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Virtual Devices for Virtual Machines
Summary

Andrew Kent Warfield
May 5, 2006 Clare Hall College

Computer systems research has recently seen a huge resurgence of interest in
hardware virtualization, a software technique originally developed to man-
age mainframe computers in the 1960s. Using virtual machines (VMs), a
commodity PC may be divided into isolated “slices”, each perceiving that
it is executing on separate physical hardware. This thesis considers the ef-
fective virtualization of I/O devices on commodity hardware and presents
an approach that allows developers to add new functionality to a piece of
hardware as a software extension, running in an isolated VM. The new vir-
tual device is presented to the OS using the existing virtualized hardware
interface, allowing extensions to be easily applied across a wide range of
operating systems.

Isolating extensions in their own virtual machines is effectively a “sledge-
hammer” version of the system decomposition that was attempted by mi-
crokernels through the 1980s and 1990s. The VM-based approach has the
benefit of demonstrably working with a broad range of existing systems,
and allowing developers to build extensions in their OS and language of
choice. It concurrently maintains the benefits of isolation: extension crashes
are protected from disrupting the rest of the system, and extension software
has a clean and simple interface to devices. This thesis develops this work
by demonstrating the construction of a set of device extensions for various
pieces of hardware. Additionally, this thesis demonstrates that device exten-
sions may be aggregated within cluster environments to implement device
services, allowing specific device types to be treated as a service throughout
a cluster of virtual machines.

Several examples are presented to validate the flexibility of device exten-
sions: A packet symmetry-based rate limiter demonstrates a single-host net-
work extension that prevents VMs from issuing common forms of denial
of service attacks. Parallax, a distributed storage system for VMs, demon-
strates the implementation of a device service for the management of storage
within a cluster. Finally, device extensions are combined with other virtu-
alization projects to develop deployable system-wide extensions to virtual
hardware.
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Chapter 1

Introduction

Motivation1.1

The development of system software to support access to I/O devices is a

source of many challenges. For years, OS developers have been tasked with

efficiently bridging the gap between the low-level interfaces of a constantly

evolving set of device hardware, and the semantically richer, high-level in-

terfaces required by application software. While the design space between

these two interfaces is broad and allows considerable room for innovation,

it has resulted in a wide variety of OSes for common, commodity hardware

that each have a different and generally incompatible approach to interact-

ing with devices.

Device driver code is hard to write, and has been described as the most

error-prone subset of modern operating systems [CYC+01, SBL03]. As the

driver-OS interface is not standard across systems, device vendors are unable

to develop robust commercial drivers for every OS on which a driver will be

used. The lack of driver availability and the difficulty in supporting devices

as they emerge have been described as a stifling factor in the development of

new OSes [FBB+97].

As the task of supporting devices on an OS is difficult, the act of extending

them—installing software to augment the functionality of a given device—is

very hard indeed. Despite the fact that many interesting research projects

have shown the power of innovation at the device interface to build ex-

tensions such as secure [GNA+97], distributed [LT96, SFV+04], or ver-

sioned [WCG04] storage and packet filtered [EK96, PF01] or intrusion-

detecting [WCSG04] network interfaces, these efforts have had only min-
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1.2. Contribution

imal impact on real systems. Moreover, development of these extensions is

complicated by the eccentricities of individual OS device interfaces, and the

resulting code is invariably hard to maintain or port to other systems.

As commodity systems have become increasingly powerful, and organiza-

tions have become concerned with the degree of utilization of individual

physical servers, there has been a renewed interest in hardware virtualiza-

tion, a technique originally developed for mainframes in the late 1960s

which allows a physical host to be partitioned into a number of virtual

machines (VMs). The availability and growing deployment of hardware vir-

tualization on commodity systems has interesting implications for problems

relating to device management in systems software; virtualization results in

both challenges and opportunities in managing devices.

On one hand, hardware virtualization presents a challenge in that it is unsafe

to grant concurrent access to a device’s physical interface to more than one

operating system. A system providing virtualization is thus responsible for

safely multiplexing low-level device access among running virtual machines.

Not only must VMs be able to share access to physical devices such as disk

and network, but they must be prevented from interfering with one another

either maliciously or accidentally.

Conversely, virtualization presents developers with the ability to interact

with devices below the OS’s hardware interface. As virtualization soft-

ware runs underneath OS code, interactions with virtualized device hard-

ware must pass through it. This unique position allows the introduction of

device extensions that are inherently both isolated from and portable across

the range of OSes that run in the virtualized environment.

