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Abstract

Program source is an intermediate representation of soft-

ware; it lies between a developer’s intention and the hard-

ware’s execution. Despite advances in languages and devel-

opment tools, source itself and the applications we use to

view it remain an essentially static representation of soft-

ware, from which developers can spend considerable energy

postulating actual behavior.

Emerging techniques in execution logging promise to

provide large shared repositories containing high-fidelity

recordings of deployed, production software. Tralfamadore1

is a system that combines source and execution trace anal-

ysis to capitalize on these recordings, and to expose infor-

mation from the “experience” of real execution within the

software development environment, allowing developers to

inform their understanding of source based on how it be-

haves during real execution.

Categories and Subject Descriptors D.2.5 [Testing and

Debugging]: Debugging aids, Tracing; D.2.6 [Program-

ming Environments]: Interactive Environments; H.3.3 [In-

formation Search and Retrieval]: Information filtering

General Terms Design, Experimentation, Languages

1. Introduction

“What were they thinking?”

This question, posed in one of several possible intona-

tions, is often a developer’s first reaction to unfamiliar source

code. As they gain familiarity with a large and complex

code base—such as an operating system kernel—they be-

come better able to infer the expected behavior of source

1 In [Kurt Vonnegut’s] Slaughterhouse-Five, Tralfamadore is the home to

beings who exist in all times simultaneously, and are thus privy to knowl-
edge of future events, including the destruction of the universe at the hands

of a Tralfamadorian test pilot. –Wikipedia
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code and to safely change it. Still, the relationship between a

developer and source code is frequently interrogatory, often

requiring instrumentation or debuggers to answer questions

such as: “What modifies this data structure?” or “What locks

are held when this function is called?”

The aim of the work described in this paper is to enhance

conventional tools that are used to interact with source code

in order to provide developers with a sense of the experience

of executing that source. By embedding execution details

directly within a source browser, we allow developers to see

the bigger picture; they are able to better understand things

like the frequency with which specific regions of code run,

the ranges of data that are processed, and the flow of control

through source.

Our intention is not simply to provide static annotations,

such as the call frequencies reported by a statistical profil-

ing tool. Instead, we approach program understanding and

debugging as an online query and analysis problem where a

view of program source may be used to specify constraints,

such as specific control flow paths or data values, that refine

the presentation of that source. Unlike a statistical profiler,

the annotations are a result of online queries and analyses of

complete execution traces applied to source views. Unlike

conventional debuggers, these analyses apply to existing ex-

ecution traces, and are able to summarize very large numbers

of executions, rather than focusing on a single (and generally

contrived) execution context.

The system we describe gathers detailed execution traces

associated with a specific source version and stores them in

a central location where they are analyzed and indexed. De-

veloper tools then interact with these traces by querying for

relevant portions of execution and then performing dynamic

analysis on them in order to adjust the presentation of pro-

gram source to the developer. For example, a source browser

might annotate a function like the one shown in Figure 3 to

summarize the specific control paths taken through it during

traced execution. This trace immediately assists the devel-

oper by allowing them to differentiate common from excep-

tional paths of execution. Furthermore, the developer may

focus their view of the source by selecting a specific control

flow path, collapsing the view to only show the lines exe-

cuted in that path.



How is this data structure used? What is this function for?

What reads and writes it? What calls it? (both immediate and higher-level callers)

How frequently is it accessed? How frequently is it called?

How much memory does it consume over time? What control flow paths are taken through it?

What values does it take? What values does it return?

What are the semantics of access (e.g., ordered array access,

atomic updates to all fields in a struct)?

Are calls to it correlated with specific data structures, like

locks?

Table 1. Some common questions asked in attempting to understand program source.

2. Understanding Source Code

Table 1 lists a set of questions that may be useful in at-

tempting to understand how source code behaves. Currently,

there are three broad classes of tools for answering this

kind of query: fine-grained tools, like debuggers, that assist

in deconstructing a single execution context; coarse-grained

tools, like statistical profilers, that summarize the high-level

behavior of an application; and static analysis tools, which

work directly with source, independent of actual execution.

