Brittle Systems will Break — Not Bend:
Can Aspect-Oriented Programming Help?

Yvonne Coady, Gregor Kiczales, Joon Suan Ong, Andrew Warfield and Michael Feeley
Unwversity of British Columbia

Abstract

As OS code moves to new settings, it must be con-
tinually reshaped. Kernel code however, is notoriously
brittle — a small, seemingly localized change can break
disparate parts of the system simultaneously. The prob-
lem is that the implementation of some system concerns
are not modular because they naturally crosscut the sys-
tem structure.

Aspect-oriented programming proposes new mecha-
nisms to enable the modular implementation of cross-
cutting concerns. This paper evaluates aspect-oriented
programming in the context of two crosscutting con-
cerns in a FreeBSD j.4 kernel — page daemon activa-
tion and disk quotas. The ways in which aspects al-
lowed us to make these implementations modular, the
impact they have on comprehensibility and configura-
bility, and the costs associated with supporting a pro-
totype of an aspect-oriented runtime environment are
presented.

1. Introduction

Simple system rules such as avoiding deadlock by en-
suring functions that block are not called while inter-
rupts are disabled, are difficult to verify when inspect-
ing kernel source code [5]. Not surprisingly, the coordi-
nation of more complex concerns, such as paging and
quotas, are even more challenging to reason about and
dependably manipulate. Successfully modifying the
implementation of such elements requires both manual
inspection of the multiple places in the system where
they have impact, and derivation of otherwise implicit
semantic information to understand the structural re-
lationships involved. A key part of the problem is that
their implementation is not modular.

The goal of aspect-oriented programming
(AOP) [11] is to better modularize crosscutting
concerns. Ideally, when modularized as aspects, the
structure of crosscutting concerns becomes explicit

and hence more comprehensible and configurable.
AOP thus has the potential to make OS code less
brittle and more amenable to change.

This paper provides an early assessment of our ap-
plication of AOP to kernel code. After a brief introduc-
tion to AOP, the semantics of specific linguistic mecha-
nisms are examined within the context of two practical
examples, page daemon activation and disk quotas. An
analysis of these implementations then highlights the
specific ways in which these aspects provide leverage
for reasoning about and configuring crosscutting im-
plementation more comprehensively. Next, the imple-
mentation of AspectC runtime support is described,
and microbenchmarks of our prototype are provided.
Finally, this work is put in context with other research
aimed at improving system structure.

1.1. AOP background

The AOP community has proposed linguistic mecha-
nisms intended to allow implementation of crosscutting
concerns as first class modules called aspects. To enable
a range of experiments for operating systems written in
C, we are developing AspectC [3]. Conceptually and in
syntax, AspectC is a simple subset of AspectJ [10]. As-
pect code, known as advice, interacts with other code
at function call boundaries and can run before, after
or around the call to, or execution of the function. The
central elements of the language are a means for des-
ignating particular function calls, for accessing param-
eters of those calls, and for declaring advice on those
calls. Capturing dynamic control flow context is done
using the cflow construct, which enables advice to de-
termine the calling context of a function’s execution,
and access arguments to functions higher up in the call
path.

1.2. AOP mechanisms

The following portion of a example aspect, called
profile low_and high level params, provides a brief



syntactic and functional introduction to mechanisms
advice use to specify when they run, and what values
they access.

aspect profile_low_and_high_level_params {

before (int x, int y):

execution(void low_level(x))

%% cflow(execution(void high_level(y, char)))
{

printf (‘‘low_level runs with %d when
high_level runs with %d’’,
x, ¥);

This aspect defines one advice. Looking at the first
line of the advice in detail, this line specifies that the
advice executes before certain points in the execution
of the system, and that it has two integer parameters,

x and y.
The second and third lines — syntactically between
the ’:” and the ’{° — define the execution points to

be the intersection of all executions of the low_level
function, and all functions that execute in the dynamic
context of an execution of high level. In other words,
executions of low_level dynamically within executions
of high level. The second line also says that the
value for x comes from the first argument to low_level,
and the value for y comes from the first argument to
high level. The second argument to high level is
ignored.

The body of the advice is regular C code. The ef-
fect of this advice is print a message and values for x
and y before all executions of low_level that occur
dynamically within an execution of high level.