Contribution1.2

It is the thesis of this work that a well-designed approach to device virtual-

ization addresses the major problems of portability and extensibility in the

management of devices on commodity systems. Using the Xen virtual ma-

chine monitor, a widely-available and robust VMM that has been developed

at Cambridge over the past four years, this work demonstrates a set of ap-

proaches to the virtualization and extension of I/O devices for commodity

2



1.3. Outline

hardware. The techniques described are validated through the development

of a set of practical, useful device extensions targeted primarily at large

computer installations, such as data centres, where virtualization is used.

The initial contribution of this work is the design and implementation of

an architecture for the development of device extensions. The combination

of a physical device and extension software that modifies the behaviour of

that piece of hardware is described as a soft device. I have constructed

a set of software tools that allow the construction of soft devices for the

disk and network device interfaces that exist in Xen today. This approach

demonstrates that extensions may be written and executed in user-space of

an isolated VM, allowing developers complete freedom to innovate while

maintaining reasonable performance.

The second contribution of this thesis is the aggregation of soft device-based

extensions to form device services. Device services allow device extensions

to be composed into cluster-wide facilities which serve large numbers of

virtual machines.

To demonstrate the range, scope and flexibility of these techniques, I have

explored the construction of both soft devices and device services for a va-

riety of applications. An additional contribution of this thesis is the explo-

ration of a set of such examples, specifically storage, traffic management,

and whole-system extensions, that are targeted to address relevant problems

in clustered VM environments.

Outline1.3

The remainder of this thesis is structured as follows:

Chapter 2 is a discussion of the relevant background and aims to familiarize

the reader with the current state of hardware virtualization in general and

Xen in particular.

Chapter 3 describes the complete set of mechanisms for device virtualization

and extension advocated by this thesis. It begins with a detailed presenta-

tion of the split driver model for providing virtual devices in Xen. Next it

presents the soft device architecture for constructing isolated device exten-

3



1.4. Published Results

sions, and demonstrates implementations of extension support for both disk

and network devices. The chapter concludes with a description of the device

service model for aggregating device extensions in cluster environments. The

remaining chapters of the thesis validate this architecture by demonstrating

examples of soft device-based extensions.

In Chapter 4, I discuss extensions for the support of network interfaces.

After surveying the challenges faced in virtualizing network devices, the

chapter presents an example device extension, a packet symmetry-based rate

limiter. This extension monitors outbound and inbound packet counts and

prevents VMs from being used maliciously to mount denial of service at-

tacks.

Chapter 5 presents Parallax, an example device service to address the stor-

age requirements of virtualization-based clusters.

Chapter 6 presents a final example of the application of device services.

This chapter considers the combination of the techniques developed in this

thesis with more sweeping changes to the virtualization system in order to

realize full-system architectural change. The chapter presents two examples

of such change: extensions to support whole-system debugging, and taint-

based memory protection.

Chapter 7 places this thesis in the context of relevant related work and

Chapter 8 concludes and discusses directions for future investigation.

Published Results1.4

Some aspects of this work have been described previously. In reverse chrono-

logical order, the list of related publications is as follows:

1. C. Kreibich, A. Warfield, J. Crowcroft, S. Hand and I. Pratt. Using

Packet Symmetry to Curtail Malicious Traffic. In Proceedings of the

ACM Workshop on Hot Topics in Networks (HotNets), College Park,

MD, 2005.

Describes initial results regarding the packet symmetry scheme pre-

sented in Chapter 4.

4



1.4. Published Results

2. A. Warfield, R. Ross, K. Fraser, C. Limpach and S. Hand. Paral-

lax: Managing Storage for a Million Machines. In Proceedings of the

USENIX Workshop on Hot Topics in Operating Systems (HotOS),

Santa Fe, NM, 2005.

Presents the Parallax prototype, which is extended by the work de-

scribed in Chapter 5.

3. S. Hand, A. Warfield, K. Fraser, E. Kotsovinos and D. Magenheimer.

Are Virtual Machine Monitors Microkernels Done Right? In Proceed-

ings of the USENIX Workshop on Hot Topics in Operating Systems

(HotOS), Santa Fe, NM, 2005.

Argues that virtual machine monitors provide a practical means of

achieving the isolation goals sought by microkernel research. The

theme of this paper represents the nucleus of the argument presented

in this thesis.

