chose a mixture of

random walks, i.e., we choose with probability be-
tween two random walks ( and

), where for . Several other pro-
posal distributions for the MH steps can be used, but we have
found the combination of the MH steps we propose satisfactory
in simulations.

2) Updating the Nuisance Parameters:We have the
following decomposition of the local transition kernel

(5)

By straightforward calculations, we obtain, using (3)

T

with , , and defined in (4). Now, the probability den-
sities required to update and are

T T

2Note that updating� is not necessary as the dimensionk is assumed fixed
here.

The parameter is updated using a rejection method, and sam-
pling from all the other required distributions is standard [9].

C. Bayesian Computation for an Unknown Dimension Model

We now address the problem of unknown dimensionusing
the methodology of Green [13]. We have selected three types of
moves:

1) the birth of a new pulse, i.e., proposing a new pulse, with
parameters drawn at random;

2) the death of an existing pulse, i.e., removing a pulse
chosen randomly;

3) updating the parameters of all the pulses when ,
which is the variance of the observation noise and the
hyperparameters.

The birth and death moves perform dimension changes, re-
spectively, from to and to . These moves are
defined by heuristic considerations, the only condition to be ful-
filled being to maintain the correct invariant distribution. A par-
ticular choice will only influence the rate of convergence of the
algorithm. Other moves may be proposed, but we have found
that the ones suggested here lead to satisfactory results.

The resulting transition kernel of the simulated Markov
chain is then a mixture of the different transition kernels
associated with the moves described above. This means
that at each iteration, one of the candidate moves (birth,
death, or update) is randomly chosen. The probabilities for
choosing these moves are and , respectively, such
that for all . The move is
performed if the algorithm accepts it. For , the death
move is impossible; therefore, . For , the birth
move is impossible, and thus, . Except in the cases de-

scribed above, we take the probabilities

,
where is the prior probability of model , and
is a constant that tunes the proportion of dimension/update
moves. As pointed out in [13, pp. 719], this choice ensures that

, which means that an MH
algorithm on the sole dimension in the case of no observations
would have 1 as acceptance probability. We take and
then for all [13]. One can then describe
the main steps of the algorithm.

Reversible Jump MCMC algorithm
1. Initialization: set belonging to the sup-
port of the posterior.
2. Iteration .

If
– then “birth” move (See below).

– else if then “death” move (See
below).

– else update the parameters (see Section IV-B).
End If.

3. and go to 2.

Suppose that the current state of the Markov chain is in
; then, we have the following.
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Birth move
Propose a new pulse and .
Evaluate , see (7), and sample .
If then the new state of the Markov chain
becomes , else
stay at , where the new nui-
sance and hyperparameters are sampled according to

; see (5).

Assume that the current state of the Markov chain is in
; then, we have the following.

Death move
Choose a pulse at random among the existing
pulses: .
Evaluate ; see (7), and sample .
If then the new state of the Markov chain
becomes , else it remains

where the new
nuisance and hyper parameters are sampled according
to ; see (5).

The acceptance ratio for those moves are deduced from the
following expression [13]:

which yields

T

T

(6)

as the Jacobian of the identity transformation is equal to
1. Then, the acceptance probabilities corresponding to the
described moves are

(7)

D. Geometric Convergence of the Algorithm

It is easy to prove that the algorithm converges, i.e.,
that the Markov chain is
ergodic. We prove here a stronger result by showing that

converges geometrically to
the required posterior distribution, i.e., at a geometric rate
dependent on the starting point. We have the following result.

Theorem 1: Let be
the Markov chain whose transition kernel has been de-
scribed in Section IV, and let us assume that
span for any . Then,
for -almost all starting point

, the Markov chain converges at a geometric rate to the proba-
bility distribution , i.e., there exists

a function of the initial state ,
and such that

where is the distribution of
, and is the total vari-

ation norm [27].
Proof: See Appendix B.

Corollary 1: The distribution of the series
converges

geometrically towards at
the same rate.

In other words, the distribution of the Markov chain con-
verges at least at a geometric rate to the required equilibrium
distribution .

Remark 2: In practice, one cannot evaluate and
, but Theorem 1 proves their exis-

tence. This type of convergence ensures that a central limit
theorem for ergodic averages is valid [27], which is the basis of
some convergence diagnostics procedures [23]. This result is
also the starting point of numerical studies that lead to estimates
of these quantities; see [8].