2. Examples of Crosscutting Concerns

Examples of crosscutting concerns in kernel code in-
clude page daemon activation, disk quotas, prefetching,
scheduler activation, checksums, and profiling. This
section starts by providing detailed information about
the original implementation of page daemon activation
in FreeBSD 4.4. This example is then used to show how
we have refactored this code as an aspect and struc-
tured the implementation in one modular unit. Sim-
ilarly, the original implementation of disk quotas and
a corresponding aspect-oriented implementation of a
portion of the original code are shown. The remaining
examples are then surveyed, and put in context with
related work.

2.1. Page daemon wakeup

In FreeBSD 4.4, the page daemon is responsible for
freeing space in the virtual memory system. The page

File
[z(frequency)] Functions H
vm/vm_page.c vm_page_unqueue

[x4] vm_page_alloc
vm/vm_fault.c vm_fault_additional pages
[x1]
kern/vfs_bio.c

[x1]

allocbuf

Table 1. Scattering of calls to
pagedaemon wakeup across Vvirtual memory
and buffer cache code.

daemon imposes overhead for determining which pages
will be replaced and for writing them back to disk if
necessary. As a result, timing is an important factor
when waking the page daemon — we want to do it only
when the number of available pages has fallen below
some threshold. The function that wakes the page dae-
mon, pagedaemon wakeup, is invoked from 6 places in
the kernel code: 4 calls from VM page operations, 1 call
from page fault handling code, and 1 call from buffer
allocation. The specific files and functions involved are
shown in Table 1.

2.1.1. Page daemon wakeup aspect

We have reimplemented this page daemon wakeup
functionality in one aspect. Figure 1 shows the page
daemon aspect in its entirety, preceded by a few small
helper functions. The code uses named pointcuts to
clearly identify specific points in kernel execution when
paging may be needed. These four pointcuts, associ-
ated with unqueuing pages, allocating pages, faulting
pages, and allocating buffers respectively, are shown
in the top half of the aspect. Each of the four advice
declarations in the bottom half of the aspect uses one
of these named pointcuts to say what page daemon
wakeup test should happen at each point.

The first pointcut, unqueuing available_pages
names points in the execution when vm_page unqueue
executes in the control flow of any one of the four
functions listed, and makes the vm page_t parameter
to whichever of those four functions the execution is
within available to advice that uses this pointcut. The
first advice executes around these points, using the
AspectC keyword proceed to allow the originally in-
tended function, vm_page_unqueue, to execute.

Localizing this implementation in this way allows
us to see which global counters are used and when. As
highlighted in Figure 1, cache min is not used when
faulting, and free_reserved is not used when allocat-
ing buffers. In the original implementation, establish-



/* helper functions */

int pages_available() { return cnt.v_free_count + cnt.v_cache_count; }
int vm_page_threshold() { return cnt.v_free_reserved + cnt.v_cache_min; }
int vfs_page_threshold() { return cnt.v_free_min + cnt.v_cache_min; T

aspect pageout_daemon_wakeup {

/* when we are unqueuing */

pointcut unqueuing_available_pages(vm_page_t m): Named pointcuts identify

execution(void vm_page_unqueue(m)) points in the execution of the kernel ——
&& cflow(execution(void vm_page_activate(vm_page_t)) H

Il execution(void vm_page_wire(vm_page_t)) paglr;gr:nayge be ne.eded atany

Il execution(void vm_page_unmanage(vm_page_t)) one of these four pointcuts.

|1 execution(void _vm_page_deactivate(vm_page_t, int)));

/* when we are allocating new pages */
pointcut allocating_pages(vm_object_t object, vm_pindex_t pindex, int page_req):
execution(vm_page_t vm_page_alloc(object, pindex, page_req));

/* when we are faulting in pages */
pointcut faulting_pages(int rbehind, int rahead):
execution(boolean_t vm_pager_has_page(vm_object_t, vm_pindex_t, int*, int*))
&& cflow(execution(int vm_fault_additional_pages(vm_page_t, rbehind, rahead,
vm_page_t*, int*)));

