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Bayesian Deconvolution of Noisy Filtered Point
Processes

Christophe Andrieu, Eric Barat, and Arnaud Doucet

Abstract—The detection and estimation of filtered point this framework, optimal deconvolution mainly boils down to
processes using noisy data is an essential requirement in manysolving a combinatorial optimization problem. Nevertheless,
seismic, ultrasonic, and nuclear applications. In this paper, we iscrete point processes often model approximations of real

address this joint detection/estimation problem using a Bayesian h that " b t Wh ideri
approach, which allows us to easily include any relevant prior phenomena that are continuous by nature. en considering

information. Performing Bayesian inference for such a complex continuous modeling, the point process deconvolution problem
model is a challenging computational problem as it requires the appears more clearly as a very complex model selection
evaluation of intricate high-dimensional integrals. We develop problem. The oldest and most popular detection method for
here an efficient stochastic procedure based on a reversible jump filtered point processes is probably based on the matched filter
Markov chain Monte Carlo method to solve this problem and [19]. This method may perform poorly when the impulse re-

prove the geometric convergence of the algorithm. The proposed i
model and algorithm are demonstrated on an application arising SPOnse depends on a stochastic parameter and/or when several

in nuclear science. pulses overlap. More recently, classical statistical methods
Index Terms—Bayesian methods, deconvolution, model selec—halve been aPp"?d to 39"’6 t.hIS. model selectlon_ problem,
tion, reversible jump MCMC. using the Akaike information criterion (AIC) [1] or minimum

description length (MDL) [22]. This is the approach proposed
in [16] and [18] for related deconvolution problems. In practice,
it requires maximum likelihood (ML) parameter estimation
UMEROUS phenomena arising in a variety of fieldsind the evaluation of the criterion for each possible model.
of science involve isolated-in-time events occurring dubsequently, the best scoring model is selected. However,
random instants. Typical examples include the study of traffibis approach requires reliable ML procedures and does not
processes, queuing processes, neuronal electrical activitgpear efficient as soon as the problem to be solved is complex.
seismic phenomena, and radioactivity, among others. PoWihen state-space modeling is available, optimal filtering and
processes provide a suitable representation for these highly @igoothing approaches have been proposed. Unfortunately,
continuous phenomena [24]. Unfortunately, in many cases, fliltering and smoothing of the process require solving complex
point processes cannot be directly observed as they are filtegéechastic differential equations for which there is no satisfac-
and corrupted by observation noise [7], [10], [15], [17], [20]tory approximate numerical solution (see, for example, [24]
[24]. Although the relevant information is typically containedind references therein).
in the point processes, this information is degraded, therebyHere, we adopt a continuous-time model that is a more accu-
resulting in a difficult detection/estimation problem. This igate representation of the physical phenomena under considera-
the case of the application addressed in this paper (see Section. To address the detection/estimation problem, we follow a
I11). These difficulties have led many researchers to investigagl Bayesian approach where not only the unknown parameters,
various methods to solve this complex inverse problem. including the locations of the events and their amplitudes, but
One should distinguish between point processes that tego their number are regarded as random with given prior dis-
their values in discrete and continuous sets. The deconvolutisibutions. This framework proves to be very flexible and suit-
of discrete point processes has been extensively studiedatye for the modeling of uncertainty concerning physical phe-
researchers since the mid-1980s, with particular emphasisrg@mena. Furthermore, the Bayesian framework allows us to ad-
Bernoulli-Gaussian type processes [7], [10], [17], [20]. Idress the problem of model selection in a simple and consistent
way as the prior information available for any parameter of the
model is taken into account in the model selection process. De-
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inference in these important cases, it is necessary to numémm an appropriate prior distributign(k, ;). This prior dis-
cally approximate these integrals. To evaluate the joint postebution reflects our degree of belief on the relevant values
rior distribution of the number of pulses and their parametersf, the parameters [5]. The Bayesian inference:&nd @, is
we propose a flexible and efficient stochastic algorithm based based on the joint posterior distributigni%, 8;|yo. r—1) ob-
reversible jump Markov chain Monte Carlo (MCMC) methodgained from Bayes’ theorem. Our aim is to estimate this joint
[13]. MCMC methods are powerful stochastic algorithms thalistribution from which, by standard probability marginaliza-
have revolutionized applied statistics over the last decade; $ea and transformation techniques, one can “theoretically” ob-
[6] and [27] for some reviews. tain all posterior features of interest. In particular, it allows us
The paper is organized as follows. In Section Il, the filtered evaluate the posterior model probability:|yo. r—1), which
point process model is presented, and the detection/estiroan be used to perform model selection by selecting the model
tion objectives are specified. In Section Ill, we describe oarder ask = arg MAX L (0, ..., ko } PE[Y0: 7—1). In addition,
real-world application and the Bayesian model motivatdtiallows us to perform parameter estimation by computing, for
by physical considerations [4]. In Section IV, we detail thexample, the conditional expectati&if; |yo. 71, I}). How-
Bayesian computation. We recall briefly the basics of MCM@ver, it is usually impossible to obtain these quantities analyti-
algorithms and then describe an algorithm that allows us ¢ally, and one has to resort to numerical methods; see Section
solve the problem addressed. The geometric convergencd\of
this algorithm is established. In Section V, we demonstrate the
performance of the model and algorithm on real data. Finally, [ll. PROBLEM IN RADIATION MEASUREMENTS

some conclusions are drawn in Section VI. Appendix A con- We focus here on a complex problem arising in nuclear sci-

"Gce. Nevertheless, we point out that the proposed methodology
can be easily adapted to many other applications where noisy
filtered point processes arise.

of the algorithm is given in Appendix B.

Il. FILTERED POINT PROCESSPROBLEM

A. Problem Statement A. Physical Phenomenon and Objectives

We assume that the continuous time observatigns The physical phe_nomen_on can be b_rie_fly descril_aed as T(_)I'
(t))o<i<r.,., Where T,y, is the observation time, can belOWs. Neutrons are impinging onto a Si(Li) sensor, i.e., a sili-

modeled by one of the following continuous-time modéf: cium (mla lithium netvyork).sensor, and extract electrons from
the medium. An electrical field attracts the electrons toward

5 y(t) = nolt) E=0 the anode and, thus, creates an electric current. Neitreates
) ) a current with intensity;, which we assume constant with un-
M y(t) = Z h(t =t 1€ 1) + i) E>1 known starting time;. This current excites a resistor-capacitor
1 i k3 & ‘ > 1.