Fine-grained and interactive analysis tools, such as de-

buggers, allow a developer to directly interact with running

software. These tools have the benefit of exposing complete

system state and allowing memory to be read and written.

However, they represent only a single context of a program’s

execution as it progresses through a single run. It is often

very difficult to attach a debugger to exceptional points in

program execution, especially where these points involve en-

vironmental factors such as long run times or external depen-

dencies like network connections. Although time-travelling

debuggers [King 2005, O’Callahan 2008] allow a program-

mer to move along the time axis in either direction, their

view is still constrained to one instant at a time. Program

slicing techniques [Weiser 1981] help automate the discov-

ery of causal relationships between statements for a partic-

ular execution context but provide little intuition about the

behaviour of the code across a broad range of inputs.

Coarse-grained summarization tools, provide aggre-

gate information about application behavior. For instance,

the GNU profiler uses program instrumentation to record

call frequencies at function granularity. Other tools make use

of hardware performance registers to provide instruction-

level execution frequencies in order to allow developers

to better understand where execution time is actually be-

ing spent. Dynamic binary analysis tools such as Val-

grind [Nethercote 2007] perform run-time analysis of ap-

plication execution to find problems like memory leaks or

inefficient cache usage. While these tools are clearly help-

ful, they require an a priori understanding of what analysis

should be performed, and produce summarized reports that

are unable to answer follow-up questions.

Static analysis of application source is used by a num-

ber of developer aids, from navigational and source browsers

to more complicated checking tools that validate the correct

use of locks [Engler 2003]. While static tools can perform

sophisticated source analysis, they rarely incorporate infor-

mation from actual execution. As a result, they have trouble

assessing the relevance of the wealth of information that they

are capable of producing.

These three classes of tools are each helpful for under-

standing source, but they are all inefficient in some way. De-

buggers require that developers spend considerable amounts

of time in uninteresting execution states while trying to find

the interesting ones. More broadly, all of these tools leave

developers cyclically performing a series of debugging or

analysis experiments over numerous independent runs even

though they are not changing the source.

2.1 Tralfamadore

Tralfamadore uses detailed execution trace data in an attempt

to unify the above three classes of tools. Our intention is

to present a view of source code—what a program should

do—superimposed with trace data and analysis, or what it

actually does.

Our system has two important high-level goals:

1. Simultaneously present the recorded execution of soft-

ware from many points in time. Tralfamadore aims to

preserve the detailed system view afforded by a debug-

ger, while also representing the collective execution of

the system over a long period of time. In other words, it

allows developers to become “unstuck in time”, present-

ing fine-grained analysis throughout many points in the

execution history.

2. Allow the developer to interactively refine their view of

execution. High-fidelity trace data should allow the de-

veloper to overcome the inefficiencies of cyclical debug-

ging, letting them phrase follow-up question as refine-

ments of the scope of execution being examined which

included progressively more detail. In short the devel-

oper should be able to “drill down” in order to better un-

derstand specific nuances of system behavior. In the ex-

treme, the developer should be able to refine their view of

trace data to a single execution context at a single point in

time, and ask the system to regenerate an instance of that

system, potentially attached to a conventional debugger.



3. Examples

This section demonstrates Tralfamadore’s ability to present

the detailed and complex information resulting from trace

analysis in an intuitive manner. Our prototype is in its in-

fancy but can already reveal several interesting properties,

as we demonstrate using the Linux source tree.

3.1 Function and Data Users

A major challenge to understanding the way that an indi-

vidual function or data structure is used is in identifying the

code that uses it. Static analysis, or even simpler techniques,2

are useful, but hardly sufficient. First, these tools are unable

to follow indirection. Second, they do not provide any in-

sight into the relative frequency of access, making it difficult

for developers to start with the “common case”.

Figure 1. Some users of the mutex lock function.