/* when we are allocating buffer space */ Advice declarations make a relationship
pointcut allocating_buffers(vm_page_t m, int also_m_busy, const char* msg): between advice code and when it runs.
execution(int vm_page_sleep_busy(m, also_m_busy, msg))

&& cflow(execution(int allocbuf(struct buf*, int))); This advice executes around

points when we are

/* below threshold for VM when unqueuing */ unqueuing available pages()
around(vm_page_t m): — — .

unqueuing_available_pages(m) It has access to vm_page_t m.
{

int queue = m->queue;

proceed(m);

if (((queue - m—>pc) == PQ_CACHE) && (pages_available() < vm_page_threshold()))
pagedaemon_wakeup(Q) ;

Page unqueuing and allocating

both use vm_page_threshold()
/* page alloc fails, or below threshold for VM when allocing */
around(vm_object_t object, vm_pindex_t pindex, int page_req): (ShOWI"I attop of page)'
allocating_pages(object, pindex, page_req)
{
vm_page_t allocd_page = proceed(object, pindex, page_req);
if (allocd_page == NULL)
pagedaemon_wakeup() ;
else
if (pages_available() < vm_page_threshold())
pagedaemon_wakeup();
return allocd_page;

3
/* prefetching past modified threshold for VM */ Page fault handling uses
after(int rbehind, int rahead): a modified threshold,

faulting_pages(rbehind, rahead) without cntv cache min

if ((rahead + rbehind) > (pages_available() - cnt.v_free_reserved))
pagedaemon_wakeup(Q);

/* buffer allocing when below threshold for VFS */ All ting buff
around(vm_page_t m, int also_m_busy, const char* msg): ocating butTers uses
allocating_buffers(m, also_m_busy, msg) yet another threshold,

. vfs_threshold()

int had_to_sleep = proceed(m, also_m_busy, msg); h_ f

if ('had_to_sleep && ((m—>queue — m->pc) == PQ_CACHE) (S own at top 0 page)
&& (pages_available() < vfs_page_threshold()))

pagedaemon_wakeup();
return had_to_sleep;

Figure 1. The page daemon wakeup aspect captures the points in the system where the page daemon
may be activated if the system is running low on free pages and the possible activation of the daemon
at each point.



ing these threshold conditions requires visiting 3 files.
2.1.2. Impact of Page Daemon Aspect

This example shows how an aspect can structure the
implementation of page daemon activation within one
modular unit. The entire invocation behaviour of the
page daemon is captured in this single page of source
code. The impact on the paging code is that page dae-
mon activation is no longer scattered in the functions
listed in Table 1.

2.2. Quota

Disk quotas are an optional feature of FreeBSD 4.4,
configured through a combination of settings in both
a kernel configuration file and on a per-file system ba-
sis. Through a collection of 37 #ifdef QUOTA prepro-
cessor directives in UFS, FFS and EXT2, and 9 #if
QUOTA directives in EXT2, calculating and maintaining
disk quotas is scattered and tangled within 22 func-
tions from 10 files in these file systems, as shown in
Table 2. As indicated in the Table, there is overlap
between FFS and EXT2 with respect to quota.

Implementing quota with these 46 preprocessor di-
rectives supports efficient, coarse grained configurabil-
ity — we can turn off quota functionality and know it
is not part of the binary. Unless we are working di-
rectly with quota or code it affects, we can treat this
code separately, as it is not part of the core function-
ality of the file system. Preprocessor directives, how-
ever, make it difficult to reason comprehensively about
quota, and understand the structural relationships that
hold. They also obscure reading of the code quota is
scattered in.

2.2.1. Quota aspect

The aspect-oriented implementation of quota local-
izes the code in a single module. Because aspects
can be unplugged from the system by excluding them
in the Makefile, the aspect-oriented implementation
maintains the same unpluggability as the original pre-
processor based implementation.

Figure 2 shows the code for the VFS portion of
the aspect-oriented implementation of quota that uses
shared advice for FFS and EXT2 — the same quota
advice is attached to corresponding functions from the
two file systems. As with the daemon activation as-
pect, the relevant points in the execution of the pro-
gram are first identified as named pointcuts. The
last of these, vget, identifies all calls to ufs_ihashins
within the cflow of the execution of either ffs_vget

or ext2 vget. In this example, the 7 #ifdefs in this
portion of Table 2 are replaced with 3 advice shown in
Figure 2.