(RC) circuit and is null after a random finite timg. Note that
from physical considerations, we knawpriori thatr; cannot
These models correspond either to noise @aky(t))o<:<7,,. €xceed a value,... This current is corrupted by an additive
(k = 0) or to the superposition ofc pulses (h(t — electronic noise.

ti ks & 1))j=1,..,x corrupted by noiseX > 1). The im- Based on the output signal, the objectives of physicists are to
pulse response of the systei; £) depends on the possiblydetect these particles and to accurately estimate the associated
random parameter§; ;);=1,..,» called the marks [24]. The guantitiesa; andr; to perform spectroscopy.

(tj,k)jzl,m,k with ti K # Ly, k for j1 # jo are the occur- .

rence times of the underlying point process, &ni¢ random. B- Model of the Observations

In practice, the only available data aféregularly sampled  After standard manipulations, it can be shown that the re-
observationg,. 7_; of real data sampleg; 2 y(¢T.), where sponse of the RC circuit to a constant step of lengtind am-

T, is the sampling period. The elementsyaf 7_; may then plitudeq is of the form

be represented by different models
P y h(t; a, 7) =a[l — exp(—t/ﬁ)]ﬂ[oﬁ)(t) +a[l — exp(—7/K)]

i=1

Mo: y; = N30 k=0 X exp(—(t - 7_)/H)"[‘r, +oo)(t)
k
My y; = Z h(iTe — t5, 15 &5 1) + ik E>1 where the characteristic time constan RC of the circuit is
i=1 ’ known. The process is assumed to be corrupted by an additive

white Gaussian noisey ; ~ A(0, o7) due to the electronic
and wheren,; ;, = ni(iT.). Given the data seto.z—1, our ob- equipment. In components vector—matrix form, we have
jective is to determine the number of puldeand estimate the —H,a, +n )
associated parametefs;, ;. YO: T—1 = LRk T 1k, 0: T—1

where we denot#l, as theT” x k matrix [Hy] (41, j) = a; 1,h
B. Bayesian Detection/Estimation Aims (T, —tj 43 gy Tjk), (8 =0, -, T —1,4 =1, ...7’,f ,

We follow a Bayesian approach where the unkndvamd the Which thus does not depend on the amplitudes:.,
set of unknown parameters, Sy, are regarded as being drawrand a;y, 2 (a1 k, "+ s ap,k)’, t 2 (ks st )T
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Ty 2 (Teks = oo t)Ts M 0: 71 2 (i, 05 -+ N, 7—1)"- and the expect_ed number of puIse; anql, if considered as random
Our aim is to determinek and estimate the parameterghemselves, will lead to robust estimation.
0, A (tr, Tk, ax, o2)T in a Bayesian framework. We will also _ The prior distribution for the hyperparametﬁm_s now spec-
. A T ified. The values of these hyperpriors could be fixed by the user
use the notatiogp;, = (tx, 7)". o . ;
if prior information was available. However, we chose here to
include these hyperparameters in the estimation and thus assign
] o ) them with prior distributions. This is the approach adopted, for
We now specify the prior distributions. There is a natu.ral hbxample, in [14], which proves to be robust in practice.f&s
erarchical structure to this setup [13], which we formalize by, 5 scale parameter, we ascribe a vague conjugate prior density

C. Prior Distributions

modeling the joint distribution of all variables as (the variance is infinite [5]) to i62 ~ ZG(awse, Bsz )(ause = 2
andgs: > 0), and we apply the same methodtdy setting an
P, k, Ok, yo. 7-1) uninformative conjugate prior [S} ~ Ga(1/2 + £, £2)(g; €
= p(yo: 7—1|k, Or)p(Or|9, k)p(k|)p(4) 1i=12).
From the description of the model given above, the param-
where _ - N eter space iRRT? x ©, where® can be written as a finite
(k) prior T]odel probab;l;yé]condnmnal oM ynion of subspace® — Ui":’%x{k} % @, ® 2 R+, and
some hyperparame ; A 4 . A ‘
p(Ox|®, k) parameter prior conditional af andk; ©; = i x RY x R* with &, :g(o’ Lovs) X (0, T‘“ax)_)k
p(¥) hyperparameter prior distribution, whichfor ke {1, kmax} and Epax = T~ 1. By convention,
will be described later on; Py = {(tg, 70)} = 0, and we denot@® = U’,:';B*{k} x ®;,.
p(yo. 7—1]k, ;) likelihood, which does not depend gn Remark 1: Note that other priors could be used to describe
From the model given in Section I1I-B, the likelihood is the physical phenomenon, depending on the prior knowledge
available. It could be possible, for example, to model more com-
p(¥o. T—1|k, O) plex nonhomogeneous point processes; see, for example, [3] for
- (27r0;3)_T/2 a scenario where the point process is not convolved. It could be

possible to take other priors on the marks as well [24].

1
X exp <—2—2(YO: r—1 — Hpap)  (yo. 7—1 — Hkak)> . _ _
T D. Integration of the Nuisance Parameters and o,%

For the conditional distribution of the paramet@gswe assume  The proposed Bayesian model allows for the integration of

the following structure: the so-called nuisance parametefsando and, subsequently,
to obtain an expression @fk, t;, 7i|A, 6%, yo.7_1) Upto a
p(k, Ox ) = p(k, ti, Ti, ax|oF, $)p(o7) normalizing constant. Indeed Bayes’ theorem yields

where o2 is a scale parameter assumed to be distributed(k, 0x|A, 6%, yo. 7-1)

according to a conjugate inverse-Gamma prior distribution 1N—T/2 -1 ]
oF ~ TG((vo/2), (10/2)) [11]. Whenvy = 0 andyy = 0, = (27077 exp | 505 (an —mu) My (o —my)

we obtain Jeffreys’ uninformative prigio}) o 1/03 [5]. For _ .
(k, ti, T, ax), we introduce the following prior distribution: X exp {F(% + Yo: 71 Pxyo: T—l):|
k
k
p(k, tr, Tk, ak|0—l%7 A, 62) « (az)—'v0/2—1|2ﬂzkaz|—l/2 < A )
A¥ 1 aiE,:lak ﬂ@(k, tk,’rk) TmaxLobs
> ]C' |27T0'132k|1/2 ox 20—]% (TmaXTobS)k X [I(I>(k’ tk’ Tk) (3)
2) k!
with

whereX),j1 2 6*2H£Hk for £ > 1, and we adopt the following . T . T
conventions for: = 0: alX; a, 2 0 and 2702|122 1. M, =H;H; + 3, my = MyH;yo. 71 and