Figure 1 shows the Linux mutex lock function anno-

tated with trace data. Locking semantics aside, this func-

tion represents the common idiom of an accessor function

guarding a specific variable, in this case a mutex. The an-

notated code immediately provides the developer with three

useful pieces of information: First, while mutex lock is

called over 8000 times in the trace, the slow path is never

taken; if it were, a box highlighting a call on line 52 to

mutex lock slowpath3 would be shown. Second, it

is called by six different callers, resulting in independently

colored control flow tags in the annotation at the top of the

function. Finally, the actual frequencies of each of these call-

ing contexts is reported in the box at the bottom of the func-

tion which shows where control returns to; this allows the

developer to immediately focus on pipe read as the most

frequent caller.

3.2 Control Flow Indirection

In the example above, we revealed the users of a function.

In many cases, the inverse operation can also be very use-

ful. When calls are performed indirectly, e.g., through func-

tion pointers, static tools are easily stymied. While dynamic

analysis does not necessarily present a complete inventory

of control flow targets for a given site, it does allow detailed

insight into real invocations.

2 i.e., grep
3 mutex lock slowpath is the second parameter on line 52 and un-

fortunately runs off the edge of the figure.

Figure 2. Following an indirect call in sysenter entry.

Figure 2 shows one of Linux’s system call entry points,

sysenter entry. On line 340, the system call number

in register EAX is used as an offset into a jump table, in

an assembler invocation that is difficult to analyze statically.

Tralfamadore annotates this statement with a list of the jump

targets that are taken in the trace. As with the accessor

example above, it clearly presents a ranked list of system

calls, providing the developer with an intuitive sense of the

common uses of the underlying code.

Because it uses actual traces, it can display useful infor-

mation that is not available from profile-based tools. For ex-

ample, it is easy to see that of the 4 system calls invoked

in this slice of trace data, one (sys clone) always calls

syscall exit work after it returns, one (sys open)

never calls it, and two (sys read, sys write) sometimes

do but usually don’t. In Section 4.3, we discuss how this ex-

ecution context may be used to produce a refined view of

program flow satisfying non-local conditions.

3.3 Path Analysis

Figure 3. Processing 3 packet types in eth type trans.

In large functions, the set of possible paths through the

code can quickly become obscured by a cascade of com-

plex conditional jumps–this number is typically far less than

2
conditionals due to inter-branch dependencies. By present-

ing the set of actual paths taken, Tralfamadoremakes it much

easier to understand these dependencies. As a simple exam-

ple, consider the eth type trans function in Figure 3.



We can clearly see that there are three distinct control flows

corresponding to the type of ethernet packet being processed

(multicast, broadcast, or normal). The distribution of these

packet types during the trace is also presented, allowing a

developer to better understand the actual workload being in-

spected. For instance, in this example 5,988 packets are mul-

ticast or broadcast versus only 97 normal packets, imply-

ing that the host is engaged in relatively little active network

communication during the trace period.

4. System Architecture

Figure 4 presents an overview of Tralfamadore, and details

how it is currently configured with regard to the analysis ex-

amples shown in the previous section. Tralfamadore is di-

vided into three major components. The Execution Trace

Facility is responsible for recording execution and generat-

ing a persistent log. The Backend Analysis Engine performs

streaming transformations on the trace data, reconstructing

system state and mapping it back onto program source. Fi-

nally, a Client Interface interacts with both the analysis en-

gine and the program source repository to present informa-

tion to the developer.

The current system has focused exclusively on the record-

ing and analysis of the Linux kernel. As a complex piece of

multi-threaded low-level software, Linux is an excellent tar-

get for Tralfamadore. That said, the system is hardly limited

in its application to OS kernel code: we intend to extend it to

include application code, and to present source annotations

for languages other than C.

4.1 Execution Trace Facility

The work in this paper is unconcerned with the efficient cap-

ture and indexing of execution traces. A number of projects

already exist that aim to capture high-fidelity execution

traces in hardware [Xu 2003], software [Bhansali 2006] and

at the virtualization layer [Dunlap 2002]. Recent work has

demonstrated that the deterministic event logging and replay

systems in a commercial hypervisormay be used to decouple

trace capture from trace analysis and result in a trace collec-

tion overheads averaging 5% on common workloads [Chow

2008, Xu 2007]. Our prototype execution trace facility is a

modified version of the QEMU emulator [Bellard 2005].