2.2.2. Impact of Quota Aspect

Looking at the pointcut declarations, we can see
which core file system functions and values are in-
volved, along with their similarities and differences
with respect to quota. Looking at the bodies of advice,
we see essentially what had been bracketed by prepro-
cessor directives in the original base code. Relative to
the preprocessor based implementation, unpluggability
has not been compromised. The impact on the rest of
the file system code is that the preprocessor directives
and associated quota functionality are no longer tan-
gled in the file system functions.

2.3. Advantages of these new perspectives

The intent of our aspect-oriented refactoring is to
better separate page daemon activation and disk quo-
tas from the code they crosscut. Aspect-oriented pro-
gramming naturally involves tool support, similar to
that of object-oriented class browsers, that supports
easy navigation between aspects and the code they ad-
vise. AspectC does not yet support these tools, how-
ever, extensions to Emacs, JBuilder, NetBeans and
Eclipse are available for AspectJ.

An aspect localizes both the operations of a cross-
cutting concern, and the declaration of points in the
system when the operations happen. The page dae-
mon and quota examples considered here demonstrate
how AspectC localizes crosscutting implementation in
a way that makes structural information associated
with crosscutting explicit. These aspects provide new
perspectives that help with page daemon wakeup and
file system quota in slightly different ways, respectively.

Knowing when the page daemon may be made
runnable makes it easier to reason about activation
system-wide. This perspective can be used to more
easily ensure a consistent and minimal set of activa-
tion points across subsystems.

In particular, seeing the thresholds used to deter-
mine daemon activation and the contexts in which they
are applied together makes it easier to reason about
subtle relationships that exist, such as: (1) page fault
handling has the only threshold check that does not
use cachemin, the minimum number of pages desired
on the cache queue, and (2) while VM uses the number
of free reserved pages, the number of pages reserved
for dealing with deadlock, VFS uses the more conserva-
tive value of free min, the minimum number of pages



Component H File System H

[z(frequency)] UFS | FFS EXT2
VNode ufs_access[x2]
[x21] ufs_chown[x3]
ufs_mkdir[x4] ext2 mkdir[x4]
ufs_makeinode[x4] ext? makeinode[x4]
VFS ffs_flushfiles[x1] ext2_flushfiles[x2]
[x9] ffs_sync[x1] ext2_sync[x1]
ffs_vget [x1] ext2 vget [x1]
ufs_quotactl[x1
ufs_init[x1] overlap
INode ffs_truncate[x2] ext2_truncate[x3]
[x8] ufs_inactive[x1]
ufs_reclaim[x2]
Alloc ffs_alloc[x3] ext2_alloc[x3]
[x8] ffs_balloc[x1]
ffs_realloccg[x1]

Table 2. Scattering of 46 #ifdef/#if QUOTA across UFS, FFS, and EXT2. The overlap shown in the
table refers to identical quota code in both FFS and EXT2.

aspect disk_quota {

pointcut flush(register struct mount *mp, int flags, struct proc *p):

execution(int ffs_flushfiles(mp, flags, p)) These pointcuts correspond

|1 execution(int ext2_flushfiles(mp, flags, p)); to file system operationsin both
FFSand EXT2, on which disk
pointcut sync(struct mount *mp): quota advice applies.

execution(int ffs_sync(mp, int, struct ucred*, struct proc¥*))
Il execution(int ext2_sync(mp, int, struct ucred*, struct proc*));

pointcut vget(struct inode *ip):
execution(void ufs_ihashins(ip))
&& cflow(execution(int ffs_vget(struct mount*, ino_t, struct vnode**)))
Il (execution(int ext2_vget(struct mount*, ino_t, struct vnode**)));

around(register struct mount *mp, int flags, struct proc *p):

flush(mp, flags, p) after(struct mount *mp):
{ sync(mp)
register struct ufsmount *ump;
ump = VFSTOUFS(mp); qsync(mp);
if (mp—>mnt_flag & MNT_QUOTA) {
int i;
int error = vflush(mp, NULLVP, SKIPSYSTEM|flags);
if (error) before(struct inode *ip):
return (error); vget(ip)
for (i = 0; 1 < MAXQUOTAS; i++) {
i (ump—>um_quotas[i] == NULLVP) int i;
continue; for (i = 0; i < MAXQUOTAS; i++)
quotaoff(p, mp, i); ip—>i_dquot[i] = NODQUOT;
¥
return proceed(mp, flags, p); }
3