& will be described later. The prior probability model distribu- P, =Ir - H;M,H;, (4)
tion p(k|A) is a truncated Poisson distribution of parameter
thereforegp = {A, 6?}. Conditional upork, the arrival times
and durations are assumed uniformly distributed®riZ,;. ) x
(0, Tn_lax), Tenax b_e_ing given by the physics of th_e phenomenon plk, b, Tr|A, 82, Vor—1)
[4]. Finally, conditional uporik, ty, 74 ), the amplitudes are as-

that do not depend am,. The integration o, (normal distri-
bution) and then of} (inverse-Gamma distribution) yields

. ; . . ; T —(T+vo)/2
sumed zero-mean Gaussian with covariang®,,. This prior > (%0 +¥o. 71 Pryo: 7-1) ’
can be obtained using a maximum entropy principle and was A b s (k, tr, 1)
motivated by Zellner in [28]. Note that this prior distribution is x T Tops V62 + 1 k!

invariant by rescaling of the observations. Proportionality in (2) , ) ) . )
f the fact that < k The termss2 and A can The following constraint: < 7" is added because otherwise, the columns
comes irom the iac S Fmax- of H,, are necessarily linearly dependent, and the param@tensay not be

be, respectively, interpreted as an expected signal-to-noise ratiguely defined in terms of the data; see (1).
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This posterior distribution is highly nonlinear in the paramsolution would consist of upper bounding by, say, kpax
eters (tx, 7%), and an expression op(k|yo.7—1) cannot and runningk,.x + 1 independent MCMC samplers, each
be obtained in closed form. We develop in the next secti@ssociated with a fixed dimensiégn= 0, - - -, k.. HOwever,
MCMC methods to estimate the required posterior distributidhis approach suffers from severe drawbacks. First, it is compu-
p(A, 82, k, ty, x, ax, of|yo. 7—1) and its features of interest. tationally very expensive sinde,., can be large. Second, the
same computational effort is attributed to each valué:.ofn
IV. BAYESIAN COMPUTATION fact, some of these values are of no interest in practice because
. . L . they have a very weak posterior probabili%|yo. 7—1).
R sn e el b e o MONC AT 4 s b o codtetan NEM St
our specific problem (see Sections IV-B and IV-C) would be able to sample directly from the joint distribution on
' Rt? x @. Standard MCMC methods are not able to “jump”
between subspac&? x {k} x @, of different dimensions.
Green has introduced a flexible class of MCMC samplers (the
We propose here to use an MCMC method to perforgb-called reversible jump MCMC that are capable of jumping
Bayesian computation. These techniques were introducedbigtween subspaces of different dimensions [13]). This is a gen-
the mid-1950s in statistical physics and, more recently, in agral state-space MH algorithm for which dimension matching
plied statistics and signal processing [6], [27]. The key idea is b@tween different spaces is obtained by extending them with
build an ergodic Markov chaif®”);cn, whose equilibrium dis- extra components and defining invertible mappings between
tribution is the desired posterior distributian-). Under weak these subspaces. Then, the mechanism described for a fixed
additional assumptions, the samples generated by the Markfwension can be applied, where the proposal distributions now
chain are asymptotically distributed according to the posterigsntain the possibly artificial components, and the acceptance
distribution and thus allows easy evaluation of all posterieatio now includes the absolute value of the determinant of the
features of interest. Indeed, in this case, for anytegrable Jacobian of the deterministic transformation. Note that another
function £(-), (1/N) Yot f(89) —  [o f(0)n(0)d6, class of MCMC algorithms relying on jump diffusions was
almost surely and under stronger assumptions, a ceniatlier proposed by Grenander and Miller; see [25] for an appli-
limit theorem holds with the additional assumption thagation and further references. Note that the sequ@{@eieN
Jo f(0)*7(6)d® < +oo [27]. Note that marginalization obtained using a given prior distributions on the parameters and
can be performed straightforwardly by setting, for examplan MCMC algorithm can be reused via importance sampling
(@) = 6, if & = (0,1, 62). We present now the main proce-and thus allows for other prior distributions to be tested at a
dures that allow us to build a Markov chain whose invariaminimum computational cost [27].
distribution is the required distribution. These methods virtually allow us to address any problem of
Let us assume that the dimension and the model of tii&e kind described in Section II-A in a Bayesian framework.
problem are fixed and that we are only interested in an estim3owever, we will now focus on the specific problem described
tion problem. A Metropolis—Hastings (MH) step of invarianin Section I11-B. We then present, in Section IV-C, an algorithm
distributionn(-) and proposal distribution, say-|@), consists for the more complex case whekds unknown.
of iterating the following mechanism. At iteratian

A. Principles of MCMC Computation

1) Sample §* ~ q(g*w(i—l))' B. Hybrid MCMC Sampler for a Fixed Dimension Model
2) Evaluate We propose to use a hybrid MCMC sampler that combines
Gibbs steps and MH steps; see [6] and [27, Sec. 2.&]areal
©(6%)q (o(ifl)w*) number satisfying < A < 1.

a(88Y, 9%) 2 min 1,

(0% Y)q (0* |0(i_1)) MCMC algorithm for filtered point processes estimation

1. Initialization. Set 8 = (A©® §©@2 @ {0 0
02(0)) and : = 1.

2. lteration ¢

. . . . . . . Forjzlv"'vk

This algorithm can be very inefficient as soon as the dimension o ypdate t; » according to a MH step admitting

of @ is high as too many candidaté’ are rejected. A solution ’

3) 60 = 6" with probability (82, §%); otherwise,
0 — gli—1)

to this problem consists of defining a partitiof , - - -, 8,,) of (£, 2| AGD, g2 O

@ into subvectors and applying the mechanism described above p 7 k 7 G-

for the conditional distribution&r(8,10_,));=1, ..., , withanew T;i;l), tg’;)(j_l), tg’jrll)) 4o Y0: T—1)

set of proposal distributiong; (:|-))j=1, ... p. The components

can either be deterministically or randomly scanned [27]. as invariant distribution (see Section IV-B1).
Now, let the dimensiont of the problem (in our case, e Update 7; ; according to a MH step admitting

the number of pulses present in the signal) be unknown,

meaning that model selection has to be performed. In this (7 k|A(i_1)7 §0-12, ng:)(j 5

case, the Bayesian computation to obtain samples from ] ) ]
2 . ; : (i=1) 40 (=1
p(A, 6%, k, Ox|yo. 7—1) IS even more complex. One obvious T(ig1): ko U1 B4y po Yo T-1)
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as invariant distribution (see Section 1V-B1).