V. APPLICATION TO NEUTRON DETECTION

In this section, we present the results obtained from our al-
gorithm applied to synthetic data and real data provided by the
Commissariat à l’Énergie Atomique (CEA, French nuclear civil
research center).

In order to assess the performance of the algorithm, we first
applied our algorithm to four scenarios, using in each case 100
synthetically generated data sets of length 1000. Each data set
consisted of ten impulses whose parameters were drawn ran-
domly: the position from a uniform, the amplitude as a Gaussian
with mean 0.3 and variance 0.05, and the length of the current
uniform over . We corrupted these impulses with addi-
tive white Gaussian noise, with variance chosen from 0.03,
0.02, 0.01, and 0.005. The sampling frequency was taken to be

MHz, and the time constant , which
correspond to the parameters of the real experiment. The pa-
rameters of the algorithm were , ,

, , and . We ran the algorithm
for iterations for each data set and collected the sam-
ples from the Markov chain. This took approximately 10 min
on a Pentium III for each data set. For the parameters of the
algorithms, we used the first parameter values that we tried,
which provided the Markov chain with satisfactory properties;
the mean acceptance probability was between 0.4 and 0.5, which
is considered as a good indicator for a random walk with few
parameters [12], and the histograms of the different quantities
stabilized after iterations. More elaborate convergence di-
agnostics could be used (see [23] for a review and links to free
software), but we have not pursued this.

Our algorithms provided us with samples
from the joint distribution



140 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 1, JANUARY 2001

Fig. 1. Performance of the procedure on 100 synthetically generated data. Middle: mean ofp(kjy ), Left–Right: mean� the standard deviation of
p(kjy ).

Fig. 2. Original data. Time axis has been rescaled by a factorT .

. As there is no identifiability con-
straint on the arrival times , the posterior distribution for a
given dimension is a mixture of similar distributions up to a
permutation of labels. A way to eliminate these artificial modes
so as to ensure identifiability and perform practical estimation
is to postprocess the samples. More precisely, we sorted the
arrival times of the samples; see the discussion in [14] for
related approaches. The detection results for this Monte Carlo
performance assessment are presented in Fig. 1, where we
display the mean and variance of the estimated histograms of
the dimension for each case, i.e.,
and its fluctuations, where corresponds to theth syntheti-
cally generated realization of the process. As can be observed
the fluctuations around the mean are rather limited.

We then applied the algorithm to data arising from
a neutron Si(Li) sensor, which is displayed in Fig. 2, in the same
conditions as for the simulated data. In Fig. 3, we present the
simulated sample path of the dimensionfor the first 1000 it-
erations and the evolution of the estimation of the model pos-
terior probability distribution as a function of the
iterations, i.e., the marginal estimation

described in Section IV-A. The Markov
chain rapidly explores the zones of interest, and the estimation
of stabilizes after a short burn-in period. In Fig. 4,
we present an estimate of the marginal posterior distribution of
the number of impulses after iterations. In
Fig. 5, we present estimates of some posterior distributions of
the starting times and durations conditional upon .

The results obtained convey a large amount of information
about the problem and the estimation process. Indeed, the re-
constructed signal (see Fig. 6) obtained by taking the conditional
MAP3 estimate of the parameters for , suggests by vi-
sual inspection that the model has a high likelihood. In partic-
ular, as shown in the detailed views, the exponential slope cor-
responding to the interval of the current is
far more likely than a pure step. These comments on the quality
of the model are merely based on visual information, but more
objective criteria can be used. The posterior distributions of the
arrival times (see Fig. 5) have peaked modes and are sometimes
bimodal; therefore, here, there is a risk if one selects the poste-
rior mean as an estimator. This is why MAP estimates are used
for reconstruction in our scenario, but other estimators could be
used. The results concerning the current durations (see Fig. 5)
are of particular interest. In most cases, the posterior distribu-
tion of the current durations has a peaked mode, which is an
indicator of the good modeling of the data. One also observes
the correlation between small intensity and large duration of the
current, which is a classical characteristic of Si(Li) sensors.