Figure 2. Shared advice inthe VFS portion of a quota aspect: (a) around prevents ffs/ext2_flushfiles
from executing if vflush returns an error; (b) after attaches gsync to ffs/ext2_sync; (C) before
attaches quota operations to all executions of ufs_ihashins in the control flow of ffs/ext2_vget.



desired to be kept free.

Though the rationale behind the different thresholds
is not immediately apparent to a non-expert and is
not documented in the original implementation, it is
clear that thresholds are context sensitive. Coalescing
them into one module brings these differences to light.
Because they appear side by side, it should be easier for
the original implementor to document the rationale.

With respect to disk quotas, looking at the point-
cut declarations in Figure 1 is like looking at a more
detailed version of the structural relationships outlined
in Table 2. We can see which core file system functions
and values are involved, along with their similarities
and differences with respect to quota. We can now
reason about and configure quota across these file sys-
tems, sharing its implementation where appropriate.

This perspective can be used to eliminate redun-
dancy and more easily ensure the consistent application
of quota operations across file systems. In particular,
half the code indicated by the overlap in Table 2 can
be eliminated because it can now be shared between
file systems.

2.4. Other crosscutting concerns

In addition to page daemon activation and disk quo-
tas, we are exploring the aspect-oriented implementa-
tion of elements of prefetching, scheduling, networking
and profiling.

Prefetching involves coordination between high
level allocation of pages in VM, and subsequent possi-
ble low level deallocation in file systems. Tracing the
page-fault path in the FreeBSD v3.3 implementation
requires traversing 5 files, 2 levels of function tables,
and 4 changes in variable names. Our preliminary
aspect-oriented refactoring of normal and sequential
prefetching as path-specific customizations is reported
in [6].

Scheduling code spans interrupt handlers, device
drivers, and process synchronization. One of the chal-
lenges in the development of Bossa, a domain specific
language for schedulers, was to precisely identify all the
scheduling points, or circumstances under which the
scheduler is activated throughout the OS [4]. Extend-
ing the scheduler to respond to Bossa-defined schedul-
ing events requires access to the context of the sched-
uler invocation. To get an idea of how extensive the
challenge is to track this context, Table 3 shows the
functions that call the scheduler with mi_switch in
FreeBSD 4.4, along with the number of places where
those callers are called.

Networking involves some concerns that run the
length of the protocol stacks of communicating pro-

Clallers of Number of
mi_switch Clalls to Callers
tsleep 483

await 19

exit 95
issignal 95
uio_yield 4

usrret 9

Table 3. Control Flow to mi_switch in FreeBSD
4.4

cesses. Optimizing or customizing a protocol often re-
quires introducing integrated layer processing and/or
passing additional parameters to new functionality in-
troduced at each layer. Something as simple as sup-
pressing checksums to improve performance of con-
senting processes not concerned with data integrity re-
quires symmetrical changes to the sending and receiv-
ing stacks. One of the contributions of both the z-
kernel [8], a framework for implementing network pro-
tocols, and later Plexus [7], an extensible protocol ar-
chitecture for application-specific networking, was the
use of protocol graphs for representing standard pro-
tocols, with augmentation for modified functionality.
These systems used these graphs to represent new pro-
tocols in terms of a cohesive set of related modifications
to the standard.

Profiling inherently involves action at a variety of
points in the system. Whether it be for tracing execu-
tion, verifying system rules, or as a basis for building
more sophisticated gray-box information and control
layers [2], the ability to build a comprehensive profile
is a prerequisite for dependable systems. Preproces-
sor directives are commonly used to introduce unplug-
gable profiling code in the kernel. The /dev/usb di-
rectory in FreeBSD 4.4 contains approximately 50 such
#ifdef DIAGNOSTIC statements scattered throughout
roughly 10,000 lines of code. System-wide, there are
314 #ifdef DIAGNOSTIC directives.