End For.

Sample ‘ ‘

(A(i)7 52 agf), ai(z))

yo. 7_1); (see? Section IV-B2).
i1+— ¢+ 1andgoto 2.

@)

sy T s

~

p(A, 627 ag, O—l%|t§f)

3. [ ]

These different steps are detailed in the following subsec-

tions. In order to simplify notation, we drop the superscfipt
from all variables at iteration

1) Updating ofty, 7x: Sampling the starting times and du-
ration times of the electrical currents is difficult because the dis-
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The parameteh is updated using a rejection method, and sam-
pling from all the other required distributions is standard [9].

C. Bayesian Computation for an Unknown Dimension Model

We now address the problem of unknown dimenstarsing
the methodology of Green [13]. We have selected three types of
oves:
1) the birth of a new pulse, i.e., proposing a new pulse, with
parameters drawn at random;
2) the death of an existing pulse, i.e., removing a pulse
chosen randomly;

tribution is nonlinear in these parameters. We have chosen here) updating the parameters of all the pulses wheg 0,

to sample these using a “one-at-a-time” strategy with mixtures
of MH steps [27]. In our application, the target distributions are

the so-called full conditional distributions:

p(tj,k|A7 627 t—j,k7 Tk, Yo: T—l)
< [Y0 + ¥ 71 Pryo: 7-1] " T Mg (K, by, Th)
or
(75, klA, 6%, b, T_j ks Yo 7-1)
x [v0 + y}ﬂ; r—1PrYo: T—1]7(T+v°)/2"<1>(ka th, Th).
For the arrival times, we chose a random walk, itp.,: t +
o3, Whereas for the duration times, we chose a mixture

random walks, i.e., we choose with probability, 1 — A) be-
tween two random waIk3r§ = 71; + o- 1€1 and =1+

which is the variance of the observation noise and the

hyperparameters.
The birth and death moves perform dimension changes, re-
spectively, fromk to & + 1 andk to & — 1. These moves are
defined by heuristic considerations, the only condition to be ful-
filled being to maintain the correct invariant distribution. A par-
ticular choice will only influence the rate of convergence of the
algorithm. Other moves may be proposed, but we have found
that the ones suggested here lead to satisfactory results.

The resulting transition kernel of the simulated Markov
chain is then a mixture of the different transition kernels
gpsociated with the moves described above. This means
that at each iteration, one of the candidate moves (birth,
death, or update) is randomly chosen. The probabilities for

0. 2€2), Wheres; ~ A(0, 1) fori = 1, 2, 3. Several other pro- choosing these moves atg, di and uy, respectively, suph
posal distributions for the MH steps can be used, but we ha@tox + di +wx = 1forall 0 < k < knax. The move is

found the combination of the MH steps we propose satisfactdi§formed

in simulations.
2) Updating the Nuisance Parameter§¥e have the

if the algorithm accepts it. Fér = 0, the death
move is impossible; therefordy 2 0. Fork = kmax, the birth

move is impossible, and thus, 20. Exceptin the cases de-

following decomposition of the local transition kernekcribed above, we take the probabilitl@séclnin{l, (p(k +

p(Aa 6*2a ag, a}%|62a tka Tk, Yo: T—l)
p(Aa 6*2a A, al%|62a tka Tk, Yo: T—l)
= p(A|k)p(8"%|ax, ofs by Thy Yo 7-1)
X p(ak|627 tk7 Tk, U}%? Yo: T—l)

X p(a,%|52, tx, Tk, Yo T—l)-

©)

ok

By straightforward calculations, we obtain, using (3)
(627 k, tr, T, y0:T—1)
vo+T Y0+¥0: r_1Pryo:7—1

w0 T

ak |(62’ k’ ty, Tk, al%a Yo: T—l) NN(mk, O]%Mk)

with Py, my, andM;, defined in (4). Now, the probability den-

sities required to updat& andé*? are

k THIHa;
6*2 (kv 0k7 y0:T—1) Nzg <_ + sz, M +[3§2>
2 20
AR /K
Alk ~ /_g“(1/2+517 e2)l{0, -+, k()

max

> Ay
=0

2Note that updating\ is not necessary as the dimensiois assumed fixed
here.

UA)/p(E[A))}, dipr = cmin{1, (p(k|A)/p(k + 1]A))},
where p(k|A) is the prior probability of modelM;, and ¢

is a constant that tunes the proportion of dimension/update
moves. As pointed out in [13, pp. 719], this choice ensures that
brp(k|A)[dr+1p(k + 1]A)]~! = 1, which means that an MH
algorithm on the sole dimension in the case of no observations
would have 1 as acceptance probability. We take 0.5 and
thenb, + di, € [0.5, 1] for all k& [13]. One can then describe
the main steps of the algorithm.

Reversible Jump MCMC algorithm
1. Initialization: set (k(®, 8{”)) € @ belonging to the sup-
port of the posterior.
2. lteration q.

o If (u~ Z/f[07 11) < by

— then “birth” move (See below).

—else if (v < by + dyy) then “death” move (See

below).
— else update the parameters (see Section IV-B).

End If.
i+— i+ 1andgoto2.

3. [ |

Suppose that the current state of the Markov chain&sfifix
{k} x ©y; then, we have the following.
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Birth move

e Propose a new pulse t* ~ U, 1,y and 7% ~ U, - -

e Evaluate ay;,¢n, see (7), and sample u ~ Uy 4.

o If u < ayies then the new state of the Markov chain
becomes (A, 62, k + 1, tpt1, Qpy1, Tht1s Oppq) €lSE
stay at (A, 62, k, tx, ax, 7, o3), Where the new nui-
sance and hyperparameters are sampled according to
p(A, 8%, apy1, 0741167, tey1, Thy1, Yo 7-1); See (5). W

Assume that the current state of the Markov chain B3 x
{k + 1} x ©41; then, we have the following.