3This MAP estimate(t̂ ; �̂�� ) = arg max p(t ; ��� j   ; k =

14; y ), where    = (   jy ), can also be obtained using a
simulated annealing version of the algorithm described in Section IV-B; see
[2], where it is shown how homogeneous reversible jump MCMC algorithm
can be easily adapted to simulated annealing algorithms and where a theoretical
study of the convergence is carried out.
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Fig. 3. Top: Sample path ofk for the first 1000 iterations. Bottom: Estimate ofp(kjy ) against the number of iterations.

VI. CONCLUSIONS

In this paper, we have addressed joint Bayesian model selec-
tion and parameter estimation of noisy filtered point processes.
In order to solve this complex detection/estimation problem,
we proposed a methodology relying on the Bayesian statistical
framework and MCMC. We have illustrated the flexibility of
the Bayesian framework and the power of MCMC methods on
a problem arising in nuclear science. When applied to real data,
we obtained very accurate results, demonstrating the suitability
of the proposed strategy. Moreover, by obtaining the posterior
distribution, we were able to depict important information about
the model through the estimation of the different marginal poste-
rior distributions. These methods, although computationally in-
tensive, allowed us to perform data analysis and validate a com-
plex physical model. Sequential methods to perform the com-
putation more efficiently are currently under study. Finally, we
point out that this general methodology can be easily adapted
to solve other deconvolution problems without the need for the
crucial assumptions adopted by recently developed algorithms,
such as knowledge of hyperparameters (variance of noise, im-
pulse response, intensity rate of the point process, etc.).

APPENDIX A
NOTATION

• : th row, th column of matrix .
• : determinant of matrix .

• If T, then
T and

T for .

• : indicator function of the set (1 if , 0 oth-
erwise).

• : highest integer strictly less than.
• : is distributed according to . :

the conditional distribution of given is .

Probability Symbol Density
distribution

Inverse

Gamma

Gamma

Gaussian
T

Uniform

APPENDIX B
PROOF OFTHEOREM 1

The proof of Theorem 1 relies on the following theorem,
which is a result of [21, Ths. 14.0.1 and 15.0.1]:

Theorem 2: Suppose that a Markovian transition kernelon
a space

1) is a -irreducible (for some measure) aperiodic Markov
transition kernel with invariant distribution;

2) has geometric drift toward a small setwith drift func-
tion , i.e., more precisely, there exist
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Fig. 4. Estimation of the posterior distributionp(kjy ).

Fig. 5. (Top) Estimation of the posterior distributionsp(T t jy ; k = 14) for i = 2; 3; 9 and 13. (Bottom) Estimation of the posterior distributions
p(T � jy ; k = 14) for i = 2; 3; 9 and 13.

, , , and , which is an integrable mea-
sure such that

(drift condition) (8)

(minorization condition and small set). (9)

Then, for -almost all , some constants and

i.e., is , almost everywhere geometrically ergodic.
The ideas behind these two conditions are the following. The

drift condition ensures that the Markov chain will always come
exponentially fast in the set. Let us assume that the minoriza-
tion condition is an equality. Then, this means that the update
of the Markov chain in the set is independent of the current
point in , i.e., the Markov chain is sliced into independent (and
in fact identically distributed) paths and is thus ergodic in some
sense. In fact, it can be proved that a minorization condition can
lead to an equality on an extended state space, which allows us

to apply the same reasoning as before. This is the key idea of
the proof of convergence of the Markov chain on general state
spaces, which is facilitated in the case of MCMC by the fact that
the invariant distribution is known [21].

We need to prove several lemmas that will allow us to prove
the different conditions required to apply Theorem 2.

1) Lemmas 1–5 are purely technical and will lead to the proof
of Proposition 1, which will establish theminorization condition
(9) for some and measure (to be described). The irre-
ducibility and a periodicity of the Markov chain are then proved
in Corollary 3, leading to the simple convergence of the Markov
chain.2) To complete the proof, Proposition 2 will establish the
drift condition (8).

Before presenting the various lemmas and their re-
spective proofs, we need to introduce some notation. Let

denote4 the
conditional transition kernel of the Markov chain, i.e., for fixed

,

, where belongs to .

4In what follows, we will use the notation� ; � , when necessary, for ease
of presentation. This does not mean that the variables depend on the dimension
k.
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Fig. 6. Reconstruction of the filtered point process fork = 14 using the MAP values of the parameters, the three last figures being zooms of the top left one.
Time axis has been rescaled by a factorT .