3. AspectC runtime

Like AspectJ, most AspectC constructs are resolved at
compile time. They introduce no more overhead than
a call to an inlineable function containing the advice
body. (Though the pre-processor could inline these
directly, it currently does not, in order to help make
the pre-processor output more readable.)

But cflow is a dynamic construct and hence has
runtime overhead associated with it. We follow the
AspectJ implementation model for cflow, in which the
overhead is distributed across executions of functions



Granularity Cflow Overhead
Function (nanoseconds)
per-process cflow_add _pid_entry 777
cflow_del pid_entry 141
per-call cflow_push 79
cflow_pop 80
cflow_test 86
cflow get 73

Table 4. Microbenchmarks for core cflow
overhead.

that are cflow-tested, and dispatch to advice involving
a cflow test.

In the example from Section 1.2, a cflow_push
and cflow_pop are effectively added to the code for
high level. A cflow_ test is effectively added to
low_level, as part of testing whether the advice should
run. If the advice does run, cflow _get is called to ac-
cess the parameters. These push/pop/test/get oper-
ations would all use a process-local stack specifically
dedicated to high_level.

Our current implementation of the
push/pop/test/get runtime routines is trivially
naive. An open hash table tracks this information on
a per-process basis. A pool of entries, sufficiently large
to track the maximum number of processes in the
system, is statically allocated at boot time. Each entry
tracks the necessary cflow information for a single
process, uniquely identified by the process identifier
(PID).

Table 4 provides microbenchmarks for our proto-
type AspectC runtime. These benchmarks were taken
on a T00MHz Pentium-IIT processor. The first two
rows in the Table show the costs of adding and delet-
ing hash table entries during process initialization and
tear-down. The next four rows show the per-call costs
of the other push/pop/test/get routines.

4. Future work and open issues

In order to more rigorously assess the impact aspects
have on kernel code, issues of scalability, configurabil-
ity, extensibility, evolability and performance require
in depth cost/benefit analysis. Improving modularity
of OS kernel code will not be meaningful if aspects sub-
stantially adversely impact performance. Specifically,
we need to know the costs associated with sophisti-
cated compositions of aspects in terms relative to a
tangled implementation. In kernel code, we are often
faced with a fine granularity of tangling of multiple con-
cerns, making refactoring challenging. For example, IP
security (IPSEC) and IPv6 functionality (INET6), are

configured with compiler directives and implemented
using a shared if statement and goto labels as shown
below:

#ifdef IPSEC
#ifdef INET6
if (isipv6) {
if (inp != NULL &&
ipsec6_in_reject_so(m,
inp->inp_socket)) {
ipsec6stat.in_polvio++;

goto drop;
}
} else
#endif /* INET6 */
if (inp != NULL && ipsec4_in_reject_so(m,

inp->inp_socket)) {
ipsecstat.in_polvio++;
goto drop;

}
#endif /*IPSEC*/

Though AspectC is modeled after AspectJ, there are
several important differences that must be addressed.
This includes C-specific issues, such as code-bloat as-
sociated with the C preprocessor. Working within the
kernel may also demand that we explore different kinds
of runtime support than is required for user-level AOP.

5. Related work

Structuring kernel code to make it more amenable to
change common theme in many research projects. Cus-
tomization has been a leading motivating factor. Sup-
port for application-specific customization of services
range from operating systems that target specific pol-
icy, such as paging in Mach [13], to those that have
taken a more comprehensive approach, such as the use
of reflection in Apertos [21]. Approaches that struc-
ture client participation in OS policy include scheduler
activations [1], active networking [18], policy servers in
user space [20, 9, 12], and application-specific exten-
sions [15, 7, 17, 19]. Approaches aimed at improv-
ing structure in general include the use of frameworks
for end-to-end optimization [16], domain specific lan-
guages [14, 4], and gray-box techniques [2].

Our work is particular in its focus on the modular
implementation of existing crosscutting concerns that
map to key decisions in kernel design.

6. Conclusions

One of the reasons kernel code is brittle is that some
key system concerns naturally crosscut others. Cross-
cutting concerns are not modular when implemented
using traditional techniques — their implementation is
scattered and tangled throughout other modular units
of the system.

AOQOP is poised to help. It offers mechanisms that
allow us to explicitly structure crosscutting concerns



as new, first class modules called aspects.