Death move

e Choose a pulse at random among the £ + 1 existing
pulses: I ~ Uy, ... 41}

e Evaluate ageqsr; S€€ (7), and sample v ~ U, 4.

o If u < ageqrn, then the new state of the Markov chain
becomes (A, §*2, k, tx, Tk, ax, 03), else it remains
(A, 6% k + 1, trq1, Thq1, @r41, 0y ) Where the new
nuisance and hyper parameters are sampled according
to p(A, (5*2, ay, O'z|(52, ti, Tk, Yo: Tfl); see (5). |

afunction of the initial stateA© | §2©) £© (0 ) c &,

CA(0>,5(0>2,km),tf),’rw > 0 andp € [0, 1) such that

||p(Z)(Aa 62a ka tka Tk) _p(Aa 62a ka tka Tk|Y0:T—1)||TV

i/ kmax
= CA<0>,5<0>2,k<o>,t§°>,T§°>pL/ :

where p(A, 82, k, t,, 7)) is the distribution of
(AD, 820 1O ¢ ) and || - ||l;v is the total vari-
ation norm [27].

Proof: See Appendix B.

Corollary 1. The distribution of the series
(AD, 520 |0 ¢(D 0 20 20, converges

geometrically toward®(A, 6%, k, tx, T, ax, o7|yo. 7—1) at
the same rate.

In other words, the distribution of the Markov chain con-
verges at least at a geometric rate to the required equilibrium
distributionp(A, 62, k, 0x]yo. 7—1)-

Remark 2:In practice, one cannot evaluatp and
CA(0>76(0>27k(0>7t§0)7_’_(0), but Theorem 1 proves their exis-
tence. This type of convergence ensures that a central limit
theorem for ergodic averages is valid [27], which is the basis of
some convergence diagnostics procedures [23]. This result is

The acceptance ratio for those moves are deduced from filso the starting point of numerical studies that lead to estimates

following expression [13]:

Thirth 2 (likelihood ratio) x (prior ratio)

X (proposal ratio) x |Jacobian)|

which yields
Thirth — < Yo + y'(I)' T—lPkYO: T—1 >(T+'U0)/2
o Yo +¥8. 7 1 Pr1¥o: 7-1
: 6)
(k+1)v1+ 62

as the Jacobian of the identity transformation is equal

of these quantities; see [8].

V. APPLICATION TONEUTRON DETECTION

In this section, we present the results obtained from our al-
gorithm applied to synthetic data and real data provided by the
Commissariat a I'Energie Atomique (CEA, French nuclear civil
research center).

In order to assess the performance of the algorithm, we first
applied our algorithm to four scenarios, using in each case 100
synthetically generated data sets of length 1000. Each data set
consisted of ten impulses whose parameters were drawn ran-
domly: the position from a uniform, the amplitude as a Gaussian
{fith mean 0.3 and variance 0.05, and the length of the current

1. Then, the acceptance probabilities corresponding to thgiform over[0, 27.]. We corrupted these impulses with addi-

described moves are

irtn = MIn{1, Thien}, Qgearn = min{l, 7t 1. (7)

D. Geometric Convergence of the Algorithm

tive white Gaussian noise, with varianeé chosen from 0.03,
0.02, 0.01, and 0.005. The sampling frequency was taken to be
T-! = 10 MHz, and the time constant = 0.9277., which
correspond to the parameters of the real experiment. The pa-
rameters of the algorithm wets- , = 57, o » = T./5000,

or = T, Tmax = 2T, and X = 0.5. We ran the algorithm

It is easy to prove that the ‘algo‘rithrpi) co(ri\)verges_, I.€for 5 x 10° iterations for each data set and collected the sam-
that the Markov chain(A®, 624 k@ " 7;”)ieny is  ples from the Markov chain. This took approximately 10 min

ergodic. We prove here a stronger result by showing thah a Pentium Ill for each data set. For the parameters of the
(AD, 82D 1O ¢ 70y, converges geometrically to algorithms, we used the first parameter values that we tried,
the required posterior distribution, i.e., at a geometric ratghich provided the Markov chain with satisfactory properties;
dependent on the starting point. We have the following resultthe mean acceptance probability was between 0.4 and 0.5, which
Theorem 1:Let (A®, 820 k® ¢ 70y,  be is considered as a good indicator for a random walk with few
the Markov chain whose transition kernel has been dparameters [12], and the histograms of the different quantities
scribed in Section 1V, and let us assume thatr_; ¢ stabilized afterl0® iterations. More elaborate convergence di-
spa{[Hx):: 7,555 = 1, ---, k} for any (k, ¢,) € ®. Then, agnostics could be used (see [23] for a review and links to free
for p-a|most all Starting poin(A(O)7 62(0)7 k(0)7 tl(cO)7 T](CO)) € software), but we have not pursued this.
&, the Markov chain converges at a geometric rate to the probaOur _algorithms  provided us with sampleg(A, 62,
bility distributionp(A, 62, k, tx, Tk|yo. 7_1), i.€., there exists k®, o§j>); i = 1,---, P} from the joint distribution
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Fig. 1. Performance of the procedure on 100 synthetically generated data. Middle: me@rsof 1), Left—-Right: meant the standard deviation of
P(HYO; T-1)-
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Fig. 2. Original data. Time axis has been rescaled by a f&ctor.