The system produces two parallel trace components.

First, an Instruction Translation Table is extended whenever

the emulator translates a new basic block of program binary.

This table maps the current instruction pointer (EIP) to the

in-memory instruction that is actually emulated, and serves

two purposes. First, it reduces the size of the execution trace,

by only requiring complete instructions to be stored once

and referenced by EIP. Second, it allows the system to han-

dle changes to the executing binary (e.g., self-modifying

code) that occur during execution. Self-modifying code has

become increasingly prevalent in modern systems; the Linux

kernel, for instance uses it to tune lock implementations to

specific system configurations, and to adapt a single OS ker-

nel to specific virtual and physical boot environments.

The second component produced by QEMU is the Ex-

ecution Trace Log. This log identifies all instructions that

are executed and their associated side effects to memory and

register state. It also contains details of events such as in-

terrupts and exceptions. These two traces are then merged

into a singleDetailed Trace, which is the complete execution

log of the system. Splitting the initial trace into two compo-

nents is largely a matter of efficiency. Because QEMU stores

translated instructions in a code cache for performance, the

instruction trace grows at a rate much slower than the ex-

ecution trace. We have observed more than two orders of

magnitude difference between the two.

It is worth mentioning that the current QEMU-based im-

plementation is the second prototype execution trace facil-

ity that we have implemented. Our early prototype took ad-

vantage of the branch trace store (BTS) feature that has

been available on Intel processors since the Pentium 4 [In-

tel 2008], allowing the generation of a continuous log of all

taken branches. Branch trace information alone was insuffi-

cient to perform many dynamic analyses, and handling self-

modifying code in particular would have meant extending

the implementation to track modifications to code pages. We

measured the baseline overhead of BTS to be a 20-30x slow-

down on the system, before adding the extensions required to

achieve comprehensive traces. The QEMU implementation

is currently comparable to that of BTS, but incurs consider-

able overhead in writing out trace data. We have found the

emulator-based approach to be faster to extend, and gener-

ally more efficient than the processor feature.

4.2 Trace Analysis

The core of our system is a streaming trace analysis engine,

which allows a pipeline of dynamic analysis modules to be

applied to trace data. This approach allows us to quickly

develop and test new analysis components, and to process

very large traces without requiring large memory overheads.

We plan to extend the system to parallelize trace analysis

across a cluster of servers, eventually providing a scalable

analysis engine for large software systems.

Our analysis engine is currently implemented in approx-

imately 4500 lines of OCaml. It uses the trace we generate

from QEMU but could be easily adapted to use traces from

other tracing environments such as Nirvana [Bhansali 2006]

or Retrace [Xu 2007]. The trace data is read from disk and

converted to an internal representation that is passed through

the individual pipeline stages. Stages process trace data, and

are able to both annotate the stream with additional meta-

data and to build in-memory data structures, such as caches,

as look-up services and optimizations for later stages.

For the examples shown in Section 3, in which the system

is analyzing an execution trace of the Linux kernel during

a kernel compilation, Tralfamadore’s pipeline is configured

with the four stages illustrated in Figure 4. Analyzing the
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Figure 4. Trace analysis pipeline.

trace of a runningOS is challenging, as it containsmany con-

current execution contexts, such as system calls or interrupts

which may occur at any given point in time. The analysis

system must start with the system-granularity trace stream,

and refine the representation up to the function-granularity

annotations demonstrated in Section 3.

In the first stage, the system performs context extraction

to isolate individual flows of execution. This stage encodes

a heuristic that tracks task switch, interrupt, and exception

events as implemented by Linux.4 It then annotates the trace

stream with framing information to label the individual ex-

tents of execution associated with each execution flow. The

second stage performs per-context control flow by concate-

nating the extents of each individual labelled flow and con-

structing a list of the basic blocks that make up that context’s

flow. At the end of this stage, the execution trace has been

reduced into a list of all individual control flows through the

system, each described as a series of basic blocks.