In this paper, a subset of AOP mechanisms are ap-
plied in the context of two examples, page daemon ac-
tivation and disk quotas. The benefits of implementing
these particular concerns as aspects are improved com-
prehensibility and configurability. By further studying
the ways in which aspects can be used to improve the
modularity of key design decisions in an existing kernel,
we hope to promote dependability in future systems.

References

[1]

[6]

[7]

[9]

T. E. Anderson, B. N. Bershad, E. D. Lazowska,
and H. M. Levy. Scheduler activations: Effective
kernel support for user-level management of paral-
lelism. ACM Transactions on Computer Systems,
10(1), Februray 1992.

A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau.
Information and control in gray-box systems. In
18th ACM Symposium on Operating System Princi-
ples (SOSP), 2001.

AspectC. www.cs.ubc.ca/labs/spl/aspects/aspectc.html.
L. P. Barreto and G. Muller. Bossa: a language-based
approach for the design of real time schedulers. In Pro-
ceedings of the 23rd IEEE Real-Time Systems, 2002.
A. Chou, J. Yang, B. Chelf, S. Hallem, and D. En-
gler. An empirical study of operating system errors.
In 18th ACM Symposium on Operating System Prin-
ciples (SOSP), 2001.

Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Us-
ing aspectc to improve the modularity of path-specific
customization in operating system code. In Proceed-
ings of the Joint European Software Engineering Con-
ference (ESEC) and 9th ACM SIGSOFT In terna-
tional Symposium on th Foundations of Software En-
gineering (FSE-9), 2001.

M. E. Fiuczynski and B. N. Bershad. An extensible
protocal architecture for application-specific network-
ing. In Winter Useniz Conference, 1996.

N. Hutchinson and L. Peterson. The z-kernel: An
architecture for implementing network protocols. In
IEEE Transactions on Software Engineering, volume
17(1), 1991.

M. F. Kaashoek, D. R. Engler, G. R. Ganger,
H. M. Bricefio, R. Hunt, D. Mazieres, T. Pinckney,
R. Grimm, J. Jannotti, and K. Mackenzie. Applica-
tion performance and flexibility on exokernel systems.
In Proceedings of the 16th ACM Symposium on Oper-
ating Systems Principles (SOSP ’97), October 1997.
G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. Aspect] home page.
http://www.aspectj.org.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
oriented programming. In European Conference on
Object-Oriented Programming (ECOOP), 1997.

C. Maeda. Flexible system software through service
decomposition. In OOPSLA, August 1994.

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

(21]

D. McNamee and K. Armstrong. Extending the Mach
external pager interface to allow user level page re-
placement policies. In Technical Report UWCSE 90-
09-05, University of Washington, September 1990.

G. Muller, C. Consel, R. Marlet, L. P. Barreto, F. Mer-
illon, and L. Reveillere. Toward robust oses for appli-
ances: A new approach based on domain-specific lan-
guages. In Eurpoean Workshop on Operating Systems,
2000.

P. Pardyak and B. Bershad. Dynamic binding for
an extensible system. In Proceedings of the Second
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 1996.

A. Sane, A. Singhai, and R. Campbell. Framework
design for end-to-end optimization. In Proceedings of
the European Conference on Object-Oriented Program-
ming (ECOOP), 1998.

C. Small and M. Seltzer. A comparison of OS ex-
tension technologies. In Proceedings of the USENIX
Conference, 1996.

D. Tennenhouse and D. Wetherall. Towards an active
network architecture. ACM Computer Communica-
tions Review, 26(2):5-18, April 1996.

A. C. Veitch and N. C. Hutchinson. Kea - a dynami-
cally extensible and configurable operating system ker-
nel. In Proceedings of the 1996 Third International
Conference on Configurable Distributed Systems (IC-
CDS), 1996.

W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin,
C. Pierson, and F. Pollack. Hydra: The kernel of a
multiprocessor operating system. In Communications
of the ACM, volume 17(6), 1974.

Y. Yokote. The Apertos reflective operating system:
The concept and its implementation. In Proceedings of
the Conference on Object-Oriented Programming: Sys-
tems, Languages, and Applications (OOPSLA), 1992.