p(A, 8%, k, Oi]yo. 7—1). As there is no identifiability con-  The results obtained convey a large amount of information
straint on the arrival times;,, the posterior distribution for a about the problem and the estimation process. Indeed, the re-
given dimensiork is a mixture ofk! similar distributions up to a constructed signal (see Fig. 6) obtained by taking the conditional
permutation of labels. A way to eliminate these artificial modddAP? estimate of the parameters for= 14, suggests by vi-
so as to ensure identifiability and perform practical estimatigual inspection that the model has a high likelihood. In partic-
is to postprocess the samples. More precisely, we sorted thar, as shown in the detailed views, the exponential slope cor-
arrival times of the samples; see the discussion in [14] feesponding to the intervad; 14, ; 14 + 7,14] Of the current is
related approaches. The detection results for this Monte Caifido more likely than a pure step. These comments on the quality
performance assessment are presented in Fig. 1, whereoivthe model are merely based on visual information, but more
display the mean and variance of the estimated histogramsobfective criteria can be used. The posterior distributions of the
the dimensiork: for each case, i.e(1/100) Y3 p(kly§,_,) arrival times (see Fig. 5) have peaked modes and are sometimes
and its fluctuations, wherg corresponds to thgth syntheti- bimodal; therefore, here, there is a risk if one selects the poste-
cally generated realization of the process. As can be observied mean as an estimator. This is why MAP estimates are used
the fluctuations around the mean are rather limited. for reconstruction in our scenario, but other estimators could be
We then applied the algorithm B = 1000 data arising from used. The results concerning the current durations (see Fig. 5)
a neutron Si(Li) sensor, which is displayed in Fig. 2, in the sanage of particular interest. In most cases, the posterior distribu-
conditions as for the simulated data. In Fig. 3, we present ttien of the current durations has a peaked mode, which is an
simulated sample path of the dimensibfior the first 1000 it- indicator of the good modeling of the data. One also observes
erations and the evolution of the estimation of the model pdie correlation between small intensity and large duration of the
terior probability distributiorp(k|yo. 7_1) as a function of the current, which is a classical characteristic of Si(Li) sensors.
iterations, i.e., the marginal estimatign(k = j|yo.7—-1) =
(1/6) 12y Vg3 (kW) described in Section IV-A. The Markov
chain rapidly explores the zones of interest, and the estimation
of p(k|yo. 7—1) stabilizes after a short burn-in period. In Fig. 4, SThis MAP estimate(t,, 7+) = arg max, . p(te, 7e[, kb =
we present an estimate of the marginal posterior distributionof y,. + ), where® £ E(#|yo. v_1), can also be obtained using a

the number of impulse;s(k|y0: T—l) after 5.10° iterations. In Simulated gn_nealing version of the algorithm describ_ed in Section IV-B_; see
[2], where it is shown how homogeneous reversible jump MCMC algorithm

Fig. 5, We pr.esent eStimate_s of Some_ POSterior distributions gf, pe easily adapted to simulated annealing algorithms and where a theoretical
the starting times and durations conditional uposa 14. study of the convergence is carried out.
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Fig. 3. Top: Sample path df for the first 1000 iterations. Bottom: Estimatejgfk|yq. 7_1) against the number of iterations.

VI. CONCLUSIONS * Ig(2): indicator function of the set’ (1 if z € £, O oth-
erwise).

* | z]: highest integer strictly less than

* z ~ p(z): z is distributed according tp(z). z|y ~ p(z):
the conditional distribution o giveny is p(z).

In this paper, we have addressed joint Bayesian model selec-
tion and parameter estimation of noisy filtered point processes.
In order to solve this complex detection/estimation problem,
we proposed a methodology relying on the Bayesian statistical
framework and MCMC. We have illustrated the flexibility of
the Bayesian framework and the power of MCMC methods on

Probability Symbol Density

a problem arising in nuclear science. When applied to real daﬁa,t ibuti

we obtained very accurate results, demonstrating the suitabiI.LJyS rioution 7

of the proposed strategy. Moreover, by obtaining the posteriorinverse  ZG(«, 3) T(a) 2ot exp(—3/2)0, +00)(#)
distribution, we were able to depict important information aboutGamma (a)

the model through the estimation of the different marginal poste- go

rior distributions. These methods, although computationally in-Gamma  Ga(«, 3) o) 271 exp(—32)lo, 100)(2)
tensive, allowed us to perform data analysis and validate a com-
plex physical model. Sequential methods to perform the comGaussian A(m, )  [273|~%/2

putation more efficiently are currently under study. Finally, we -exp (—3(z — m)"S7!(z — m))
point out that this general methodology can be easily adapted -1
to solve other deconvolution problems without the need for theUniform Uy [/ dz} la(z)

A

crucial assumptions adopted by recently developed algorithms
such as knowledge of hyperparameters (variance of noise, im-
pulse response, intensity rate of the point process, etc.). APPENDIX B

PROOF OFTHEOREM 1

APPENDIX A The proof of Theorem 1 relies on the following theorem,
NOTATION which is a result of [21, Ths. 14.0.1 and 15.0.1]:
Theorem 2: Suppose that a Markovian transition keriabn
* [A]; ;:ith row, jth column of matrixA. a spaceX
* AL detegmmant of matr. 1) is ag-irreducible (for some measug® aperiodic Markov
cIf 2z = (21, 2-1, 2, 241, 0, 4)', then transition kernel with invariant distributiom;
Z_; 2 (21, ) Zj—1, Zj41, **, 2k)" and z;. ; 2 (2, 2) has geometric drift toward a small ggtwith drift func-

Zig1 -, 25)" fori < 4. tion V: X — [1, +0), i.e., more precisely, there exist
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Fig. 5. (Top) Estimation of the posterior distribution = '¢; «|yo. 7—1, k = 14) for i = 2, 3, 9 and 13. (Bottom) Estimation of the posterior distributions
(T 7 ]y 71, k = 14) fori = 2, 3, 9 and 13.

0 <A< 1,b>0, ko, andr, which is an integrable mea- to apply the same reasoning as before. This is the key idea of

sure such that the proof of convergence of the Markov chain on general state
spaces, which is facilitated in the case of MCMC by the fact that
/ P(x, dx" )V (x) the invariant distribution is known [21].
We need to prove several lemmas that will allow us to prove
< AV(x) + bl (x) (drift condition) (8)  the different conditions required to apply Theorem 2.
Pro(x, dx') > lo(x)v(dx’) 1) Lemmas 1-5 are purely technical and will lead to the proof

(minorization condition and small set). (9)0f Proposition 1, which will establish theinorization condition
(9) for someky and measure (to be described). The irre-

Then, forr-almost allxo, some constants < 1 andR < +oc ducibility and a periodicity of the Markov chain are then proved
in Corollary 3, leading to the simple convergence of the Markov

|1P™(x0, ) — n() ||z < RV (x0)p" chain.2) To complete the proof, Proposition 2 will establish the
- drift condition (8).
i.e., P is w, almost everywhere geometrically ergodic. Before presenting the various lemmas and their re-

The ideas behind these two conditions are the following. Ti§@ective proofs, we need to introduce some notation. Let
drift condition ensures that the Markov chain will always com&(Aw, ;s &, k1, x5 dAx,, d67,, ko, dgpy,) denote  the
exponentially fast in the s€t. Let us assume that the mmonzai:ondltlonal transition kernel of the Markov chain, i.e., for fixed
tion condition is an equality. Then, this means that the upddtd. > &%, k1, @r,) € R+2 x @, Pr(Aw,, 6, k2, 1, €
of the Markov chain in the sef is independent of the current Ak, |(Axys 6%, k1, 91,)) = [, K(Akys 6,5 k1, @35 dAg,,
pointinC, i.e., the Markov chain is sliced into independent (andé; , k2, di;,, ), whereA;, belongs taB(R*? x {ky} x ®y, ).

in fact identically distributed) paths and is thus ergodic in some
4In what follows, we will use the notatiof,., 62, when necessary, for ease

sense. In fact, it can be proved that a minorization condition C@ﬂ)resentatlon This does not mean that the varlables depend on the dimension
lead to an equality on an extended state space, which allows:us
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Fig. 6. Reconstruction of the filtered point processKoe 14 using the MAP values of the parameters, the three last figures being zooms of the top left one.
Time axis has been rescaled by a factpr*.