This conditional transition kernel is by construction (see
Section IV) a mixture of transition kernels, i.e.,

(10)

where , correspond to the reversible jumps de-
scribed in Section IV-C and is described in Section
IV-B.

Lemmas 1 and 2 establish that the termT

is uniformly (in ) bounded away from zero and infinity.
The lower bound comes from the fact that the observations are
noisy— T gives an estimate of the variance of
the noise—and the upper bound from the fact that the signal
has finite energy. These two lemmas lead to Lemma 3, which
proves a minorization condition of the transition kernelcor-
responding to with and fixed. This minorization condi-
tion says that there is a uniform nonzero probability of going
from dimension to . An interesting fact is that the larger
the level of the noise is (noise either due to the measurements or
to underfitting), the larger the minorization condition is, which
gives a larger probability of decreasing the model. Lemma 5 just
includes in the minorization. Proposition 1 incorporates

and iterates the minorization, starting from any dimension, and
proves that from any state of, the empty configuration—our
small set—can be reached in less than iterations with a
nonzero probability. Note that in this case, this minorization
condition depends explicitly on the starting value forand
thus removes the uniform character of the minorization. This
is why a drift condition will be needed. The observation made
concerning the level of noise is naturally valid for this minoriza-
tion condition and corresponds to what has long been observed
by practitioners: that noisy data lead to MCMC algorithms that
converge faster. Corollary 3 concludes that the Markov chain
converges. Proposition 2 establishes the required drift condition
required for Theorem 2 to hold.

Lemma 1: We denote . Let ;
then, T if and only if belongs to the space spanned
by the columns of for .

Then, noting that T

T T , we obtain
the following result.

Corollary 2: If the observed data are really noisy,
i.e., span for any

, then there exists such that for all
, and

T

Lemma 2: For all , and

T

Lemma 3: Let be the transition kernel corresponding to
such that and are kept fixed. Then, there exists
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and sufficiently large such that for any and

where such that
.

Proof: For all , one has the
following inequality:

where is the probability of choosing one of the pulses to
suppress it. Then, from (6) and for all

T

T

T

where we have used Lemmas 1 and 2 for the existence ofand
.

Thus, there exists sufficiently large such that for any
sufficiently large, , , and

Lemma 4: The transition kernel satisfies the following in-
equality for :

(11)

with and a probability density.
Proof: From the definition of the transition kernel

as , and we adopt the notation
.

Lemma 5: There exists and a probability density
such that for all , , and , then

Proof: From Section II, to update , at each iteration, one
successively samples from

T

T

T

T

T

so that we have the equation at the bottom of the page. We can
perform algebraic manipulations to obtain the following rela-
tion:

T T

T T

T T

with T ,
T and T .

Thus, by integration, we have the equation at the bottom of the
next page, where we used Lemma 1, its corollary, and Lemma
2.

Proposition 1: There exists such that for all

where
.5

5For k = 0, we keep for notational convenience the same notation for the
transition kernel even if''' does not exist.

T T T

T T

T T
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Proof: From Lemmas 3 and 5, one obtains, for

Consequently, for , when one iterates
times the kernel , the resulting transition kernel, which is de-
noted , satisfies

where we have used Lemma 4 and
. The conclusion follows with

.

Corollary 3: The transition kernel is -irreducible. As
is an invariant distribution of

and the Markov chain is -irreducible, then from [27, Th. 1,
pp. 1758], the Markov chain is -ir-
reducible. Aperiodicity is straightforward. Indeed, there is
a nonzero probability of choosing the update move in the
empty configuration from (11) and to move anywhere in

. Therefore, the Markov chain admits
as unique equilibrium distribution

[27, Th. 1, pp. 1758].
Proposition 2: Let for

, and then

where by definition

Proof: Now, using (10), we study the following expres-
sion:

T

T

T

T

T
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Obviously, for any , one has
, and then, the result immediately follows.
Proof of Theorem 1:By construction, the transition

kernel admits
as invariant distribution. Propo-

sition 1 proved the -irreducibility and the minorization
condition with , and Proposition 2 proved the drift
condition; thus, Theorem 2 applies.
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