4. C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt

and A. Warfield. Live Migration of Virtual Machines. In Proceed-

ings of the USENIX Symposium on Networked Systems Design and

Implementation (NSDI), Boston, MA, 2005.

Presents the design and implementation of live-migration support for

Xen-based virtual machines. The ability to migrate running virtual

machines punctuates the separation from real hardware that exists in

these environments, and helps form the basis of the argument for de-

vice services presented in Chapter 3, and illustrated by Parallax in

Chapter 5.

5. A. Warfield, S. Hand, K. Fraser and T. Deegan. Facilitating the De-

velopment of Soft Devices. In Proceedings of the USENIX Annual

Technical Conference, Anaheim, CA, 2005.

Discusses the initial implementation of the block tap, an instance of a

device tap as presented in Chapter 3.

6. K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield and M. Wil-

liamson. Safe Hardware Access with the Xen Virtual Machine Mon-

itor. In Proceedings of the 1st Workshop on Operating System and

Architectural Support for the On-Demand IT Infrastructure (OASIS-

5



1.4. Published Results

1), Boston, MA, 2004.

Motivates the use of virtual machine monitors to enhance the reliabil-

ity of legacy device drivers for commodity systems, and explains the

driver architecture used to share I/O devices across virtual machines

in Xen. This paper presents an initial discussion of split drivers, which

are detailed in Chapter 3.

7. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt and A. Warfield. Xen and the Art of Virtual-

ization. In Proceedings of the 19th ACM Symposium on Operating

Systems Principles (SOSP), Lake George, NY, 2003.

Provides a detailed technical description of the initial public release of

the Xen virtual machine monitor.

8. A. Warfield, S. Hand, T. Harris and I. Pratt. Isolation of Shared Net-

work Resources in Xenoservers. PlanetLab Design Note PDN-02-

006, 2002.

Describes early approaches taken to the virtualization of network de-

vices. This paper predates the driver architecture that is used in this

paper.
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Chapter 2

Background

This chapter presents background material relevant to this thesis. The ma-

terial here is not a comprehensive presentation of related work, which is

discussed at the end of this thesis in Chapter 7. Instead, it is intended to fa-

miliarize the reader with the relevant aspects of hardware virtualization and

some specific details of the Xen virtual machine monitor. While hardware

virtualization is a long established technique in systems research, it has only

returned as a common approach on commodity systems over the past few

years. This chapter attempts to set the stage for the remainder of the thesis,

first by explaining why virtualization has recently become important again

and second by detailing specific aspects of virtualization as realized by Xen.

After describing the design and implementation of Xen, the chapter ends

with a presentation of live VM migration. Live migration allows a running

virtual machine to be relocated to a new physical host and has been imple-

mented on Xen. Migration illustrates the ability of hardware virtualization

to provide useful new OS-agnostic features, and serves as a motivating ex-

ample for the device-specific extensions that are presented throughout the

following chapters.

The Virtualization Renaissance2.1

A virtual machine monitor (VMM) is a narrow layer of software that pro-

videss a set of isolated execution environments that closely match the un-

derlying physical computer. Each of these environments is called a virtual

machine (VM), and may contain an operating system and associated set
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Figure 2.1: Overview of a VMM-based System

of applications. A major aspect of virtualization is the focus on maintain-

ing high performance relative to the underlying hardware. As such, in his

1972 thesis, Goldberg distinguishes virtualization from more heavy-weight

techniques such as emulation and simulation by observing that a VM is “a

hardware-software duplicate of a real existing computer system in which a

statistically dominant subset of the virtual processor’s instructions execute

on the host processor in native mode” [Gol72].

The technique of virtualizing hardware dates back to the 1960’s, when it

was used to divide resources on mainframe computers into coarse-grained

partitions. Over the past few years, VMMs have returned as an attractive

technique on commodity systems for many of the same reasons that they

were initially deployed on mainframes. The core property achieved by a

VMM is that of isolation; VMMs allow a powerful physical machine to

be partitioned into a set of virtual machines, each of which may be sep-

arately scheduled, configured, administered, and otherwise managed. The

importance of coarse-grained isolation in a VMM environment cannot be

overstated, and the point will be revisited throughout this chapter as it is

fundamental to the argument made by this thesis.