This conditional transition kernel is by construction (seand iterates the minorization, starting from any dimension, and

Section IV) a mixture of transition kernels, i.e., proves that from any state &, the empty configuration—our
small set—can be reached in less than. iterations with a
K (Aky, 67,5 ks or s ds,, db;, ka2, depy,) nonzero probability. Note that in this case, this minorization
= [bry Kbirtn (s 62, K1,y 91 condition depends explicitly on the starting value forand

thus removes the uniform character of the minorization. This

2
dAiy, b5, ki +1, dpy, 1) is why a drift condition will be needed. The observation made

+ dr, Kadeatn (Aku 5;%1, kv, o, concerning the level of noise is naturally valid for this minoriza-
dAy, , d&,%l, k1 — 1, doy, _1) tion condition and corresponds to what has long been observed
(1= bay, — diy) Kupdate by practitioners: that noisy data lead to MCMC algorithms that

2 ) s . converge faster. Corollary 3 concludes that the Markov chain
X (Ale, 62’“1’ R pri Al oy, Ry def, )] converges. Proposition 2 establishes the required drift condition
ko | Ok s F2, Py Yo 71 ko | B2 required for Theorem 2 to hold.
X p (6%, ] 8%ys k2o Prys yos7—1) P Ak k2)  (10) ired for Th 2 to hold
o Lemma 1: We denoteP} 2 limge_ oo Py. Letv € RY;
whereKyiin, Kacarn cOrrespond to the reversible jumps deg,opy y1pey — g if and only if v belongs to the space spanned
scribed in Section IV-C and, 4.+ is described in Section by the columns ol for ¢, € ®;..

IV-B. ; T 2

) Then, noting thatyy. r_;Piyo.7—1 = 1/(1 + &%)
_ Lemmas 1_ and 2 establish that the teyfn T—1PkY0:_T71_ Y. ryo m—1 + (82/(1 ¥ 62)¥T. 1 Piyo. 71, we obtain
is uniformly (iny € ®) bounded away from zero and infinity. the following result.

The lower bound comes from the fact that the observations aretorollary 2: If the observed datgo. r_.1 are really noisy,
noisy—.yg: r_1Pryo. T—1 gives an estimate of the variance. Of.e., Vo:r—1 ¢ spai[Hiliz. ;i J _ 1,---, k) for any
the n_0|_se—and the upper bound from the fact that the &gé%[ @) € ®, then there existe > 0 such that for all
has finite energy. These two lemmas lead to Lemma 3, whigh_ Fma, 82 € R ande,, € &y,

proves a minorization condition of the transition kerhgl cor- -

responding tdC with A andé? fixed. This minorization condi- Vo 7—1PrYo. 7—1 > €.

tion says that there is a uniform nonzero probability of going
from dimensionk to & — 1. An interesting fact is that the larger
the level of the noise is (noise either due to the measurements or
to underfitting), the larger the minorization condition is, which
gives a larger probability of decreasing the model. Lemma 5 justL,emma 3: Let K; be the transition kernel corresponding to
includesé? in the minorization. Proposition 1 incorporatas X such thatA andé? are kept fixed. Then, there exist; > 0

Lemma 2: For allk < kuax, 62 € RT andy,, € ®;,

Yo 71 Payo: 7—1 < Yo, 7—1Y0: T—1-
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and M-, > 0 sufficiently large such that for an§? ¢ Rt and Proof: From Section II, to updat€?, at each iteration, one
ki=1, -, knax successively samples from

Kl (1&7 627 k17 (pkl; 1&7 627 kl — ]_7 (pklfl) p(a’%|62’ k’ ©1, Yo T—l)

Aia; A<y (A) T P (T+10)/2
= W 65‘!’"k1 (d(pklfl) <’70 + Yo. T721 kYo: T—l)
é / N " / = =
whereS,, = {¢' € ®x,—1/31 € {1, -+, k1} such thatp - T+ (o) T 4/241
Py, i} 2 k
Proof: For all ((k1, ¢y, ), (k2, ¢;,)) € €2, one has the _
following inequality: X exp 5 (70 + ¥o: 7—1PkYo: 7-1)
Ky (A, 6% by, @ps A, 62, ko, dypy, §
! ( ’ P B Py B 6’ 27(d(pk2)) p(ak|627 ka P> 0}%7 Yo: T—l)
. S‘r”‘k (ka 1 -1
> g . L = — . — . T
el Inln{la 7deat}b}dk1 kl |27I'O'I%Mk|(l/2) €xp <2U’% (ak mk)
wherel/k; is the probability of choosing one of the pulses to % M;Zl(ak _ mk))

suppress it. Then, from (6) and for &l =1, - -+, kpax N
PP ©) p(72(6%, F, 6)

