
Exposing File System Mappings with MapFS

Jake Wires, Mark Spear, Andrew Warfield
University of British Columbia
{jtwires,mspear,andy}@cs.ubc.ca

Abstract

The conventional model of a file as a contiguous array
of bytes hides information about the physical location
of data from users. While this simplifying abstraction
can be useful in some cases, it can also lead to subopti-
mal performance and unnecessary overhead. A growing
number of applications – even those as basic as the Unix
cp utility – can benefit from increased access to file sys-
tem metadata. We present MapFS, a file system which al-
lows applications to create, inspect, modify, and remove
the mappings established between individual files and
physical storage. MapFS gives users increased power
and flexibility, facilitates true end-to-end application de-
sign, and optimizes many common file system tasks.

1 Introduction

The POSIX API provides a lowest-common-
denominator interface for working with file system
objects. While this interface has not changed for
decades, both the file systems which implement it and
the applications which consume it continue to grow
in complexity and sophistication. For many modern
applications, the POSIX API presents more of a barrier
than a useful interface. This is particularly evident for a
growing class of software which is expressly concerned
with issues like on-disk data placement. Rather than
making this information visible in a meaningful way, the
POSIX API intentionally hides it. We therefore present
MapFS, a file system which exposes many powerful
features of existing file systems via a novel API.

MapFS allows applications to create, inspect, modify,
and remove the mappings established between individual
files and physical storage. MapFS’s extended interface
is compatible with the standard POSIX interface, but it
gives end users greater knowledge and control of data
placement. By exposing the logical-to-physical mapping
behind file objects, MapFS allows applications to exploit

domain-specific knowledge to arrange data in optimal
fashion rather than relying on the assumptions of file sys-
tem developers.

It also facilitates the very common task of shuffling
data between files. A plethora of applications, ranging
from basic Unix utilities like tar to sophisticated video
editing software, spend a lot of time and effort moving
data blocks from one file to another. Mundane as this
task is, current file system interfaces do not provide an
elegant way to accomplish it. The naive approach of
using the POSIX read and write procedures is well-
documented for its inefficiency [9]. Specialized Linux
system calls like sendfile, tee, and splice offer
improvements when copying blocks to sockets or pipes,
but do not help when copying data from one file to an-
other. A clever use of mmap can eliminate some of the
page cache overhead of file-to-file copies, but it misses
an obvious point: modern file systems like ZFS [3] and
Btrfs [7] can perform this task in O(1) time simply by
manipulating file-to-disk mappings. What is actually
needed, and what MapFS provides, is the storage ana-
logue of mmap: an interface for controlling the mappings
between files and disk blocks.

Of course, MapFS offers more than just an optimized
copy routine. The MapFS interface can be used to im-
plement a variety of useful features, including dedupli-
cation, in-place deletion of file ranges, sub-file copy-on-
write policies, rapid file aggregation, etc. The bottom
line is that many applications today can benefit signifi-
cantly from having greater control over file system map-
pings. And the copy-on-write functionality already avail-
able in newer file systems makes it relatively easy to ex-
tend this control to users, because most of the requisite
machinery is already in place. By exposing this mecha-
nism to userspace applications via a clean API, MapFS
dramatically improves the performance of a number of
common file system tasks and enables novel implemen-
tations of new features.

1

2 Design and Implementation

A primary goal of MapFS is to give users greater control
of file mappings without exposing excessive file system
gore. File systems are complex, mission-critical pieces
of software which already support a fairly wide interface.
They have many moving parts and require sophisticated
data structures to manage file mappings. While we want
to give users greater control of these mappings, we do not
want to undermine file system reliability or push exces-
sive complexity into application logic – for example, cp
should not have to understand versioned b-trees to ma-
nipulate mappings. In this section we propose an initial
MapFS API and describe its implementation.

2.1 MapFS API

The interface exported by MapFS must strike a balance
between offering sufficient flexibility and providing a
clean abstraction. And since we fully expect many new
and unforeseen uses of MapFS as applications evolve to
take advantage of the new functionality, we want a rea-
sonably generic interface.