Role of a Virtual Machine Monitor2.1.1

Stated briefly, a VMM provides a rigid partitioning of the low-level hard-

ware resources that are typically managed by an operating system. By divid-

ing the system at such a low level, OSes may continue to be deployed with
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little or no change; the VMM simply allows a multiplicity of OSes to share

a common physical host. Additionally, as the resources divided by a VMM

are simple, its complexity is considerably lower than that of an OS. Unlike

OSes, VMMs maintain a minimum of state, and are solely responsible for

the enforcement of resource partitioning within a system.

The small size of VMMs, and their use of simple hardware interfaces makes

them attractive for a variety of roles in the management of systems. These

roles are largely the same today as they were in their deployments on main-

frames. Goldberg’s 1974 article in IEEE Computer, “Survey of Virtual Ma-

chine Research” [Gol74] describes a variety of applications of VMMs, in-

cluding the hosting of legacy applications that are “locked” to a specific

operating system, facilitation of OS development and testing, and the test-

ing and debugging of networks and distributed systems by virtualizing them

on a single physical host.

VMMs in Modern Systems2.1.2

VMMs have become attractive again in modern systems for reasons similar

to those which motivated their application on mainframes: Commodity har-

ware has become sufficiently powerful to host multiple virtual machines on

a single physical host, while the benefit of virtualization to administrators

justifies deployment in many environments.

Cost2.1.2.1

Why has there been such a sudden resurgence of interest into the application

of virtualization on commodity systems? As with many techniques in soft-

ware systems, the decision to use virtualization is largely based on consider-

ing the trade-offs between performance overhead and functional benefit. In

addition to the overhead of virtualization itself, the introduction of a VMM

requires that a system be sufficiently powerful as to be divided into a set of

virtual machines, each of which will run as if it were a single physical host.

Each “slice” of the system must have sufficient resources to reasonably run

an operating system and its applications. In the case of Xen, which is dis-

cussed in more detail in Section 2.2, the physical machine is intended to be

divided into up to 100 VMs, and the overhead of virtualization is demon-

strably very low. Using VMMs such as Xen, commodity servers easily have
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sufficient resources to be divided into a small number of virtual machines,

affording this cost of virtualization. This fact was initially demonstrated

in our paper on Xen [BDF+03], in which commodity server hardware is

partitioned and VMs run industry-standard benchmarks in parallel.

Benefit2.1.2.2

The evolution of modern hardware has reached a point at which the de-

ployment of virtualization is practical. As such, it is worth considering the

benefits provided by virtualization that are motivating its adoption. As men-

tioned above, the key benefit provided by a VMM is isolation. Independent

of virtualization, modern systems have adopted a model in which individual

server applications are often each installed onto a separate physical host.

This one-to-one mapping between software servers and physical servers is

largely a result of the tight coupling between server applications and the

OSes that they run on: isolating servers onto separate physical machines

avoids undesirable interactions between configuration and administration

of the host. The unfortunate consequence of this trend is that server rooms

are increasingly full of mostly idle physical machines: a study by IBM pub-

lished in 2003 reported that the average daytime utilization of Windows

servers across an organization was less than 5%, and 15-20% for UNIX

servers [Hea03].

The desire to address wasted physical resources—resources such as space,

cooling, and power consumption—has been largely responsible for the revi-

talization of virtualization research and development. Large organizations

are increasingly moving towards a utilization-based approach to manage-

ment, and are using virtualization to consolidate servers onto smaller num-

bers of physical hosts.

While this trend is likely the largest overall motivation for the renewed in-

terest in virtualization, there are a host of other benefits offered by VMMs

on modern systems. Applications such as testing and development, and

support for legacy applications and heterogeneous OSes, which were major

applications of VMMs in the sixties and seventies [Gol74] still apply. More-

over, researchers are using VMMs for a variety of new applications such as

intrusion detection and forensics [DKC+02, JX04,VMC+05], configuration

management and debugging [WCG04], and software debugging [KDC05,

HH05], to name only a few.
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Challenge2.1.2.3

While the deployment of VMMs is justified in terms of the trade-off between

overhead and benefit, the development of functional VMMs for commodity

systems has been very challenging. Unlike the mainframes on which virtu-

alization was initially deployed, the x86 architecture was not designed with

virtualization in mind. The processor is not inherently virtualizable, and re-

quires work-arounds in software to make virtualization efficient. Section 2.2

details the design of Xen, and the challenges presented in virtualizing the

x86 architecture.