T4v 2
7,71 _ <,70 +YE T*lPk1—1y0: T—l>( o)/ 1 alH H.a k/2+ae
death 70 + Yo, 71 Pl Yo 11 kiv1+ 62 <% * /352>
T (T+v0)/2 = k
- 1 <’Yo +¥0. 7_1Yo0: T—l) D(k/2 + age)(§¥2)k/ 2tz +1
I VA € —1 (a Hf Hyay,
<M, < +00 X exp e 420% + Bs2

where we have used Lemmas 1 and 2 for the existencanf
M.
Thus, there exist8/; sufficiently large such that for any/,

so that we have the equation at the bottom of the page. We can
perform algebraic manipulations to obtain the following rela-

sufficiently large,6* € R*, 1 < k1 < kyax, andg,, € $y, tion:
Ky (A 6%, by gys A 6% by — L diy, ) (g = 00q "M (2 = x0s) + (00 + ¥ 71 Payo 7-1)
> Iy — ). R
2 ya; A</\42}( )M2 Mk, sﬂl( <Pk1—1) § f - . . .
N o o n = (ar —mz) M;™ (ax —m}) + 7 + Yo, r—1 Pr¥o: 71
eqtzmy%f];_heo?ran&tlon kernel satisfies the following in- with M;*l — (14 (/&) + (1/§?)HIH), m) =
- 9 . 2 MzH};yo T—1 andPi =1Ir — HkMzH{
K(Ao, 65, 0, o5 dAG, dég”, 0, depy) Thus, by integration, we have the equation at the bottom of the
> ((65210)p(Ao]0)dSE2dAg (11) next page, where we used Lemma 1, its corollary, and Lemma
with ¢ > 0 andy a probability density. 2. N _ u
Proof: From the definition of the transition kerngl Prop025|t|on 1: There exgstsn > 0 sucr; thathor all
KMo 83, 0, o; dA, dsi?., 0, dpy) (R Oy Ers @), (Ao By B 01,)) € (RS @)
Z U,()p((562|6g, 0, d(po, Yo: T_l)p(A0|0)d682dA0 ’C(kma)()(Aklv 6%7 klv (pkl; dAk27 dézzv k?v d(pkz)
2 (1 — C)p(632|6§, 0, d(po7 Yo: T_l)p(A0|0)d682dA0 Z [I{A’\'ﬁ Agy <J\42}(Ak1)77¢(dAk27 dé’%z? k27 d(pkz)
as0 < 1 —c¢ <€ w < 1, and we adopt the notationwhere
*® A *® A
11(87210) = p(6216%, 0, 9o, Yo 7-1)- W H(dA, d6%, k, dpy) = p(Alk)dAN(8%|k)d8 )0y ()6, 3 (dpr )
Lemma 5: There exist€ > 0 and a probability density:
2 - p+
such that for alb” € R, 0 < £ < kuax, andey, € @y, then 5For k = 0, we keep for notational convenience the same notation for the
p(6*282, k, @y, Yo 7—1) > En(6*2|k). transition kernel even ip, does not exist.

p(6*2|(52, ka okv Yo: T—l)p(ak7 O—I%|627 ka P, Yo: T—l)

Yo + Yo 71 PrYo:r—1 (Itwo)/2 a; H} Hay k/24ag
2 — g the
Tk

- <T42— l/o> (k)2 + o2 ) (2 )/ 202 )T/ 2 w0 /2412 (§42)E /2402 H1 M, [1/2

a}; H{Hkak /3(52
T2 | T 52

_]_ _
X exp <E [(ak - mk)TMk l(ak —my) + v + Y(TJ: r_1Pwyo. -1 +
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Proof: From Lemmas 3 and 5, one obtains, fgr = 1, Corollary 3: The transition kernekC is ¢-irreducible. As
o kmax p(dA, d62, k, deg,,|yo. 7—1) is an invariant distribution ok
and the Markov chain ig-irreducible, then from [27, Th. 1,
pp. 1758], the Markov chain ig(dA, dé6?, k, dey|yo. 7—1)-ir-
reducible. Aperiodicity is straightforward. Indeed, there is
X Ep(Ap, —1]k1 — 1) a nonzero probability of choosing the update move in the
empty configuration from (11) and to move anywhere in
X Al —1pe (6, _1[ky = 1) A8, 185, (depr, 1) - R? x {0} x {g,}. Therefore, the Markov chain admits
p(dA, dé&?, k, dg,.|yo. 7—1) as unique equilibrium distribution
Consequently, foky = 1, -- -, kuax, When one iteratek,,,, 27, Th- 1, pp. 1758]. R
times the kernek’, the resultmg transition kernel, which is de- Proposition 2: LetV(A, 6%, k, ;) = max{1, AV} for 0 <
notedC(kmex) | satisfies v, and then

K (Akw 61%1a kla Py 5 dA’ﬂ 1, défl 1 kl -1, d(pkl—l)

1
[I{Akl Ak1<]\42}(A )M M If

IC(kmax)(Ak (5;% k1 Or; dAS d(SSQ 0 d‘PS) AEI_EOC ICV(A, 627 k, (pk)/V(Av 627 k, (pk) =0

= / K& (A, 63, ki, g5 dig, d67, 1, dipy) where by definition
RT2x®
% IC(kn]ax—kl)(Al7 5127 1, ¢p; dAL, d(SSQ, 0, def;) KV(A, 62 k. @)
2 / / KO (s 63,5 by ppy s die, d67, 1, dipy) 2 / K(A, 82, k, @p; dA*, d6*2, k*, dy?)
R+2 J{0}x®, R+2 x®
x KOmeox k(A 67, 1, 3 dAG, 652, 0, dipf) x V(A*, 6, k%, ¢f).

= K(kl)(Aklv 61%17 klv Py 5 dA07 dégv 07 d(Po)

% K(kmax—kl)(AO’ 82,0, @y; dAE, d62, 0, de?) Proof: Now, using (10), we study the following expres-

¢ ko sion:
C
> liae o A Ag, M’“11< )
[A;I’Ak;<1\42}( ) 23 M1M2 ’CV(AkH 6]?7 k17 (pkl)

x ckmox =kt g(IA% 820, d?

(dAs, déo o) = by, Z Krirth
kaC (ky, ki +1) 7 Fho

where we have used Lemma 4 ah = ming— ... g, ) oo )
Jias acany PAR)AA > 0. The conclusion follows with X /W P63, |0y s K20 Py s Yo 1) 0,

A k—1 k
n = min{¢hmx, Milge (1, .o ke, Mz (§c/MiMo) v
Ghmax=k) 5 () - < P(Ar, |k2) AR, dAr,

p(6*2|627 k7 P, Yo: T—l)

gyt

<’70 + yg; T_1PkYO: T—1

(T+wg)/2
)

=),
R2* xR+ r <T —i2- Vo) F(k/Q + 04(52)(27r)k/2(Jz)T/2+'”0/2+1+k/2(5*2)’“/2"'“62+1|Mk|1/2

-1 . o . . /3
X exp [—202 ((an — mk)TMk l(ak —mg) + 0 + y& 7 1Pryo: 7—1) — 6*2} day, dffk
k

THvo)/2
<’Yo+Y(TJ; T1Pky0:T—1>( o)/ ﬁk/2+a52

M|/ 2 exp <_ﬁ§2 )
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