Table 1 presents our working API for MapFS. We cur-
rently provide three new file system operations: fmap,
fremap, and fsplice.
fmap returns a structure describing the logical-to-

physical mapping of a file range in an extent-based for-
mat. A number of file systems already offer similar func-
tionality via the fiemap ioctl.
fremap allows a region of one file to be mapped into

a region of another file. It takes a source file and offset, a
destination file and offset, and size and type parameters.
The type parameter allows applications to specify which
type of mapping should be created. At the moment we
only support copy-on-write mappings, but we are investi-
gating the potential for other types, such as shared-write
mappings. Existing mappings are split or removed al-
together to accommodate new mappings. Note that the
source file can be a block device, allowing applications
to control block allocation policies.
fsplice allows the insertion and removal of logical

address ranges in a given file. This function enables ap-
plications to insert and delete data at arbitrary file offsets
without having to shift the physical location of subse-
quent data. Newly inserted address ranges are not ini-
tially mapped to disk; reads to these ranges return all ze-
ros until they are written or remapped. fsplice dele-
tions deallocate any physical blocks mapped to the given
logical addresses and shift subsequent mappings to fill
the gap. This is somewhat similar to using ftruncate
to reduce the size of a file, except fsplice calls are not
restricted to operating from the end of a file – they can
be applied to arbitrary file ranges.

fmap(fd, off, size) returns map
fremap(sfd, soff, dfd, doff, size, type)
fsplice(fd, off, size, insert/remove)

Table 1: The MapFS API

2.2 Implementation
The fundamental concept behind MapFS does not re-
quire a radical new file system design or implementation.
Admittedly, older file systems like ext3 and NTFS would
require significant restructuring to support the MapFS
API. But newer file systems like ZFS and Btrfs can sup-
port it quite naturally, for a number of reasons:

• they are extent-based, allowing for an efficient de-
scription of arbitrary byte-granularity mappings;

• they support copy-on-write, making it easy to share
data and still provide isolation across mappings;

• they already implement much of the bookkeeping
required to support the MapFS API.

We have built a prototype implementation of MapFS
based on Btrfs. We make use of an existing Btrfs
ioctl, BTRFS IOC CLONE RANGE, to perform much
of the hard work of creating new mappings. MapFS
adds around 200 lines of code to the Btrfs sources and
presently supports only the fremap function. Mappings
are currently restricted to page granularity, but we plan
to support byte-granularity mappings as our implementa-
tion matures. Applications can still benefit from MapFS
in spite of this limitation by falling back to traditional
read/write solutions for non-aligned portions of map
regions.

3 Challenges

Even though MapFS is a natural extension of Btrfs, there
are a number of technically challenging issues to over-
come before the API can be fully supported. Chief
among these is the difficulty of allowing byte-granularity
mappings, which can wreak havoc on page alignment.
Other significant challenges include addressing the per-
formance implications of mapped files and ensuring
cache coherency in the face of arbitrary fsplice op-
erations.

3.1 Alignment
Figure 1 illustrates how arbitrary byte-granularity map-
pings can produce files that are poorly aligned on disk.
File f2 in the figure could have been created with the fol-
lowing invocation:

2

fremap(f1, 1, f2, 0, f1.length, CoW)

This would leave file f2 misaligned on disk, which has
a number of implementation and performance implica-
tions.

First, while Btrfs extents are well-suited for describ-
ing misaligned ranges, the current implementation is not
– there are various places throughout the code where
proper 4K alignment is assumed. This has lead to a
few bugs when dealing with misaligned mappings, but
resolving these issues is a small matter of programming.

More importantly, however, is the fact that bounce
buffers will likely be required to read and write mis-
aligned regions. This complicates the file system imple-
mentation and has negative effects on both performance
and resource consumption.

Given these difficulties, it is reasonable to ask whether
MapFS should support byte-granularity mappings at all.
When storage consumption is a bigger concern than IO
performance, misaligned mappings might be justified.
But it may prove wiser to force proper alignment on calls
to fremap, as is already done for read and write
calls against files opened with O DIRECT.

To better understand the tradeoffs involved here, we
plan to implement byte-granularity mappings and evalu-
ate the consequent overhead.

File f1

File f2

Figure 1: Alignment issues with MapFS Byte-
granularity fremap calls can lead to misaligned files; in this
case, file f2 has been remapped in such a way that it does not
begin at a page boundary on disk.

3.2 Performance Implications

While MapFS makes tasks like file aggregation almost
free, it can lead to fragmentation and reduced throughput.
Aggregated files, for example, will not be contiguous on
disk. While this tradeoff is not unique to MapFS (in fact,
it is inherent in any copy-on-write file system), it is worth
considering what can be done to reduce fragmentation
when possible.

For infrequently-accessed backup files, fragmentation
is an easy price to pay in return for storage savings and
rapid aggregation. On the other hand, when performance
is a crucial concern, it may make sense to defragment
such files. This could potentially be done automatically
in the file system by tracking access patterns and re-

arranging the on-disk layout of data to optimize for the
common case.

3.3 Open Issues

MapFS poses many questions about issues like concur-
rency, cache coherence, security, and portability. We list
a few of them here:

• It is not currently clear how non-length-preserving
operations in the middle of a file should affect users
who have file pointers positioned beyond the point
of insertion or deletion.

• MapFS operations will need to be synchronized
against in-flight block IO requests. This is presently
achieved with coarse-grain locking, but more effi-
cient solutions may be feasible.