High-level Principles2.1.3

Prior to the technical overview of Xen, it is worth emphasizing two high-

level aspects of virtualization design that have emerged as significant insights

through work with Xen. The two points presented here have had a great

deal of influence on the design and development of the work described in

this thesis, and it is useful to consider them further.

The Value of Coarse-Grained Isolation2.1.3.1

As mentioned above, the isolation provided by VMMs is provided at a low-

level and is both very strong and very coarse-grained. VMs are assigned a

partition of system resources including disjoint regions of physical memory

and storage, and have strongly enforced CPU allocation. It is important to

observe that this isolation is not limited to the performance-centric division

of resources: As alluded to throughout this chapter, VM-based isolation is

very near to that of running on a separate physical host. As such, isola-

tion also applies to properties such as configuration, administration, and

security.

As the interface between the VM and the VMM is very narrow, the VMM

itself maintains very little per-VM state. This property has enabled func-

tionality that has been incredibly difficult to achieve in modern operating

systems, where the OS stores considerable per-process state. Live VM mi-

gration, discussed later in this section, is an example of such a benefit: While

process migration has typically been very difficult to achieve and is not pro-

vided by any modern OS, VM migration is relatively simple to implement
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Figure 2.2: Division of the Administrative Role

and is supported by several existing VMMs.

The isolation provided by VMMs has been likened to the isolation ad-

vocated between system components by microkernels, with some VMM

designers having gone so far as to describe their own systems as micro-

kernels [WCSG04] while some microkernel researchers describe their sys-

tems as VMMs [LUSG04]. A discussion of the success of the VMM ap-

proach, relative to that of microkernels is presented in [HWF+05]: In brief,

we propose that although the isolation and architectural elegance provided

by microkernel systems is a noble goal, it fails to recognize the demands of

existing systems running existing applications. By treating the OS as a func-

tional unit and maintaining application compatibility within OSes, VMMs

have been remarkably successful in impacting real systems. The design of

VMMs and VMM-based extensions is founded on the treatment of VMs

largely as black boxes, and focusing on the management of low-level re-

sources and entire operating systems.

The Division of the Administrative Role2.1.3.2

In addition to the isolation between individual VMs provided by a VMM, it

is worth considering the impact of the horizontal division that is introduced

between a VM and the hardware that it runs on. A major impact of the

introduction of a VMM is that it bisects the management of a physical host,

and the application of policy decisions within the system as a whole.
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In a non-virtualized system, there is effectively a single administrator. All

software-based management requires administrative access to the OS. How-

ever, physical administration also requires this access in order to safely shut

down and restart machines that are being serviced. The system adminis-

trator is concurrently responsible for enabling functionality on a host, by

installing and configuring new software, and for policing the behavior of

that host, for instance by preventing its use for malicious intent.

As illustrated in Figure 2.2, the introduction of a VMM divides this admin-

istrative role in two. As isolated units, VMs are administered by individuals

responsible for the software that is installed on them. This administration

involves traditional OS management activities such as installing software,

configuring application and OS configuration, and managing users. All of

these management tasks are applied to a virtual machine, and the adminis-

trator is unconcerned with the physical hardware that underpins that VM

save for the fact that it works as expected. Policy decisions made at the VM

level concern high-level primitives, such as files and users, that exist within

the context of that virtual host.

The physical hardware then is managed by a second, lower-level facilities

administrator. This role is concerned with the upkeep of physical hardware,

and the enforcement of low-level policy within the system. The isolation

provided by the VMM reflects the sort of low-level policy enforcement that

the facilities administrator is concerned with: VMs should receive their ex-

pected share of resources, they should be prevented from interfering with

other hosts or from otherwise impairing the overall physical environment.

The isolation provided by the VMM is particularly beneficial in this sense

in that the consequent ability to migrate running VMs between physical

machines enables low-level administration without requiring access to indi-

vidual virtual machines.

In short, modern systems have demonstrated both the capacity and the need

for the deployment of hardware virtualization. The adoption of virtualiza-

tion is a powerful tool that allows for strong isolation between OSes, and

the division of the administrative role. In some senses, the move toward

virtualization is a return to the centralized physical resource management

that was provided by mainframes, while continuing to take advantage of

commodity hardware, and allowing distributed software administration.
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The remainder of this chapter presents an overview of the Xen virtual ma-

chine monitor, which has been developed at the University of Cambridge

over the past four years and on which the remainder of this thesis is based.