The remaining two stages work upwards from this de-

composition. First, a function-level control flow analyzer ag-

gregates the individual control flows associated with each

function, and builds per-function control flow trees. Each

tree describes the set of unique control flows through a given

function, and annotates each flow with a frequency count.

The final stage takes the resulting trees and performs source

mapping annotations using DWARF debugging information

to further annotate the trees with information like source line

numbers and symbol names.

4The current heuristic uses interrupts, exceptions, and traps to mark the

start of a context, and iret/sysexit to mark the end. We use a Linux-specific

heuristic of tracking the esp0 field of the TSS to detect context switches.

4.3 Source Repository and Client

Tralfamadore presents annotated source listings to develop-

ers through a web-based source browser. We have modi-

fied the source browser interface provided by the Mercu-

rial [Mackall 2005] version control system to associate trace

data with the source that produced its executable. The trace

viewer adds trace annotations to the source file viewer, in-

cluding the lines comprising each basic block, the order of

execution of basic blocks, and the targets of branches, calls,

returns and so on. In our current prototype, the server pro-

vides precomputed summarizations of program flow (which

result from the final stage of the analysis pipeline above)

along with client-side javascript to visualize it.

To facilitate the interactive exploration of execution his-

tories, most of the work of visualization is performed on the

client side, within the user’s web browser. The client renders

graphs of execution based on the raw data about basic blocks

and branches taken, as supplied by the server-side extension.

The user can filter for particular execution paths by select-

ing one of the set of paths or selecting those where function

pointers take on particular values.5 For example, in Figure 3,

the user could choose to display only the path taken by mul-

ticast packets by selecting the branch passing through line

171. Similarly, in Figure 2, the user could distinguish invoca-

tions of the same system call that end up scheduling further

work before returning from those that don’t.

5. Future Work and Conclusions

Tralfamadore’s design hypothesizes that it will soon be

reasonable to build central repositories containing detailed

5 In the current prototype we only track control flow data such as function

pointers; eventually we will track all data changes and will support more

extensive filtering capabilities.



recordings of program execution, and explores how these

can be used to assist developers in understanding and im-

proving software. Even with current techniques, we believe

that this approach can be usefully applied, for instance, to

record regression test runs of software releases as a central-

ized tool for developers.

While the majority of related work has been discussed in

earlier sections of the paper, it is worth mentioning that re-

cent work in programming languages research has explored

building query languages that simplify the encoding of dy-

namic analyses [Martin 2005, Goldsmith 2005]. These sys-

tems have the same operational limitations of other binary

analysis tools (applications must be rerun to apply a new

query, for instance), but provide an elegant high-level in-

terface to evaluate execution. We hope to extend these ap-

proaches in the future to apply to whole-system traces and

to simplify the development of new analysis extensions.

The current prototype presents an end-to-end implemen-

tation of such a system, from execution recording, through

analysis, to presentation as an annotated interactive source

browser. Developers using the system are “unstuck in time”

and able to immediately visualize huge amounts of execution

as it pertains to individual areas of source. An immediate

area of development involves extending our analysis engine

to track the state of data in addition to control flow, allow-

ing us to better answer questions from the first column of

Table 1. We are extending the client to allow new queries to

be issued to the backend, and to have partial results reported

and displayed in an online manner as the trace is processed.

The current prototype is intended to act as a platform for

a considerably more general execution analysis system. As

Tralfamadore matures, we hope to be able to perform more

complex analysis tasks, including the identification of outly-

ing and exceptional execution states which may represent a

source of either bugs or attacks. We also hope to allow de-

velopers to retroactively state assertions regarding the execu-

tion of their systems, and to validate these assertions against

execution traces. With assertions, this would allow a popu-

lar defensive programming technique to be applied retroac-

tively and without the need for cyclic re-compilation and re-

execution as assertions are added or changed.

Tralfamadore is in its infancy, but we believe it demon-

strates the power of its approach to code analysis. When real

execution history is overlaid directly upon the source code

that produced it, the gap between intention and effect be-

comes narrow enough to be bridged. To experiment with a

(sometimes) live version of the system, point your browser

at http://tralfamadore.cs.ubc.ca/.
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