• MapFS must guarantee consistency in the face of
arbitrary system crashes, so mapping updates will
likely need to be atomic or journalled.

• Special care will need to be taken to ensure that the
page cache remains coherent in the face of remap-
pings and splice operations.

• The MapFS API could potentially introduce new
attack vectors for illicitly manipulating file system
data. We expect existing access control mechanisms
like capabilities and file permission bits will provide
adequate security.

• Legacy applications will need to be modified before
they can benefit from MapFS. So far we have had
little trouble porting applications to the new API,
but finding ways to automate this process as much
as possible would provide an obvious improvement.

• It is unlikely that all file systems will support the
MapFS API, so applications will need fallback im-
plementations to remain portable. This could be
partially addressed by simulating MapFS function-
ality with standard POSIX API calls (much like
posix fallocate does), but it is not clear that
such a generic approach is optimal.

4 Evaluation

As part of a preliminary evaluation of MapFS, we have
ported two applications to use the new interface: tar,
the common Unix archival utility, and vhd-util, a tool
from the Xen [2] virtualization stack which manipulates
VHD [8] virtual disk images.

3

4.1 tar

tar is a standard command line tool for creating archives.
It defines a format for representing file system data and
metadata in a single archive file, with full support for ob-
jects like directories and symlinks. tar archives are often
retained as read-only backups of important file system
data.

Files are added to tar archives by appending the file
contents, along with metadata describing their names and
attributes, to the archive file. In a conventional file sys-
tem, this entails reading the files in their entirety and
writing verbatim copies of them to the archive file.

We modified tar to use the MapFS interface to directly
map data from target files into the archive file. This
completely eliminates the need to read or write the tar-
get files. Copy-on-write references allow the archive file
to reference the original data without requiring dupli-
cate copies. This essentially gives users explicit, fine-
grain control of the automatic, system-wide snapshots
provided by file systems like WAFL.

Because MapFS currently only supports page-aligned
mappings, not all files can be completely mapped into
the archive. Misaligned portions of files are copied in
the conventional manner. Our modified tar uses approx-
imately 1% of the disk space (including file data and file
system metadata) required for the standard tar.

We measured the time required to archive file system
hierarchies of varying size populated by Impressions [1]
using both the standard tar utility and our modified ver-
sion. The results plotted in Figure 2 are the average of
five runs for each configuration; standard variation is
shown. As expected, the modified tar performs much
better than its unmodified counterpart.

File system size (MB)

0 2048 4096 6144 8192 10240 12288 14336 16384

T
im

e
 (

s
)

0
60

120
180
240
300
360
420
480
540
600
660
720

tar w/ copy

tar w/ mapping

Figure 2: tar Performance in MapFS

4.2 vhd-util

Many virtualization systems use file formats like VMDK
and VHD to represent virtual disks. These file formats
support the notion of delta files, which are copy-on-write

point-in-time snapshots of a virtual disk. As illustrated in
Figure 3a, delta files are linked in a chain to their original
root image. As more snapshots are created, this chain
grows longer, and the overhead of traversing it increases.
It is thus necessary to prune snapshots periodically. This
is achieved by a process known as coalescing, whereby
all the data from one delta file is copied onto to its parent.
Once the copy is complete, the child delta file can be
deleted.

VHD snapshots can grow quite large, and coalesce op-
erations can often entail copying tens of GBs. We mod-
ified vhd-util, which is part of the Xen toolstack, to use
the MapFS interface for coalescing VHDs. Rather than
copying blocks from one VHD to another, the modified
vhd-util maps them directly into the destination file.

We measured the time required to coalesce VHD snap-
shots containing file system images of varying sizes,
again populated by Impressions. As Figure 4 shows, our
modified version of vhd-util significantly outperforms
the original.

0x0000 [empty]

[empty] [empty]

[empty]

[empty]

0x1011

0x11000x0111

0x1010

0x1000

[empty]

LBA 0 1 2

Root VHD

Child VHD

read(LBA:2)

(a) VHD chain

0x1000

LBA 0 1 2

0x11000x1010Final VHD

(b) Coalesced VHD

Figure 3: VHD Virtual Disk Images Figure 3a depicts
a VHD chain with 3 point-in-time snapshots. Reading from a
VHD chain entails visiting each VHD in the chain until valid
data is found; in this case, reading logical block 2 would re-
quire visiting all VHDs in the chain. Figure 3b shows the result
of a coalesce operation on the VHD chain: relevant data from
child snapshots are copied into the parent image and the chil-
dren images are deleted.

5 Future Work

We expect the MapFS interface will be useful for a va-
riety of interesting applications. Deduplication [6], cur-
rently a hot topic in storage research, could be imple-
mented for MapFS as a system-level service that runs
as a background userspace task. MapFS also provides a
natural interface for userspace defragmentation tools.