The Xen Virtual Machine Monitor2.2

While there is a demonstrable case for the application of virtualization tech-

niques on commodity hardware, the development of effective virtual ma-

chine monitors for such systems is a non-trivial task. In a 1974 paper, Popek

and Goldberg describe a set of formal requirements for hardware systems to

support virtualization [PG74]. The key observation of their work is that in

order to directly support virtualization, all instructions which access privi-

leged system state must result in a trap when executed outside of supervisor

mode. This requirement provides the VMM the opportunity to safely vali-

date and issue privileged operations on the behalf of individual virtual ma-

chines, as the operating systems within these VMs no longer execute directly

in supervisor mode.

The x86 architecture does not meet the criteria set out by Popek and Gold-

berg. Specifically, the x86 instruction set contains privileged instructions

which, when executed in user mode, do not generate a trap and so do not

allow the VMM to intervene. For example, the PUSHF and POPF instruc-

tions allow the contents of the processor state flags register (EFLAGS) to

be loaded to and from the top of the stack. The EFLAGS register is used

by applications to identify conditions such as arithmetic overflow. How-

ever, it is also used in supervisor mode to modify aspects of processor state,

for instance to enable and disable interrupts. As such, an unmodified OS

binary that is moved out of supervisor mode (protection ring 0) with the

introduction of a VMM will silently fail to update EFLAGS, and will not

behave correctly. Robin and Irvine [RI00] present a detailed survey of the

Intel Pentium instruction set, and identify seventeen such non-virtualizable

instructions.

An additional consideration in the design of a VMM, described by Gold-

berg [Gol72], relates to the placement of the VMM itself. Goldberg attempts

to dichotomize VMM architecture by differentiating between a VMM that
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Figure 2.3: Type I and II VMMs

runs directly on hardware, dubbed a Type I VMM, and a Type II VMM,

which run as an application within an existing “Host OS”. This distinction

is shown in Figure 2.3: By moving the VMM itself into application space, it

may defer the complexities of scheduling, memory management and device

access to the Host OS. However, such Type II VMMs are limited in terms

of their ability to provide isolation and resource control to the mechanisms

offered by the Host OS to its applications.

This taxonomy was extended by Popek and Goldberg to address the virtual-

ization of certain non-virtualizable architectures [PG74]. The authors intro-

duce the notion of a hybrid VMM (HVM), which emulates all supervisor-

mode instructions issued by the virtual machine. This model capitalizes on

the ability to trap state transitions between user and supervisor mode to

activate an instruction emulator, and achieves correctness by sacrificing the

performance of native execution for VM kernel code. It is worth noting

that many commercial VMM products, such as VMware Workstation, are

essentially Type II HVMs. However, the taxonomy is hardly a rigid one, in

that these products generally both install kernel extensions into the Host OS

and use some combination of binary scanning and code rewriting to reduce

the need for instruction emulation in the VM kernel.
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Xen2.2.1

The Xen virtual machine monitor is a VMM, originally for the Intel x86

architecture, developed at the University of Cambridge. Xen was motivated

by the desire to provide a high-performance VMM with strong resource

isolation properties on commodity hardware. As such, the design was for a

Type 1 VMM, where hardware could be more rigidly controlled.

A key distinction between Xen, and existing commercial VMMs is the in-

troduction of paravirtualization. A paravirtualizing VMM addresses the

same problem as the hybrid VMM mentioned above, but the design opti-

mizes for performance rather than interface preservation: Instead of emu-

lating supervisor-mode instructions, a paravirtualizing VMM mandates that

those instructions are not directly used by the VM. VMMs such as Xen

and Denali [WSG02] present a modified hardware interface in which non-

virtualizable instructions must be specifically issued to the VMM as hyper-

calls (hypervisor calls), allowing them to trap to the VMM and be validated

and issued on behalf of the VM.

Xen is different from Denali by merit of the fact that it preserves the ap-

plication binary interface (ABI). While OSes themselves must be specifically

ported to run on a paravirtualizing OS, the user-mode interface is preserved

such that application binaries need not be recompiled in the case of Xen.

As with much of Xen’s design, this was a practical decision: by maintaining

ABI compatibility, existing OS distributions may be installed directly into

VMs, needing only a Xen-supporting (e.g. XenLinux) kernel. Denali’s ap-

plication interface is markedly different from that offered by hardware: The

VMM allows only single-address-space, single-threaded applications which

have been linked directly against the Ilwaco guest OS. Additionally, Denali

does not preserve aspects of the hardware interface such as segmentation,

which are used by many applications.

Over the past four years of development, the Xen project has been very

successful. The VMM has been extended to support other architectures in-

cluding both Intel’s Itanium (IA64) and the 64-bit x86 (x86-64) processors.

Additionally, support has been added for emerging hardware virtualization

extensions, allowing the VMM to support unmodified OSes without requir-

ing paravirtualization.
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Memory Management
Segmentation Cannot install fully-privileged segment de-

scriptors and cannot overlap with the top end
of the linear address space.

Paging Guest OS has direct read access to hardware
page tables, but updates are batched and val-
idated by the hypervisor. A domain may be
allocated discontiguous machine pages.

CPU
Protection Guest OS must run at a lower privilege level

than Xen.
Exceptions Guest OS must register a descriptor table for

exception handlers with Xen. The handlers re-
main the same.

System Calls Guest OS may install a ‘fast’ handler for sys-
tem calls, allowing direct calls from an appli-
cation into its OS instance and avoiding indi-
recting through Xen on every call.

Interrupts Hardware interrupts are replaced with a
lightweight event system.

Time Each guest OS has a timer interface and is
aware of both ‘real’ and ‘virtual’ time.

Device I/O
Network, Disk, etc. Virtual devices are elegant and simple to ac-

cess. Data is transferred using asynchronous
I/O rings. An event mechanism replaces hard-
ware interrupts for notifications.

Table 2.1: The Paravirtualized x86 Interface.

Paravirtualized Hardware Interface2.2.2

Xen’s paravirtualized hardware interface, summarized in Table 2.1, is based

on four design goals: First, it addresses the non-virtualizable aspects of the

x86 architecture. Second, it aims to minimize virtualization overhead, opt-

ing to modify the hardware interface where there is a strong performance

benefit to doing so. Third, it maintains the application binary interface so

that existing application binaries may execute unchanged. Finally, it at-

tempts to keep the degree of change required to a Guest OS to a minimum,

in order to facilitate the porting of new systems to Xen.
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The design of Xen has evolved considerably over the past four years. This

section presents an overview of Xen’s design with regard to the aspects of

the system described in Table 2.1. The next chapter presents a detailed

discussion of the virtualization of device access in the VMM.

CPU2.2.2.1

The x86 architecture offers a ring-based protection model. While the pro-

cessor has four levels of hardware protection, conventional OSes use only

two: in general the OS runs in the most privileged ring (ring 0), and applica-

tions run in the least privileged (ring 3). With the introduction of Xen, the

hypervisor executes in ring 0, and the guest OS is moved to ring 1. This ap-

proach maintains protection across layers in the system, while allowing the

hypervisor to retain complete control. As discussed above, non-virtualizable

instructions in the guest OS no longer function as intended when removed

from ring 0 and must be replaced with hypercalls to Xen.

Each virtual machine is configured with a set of virtual CPUs (VCPUs),

which represent the unit of scheduling that is managed by the VMM. There

need be no correlation between the number of physical CPUs in a system

and the number of VCPUs given to a VM. Virtualizing the processor in this

manner allows a SMP system to be divided into a set of isolated uniprocessor

VMs, and conversely allows the testing of SMP OS code on a uniprocessor

system. The hypervisor provides a variety of schedulers, and allows individ-

ual VCPUs to be “pinned” to specific physical CPUs.

All processor exceptions are handled by Xen. Guest OSes register a table

of exception handlers which Xen will validate and install on their behalf.

System calls, which are relatively common, and hence could represent a

high performance overhead, are handled by allowing the guest to register a

fast trap handler which results in the CPU calling directly into the guest OS.

Page faults represent an example of a situation where paravirtualization is

not absolutely required, but serves to greatly improve performance. On x86

page faults, the faulting linear address is reported in a register (CR2) which

may only be read in ring 0. Xen preserves this value so that it may be ac-

cessed in the OS fault handler in ring 1. A non-paravirtualizing solution

would be to pass control to the OS fault handler, which would then imme-

diately trap on the attempt to read CR2. Xen could then emulate the access,
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returning the stored value from the original fault. The performance impact

of this approach would be very high, as each page fault would require two

entries into the VMM. Instead, the page fault handler in Xen writes the

faulting address into a shared-memory location associated with the faulting

virtual CPU. Control is then returned to the guest fault handler, which may

read the value from shared memory instead of CR2.