4

File system size (MB)

0 128 256 384 512 640 768 896 1024

T
im

e
 (

s
)

0

10

20

30

40

50

60
coalesce w/ copy

coalesce w/ mapping

Figure 4: vhd-util Performance in MapFS

Going further, MapFS could support novel mapping
relationships, such as 1-to-N mappings. Consider, for ex-
ample, ureadahead, which strives to reduce Linux boot
times by intelligently pre-loading the page cache with
files used during system startup. Disk seeks contribute to
much of the overhead ureadahead is trying to eliminate.
With MapFS, ureadahead could map boot files into an
on-disk lookaside cache, leading to faster, more efficient
boots. This would represent a switch from logical-to-
logical mappings (mappings from one file to another) to
logical-to-physical mappings. We are currently explor-
ing how best to expose this functionality.

Finally, an intriguing addition to MapFS would ex-
tend the mapping space to include targets other than disk
blocks, allowing file regions to be mapped to sockets
and even applications. One could imagine mapping a
file to a computationally expensive application and using
the page cache for memoization. Mappings could also
be used to install userspace hooks to file system code
paths, providing similar functionality to FUSE [10], the
userspace file system.

6 Related Work

Some of the ideas behind MapFS have already found
their way into the Linux kernel, emphasizing that the
need to expose file system metadata to applications is a
real-world problem. Basic support for exporting read-
only access to file mappings has evolved from the early
fibmap ioctl to the more recent fiemap [4] ioctl.
These interfaces are intended to make the mappings be-
tween logical files and disk blocks visible to applications.
fiemap, for example, has already been incorporated
into the Linux utility cp, allowing it to avoid reading
from holes when copying files, thus eliminating wasted
cycles and reducing page cache churn. MapFS is a nat-
ural extension of these methods, allowing users to create
and manipulate file mappings as well as read them.

MapFS is similar in spirit to the Exokernel [5], which

strives to give end users as much control over resources
as is safely possible. XN, the Exokernel’s storage sys-
tem, takes the radical approach of allowing applications
to define arbitrary file system metadata formats. Meta-
data structures are formalized by application-provided
untrusted deterministic functions, which the kernel uses
to enforce protection. MapFS metatdata, on the other
hand, is fixed in format and understood by the ker-
nel. But by exposing this metadata in a controlled way
through a narrow API, MapFS can extend significant
power and flexibility to applications, granting them sim-
ilar end-to-end benefits to those provided in Exokernel.

7 Conclusion

The assumption that applications do not care about data
placement is clearly wrong, but it seems baked into many
file systems. MapFS provides a novel interface which
offers users increased control of their data. In so doing,
it optimizes many common file system tasks and enables
elegant implementations of new features.

References
[1] AGRAWAL, N., ARPACI-DUSSEAU, A. C., AND ARPACI-

DUSSEAU, R. H. Generating realistic impressions for file-system
benchmarking. In In Proceedings of the 7th USENIX Conference
on File and Storage Technologies (FAST (2009), pp. 125–138.

[2] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In Proceedings
of the nineteenth ACM symposium on Operating systems princi-
ples (New York, NY, USA, 2003), SOSP ’03, ACM, pp. 164–177.

[3] BONWICK, J., AND MOORE, B. Zfs:
The last word in file systems, 2007.
http://www.sun.com/software/solaris/zfslcpreso.pdf.

[4] FASHEH, M. Fiemap, an extent mapping ioctl, 2008.
http://lwn.net/Articles/297696/.

[5] KAASHOEK, M. F., ENGLER, D. R., GANGER, G. R., BRICEO,
H. M., HUNT, R., MAZIRES, D., PINCKNEY, T., GRIMM, R.,
JANNOTTI, J., AND MACKENZIE, K. Application performance
and flexibility on exokernel systems. In In Proceedings of the Six-
teenth ACM Symposium on Operating Systems Principles (1997),
pp. 52–65.

[6] KULKARNI, P., DOUGLIS, F., LAVOIE, J., AND TRACEY, J. M.
Redundancy elimination within large collections of files. In Pro-
ceedings of the annual conference on USENIX Annual Technical
Conference (Berkeley, CA, USA, 2004), ATEC ’04, USENIX As-
sociation, pp. 5–5.

[7] MASON, C. btrfs wiki, 2011. http://btrfs.wiki.kernel.org.

[8] MICROSOFT. Virtual hard disk image format specification, 2009.
http://technet.microsoft.com/en-us/virtualserver/bb676673.

[9] STANCEVIC, D. Zero copy i: User-mode per-
spective. Linux Journal, 105 (January 2003).
http://www.linuxjournal.com/article/6345.

[10] SZEREDI, M. Fuse: File system in user space, 2011.
http://fuse.sourceforge.net.

5