Interrupts are completely virtualized and a guest OS never runs with hard-

ware interrupts disabled. Each virtual CPU has a set of 1024 virtual inter-

rupts, or event channels. These may be mapped to physical interrupts or

connected to virtual interrupts on other VCPUs, even those on other VMs.

As such, event channels allow virtual interrupt and interprocessor interrupt

(IPI) facilities, and also provide a capability to generate interrupt-like noti-

fications between virtual machines. Guest OSes receive event notifications

through an upcall from the hypervisor while they are executing. In addi-

tion, the hypervisor provides a virtual timer event every 10ms while a VM

is scheduled. The event channel interface is described in more detail in the

next chapter.

Memory Management2.2.2.2

The VMM resides at the top of virtual memory, and is protected using x86

segmentation. This approach allows the VMM to have a constant location

in memory regardless of execution context, and avoids unnecessary TLB

flushes on protection domain crossings. However, it places a slight limita-

tion on the use of segmentation within VMs, as segments must not overlap

the top of linear address space, where Xen is located.

Xen adopts the terminology used in Disco [BDGR97b] to describe memory

as it is accessed from various contexts within the system. Machine pages

refer to the hardware-addressable pages of memory within the host; they

represent unvirtualized, untranslated memory within the system. Physical

pages (also referred to as pseudo-physical pages) are the set of machine pages

allocated to a VM. Physical memory is a virtualization of machine memory,

and physical addresses are a contiguous range from zero to the amount

of memory allocated to the VM. Each physical page refers to a machine

page, but the underlying machine memory is not necessarily contiguous.

Finally, virtual pages are references to machine memory through page table-

based mappings, using the hardware MMU. Figure 2.4 demonstrates the
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Figure 2.4: Memory in Xen

interactions between these memory contexts.

Machine pages, which are managed completely by the VMM, have type,

ownership, and reference counts. A page of memory in the system may only

be owned by a single VM, and has a single purpose. Typing ensures that

the VMM is aware of all pages that are used as page tables, and can enforce

safe access to memory management hardware.

Guest OSes maintain a table mapping their contiguous physical address

space onto the associated underlying machine pages. By providing visibil-

ity to both physical and machine pages guests may efficiently manage their

own memory. Typically, the memory allocator in a guest OS will manage

ranges of physical memory, while page tables will be programmed directly

by the guest with machine addresses, allowing native performance on virtual

memory access.

Several techniques exist for the management of virtual memory under a

VMM. The technique which is currently used by Xen is that of “writable

page tables”. In this approach, VMs have direct access to their own page

tables. However, all page table pages are mapped read-only. On an attempt

to update page tables, the resulting page fault will be handled by Xen and

the page to be modified is “unhooked” from the parent table prior to grant-

ing write access. The guest may then make arbitrary updates to the page

table page, but these updates do not apply until the guest attempts to ac-
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cess virtual memory described by the unhooked page. At that point, Xen

will handle the resulting trap and validate any changes prior to reinserting

the page into the page tables and again marking it as read-only. The only

exception to this technique is that of page table bases, which are described

in a protected register (CR3) that is loaded using a hypercall. Writable page

tables provide high performance, as collections of updates to a page table

pages are implicitly batched, while imposing minimal change on the memory

management code in the guest OS.

A second technique used for managing virtual memory in Xen, which is

available as an alternative to writable page tables, is that of shadow paging.

In this technique, the page table pages visible to a guest are never loaded

into the MMU. Instead, the VMM maintains a shadow of these pages in hy-

pervisor memory. Shadow paging has been used as an approach to memory

management in VMMs for some time [Wal02, Gum83, HR91]. Although

it imposes a higher overhead than writable page tables, the technique has

many benefits. For instance, the set of machine pages underlying a guest

may be modified while it is running, as the shadow page tables indirect the

location of the machine page backing each virtual adress. A limited form

of shadow paging is used to track page dirtying in live VM migration, de-

scribed below, while a more complete version is used in the taint-tracking

work described in Chapter 6.

Device I/O2.2.2.3

Access to devices must be carefully managed in a VMM environment. OSes

expect direct access to device hardware, and it is unsafe to allow multiple

VMs to share concurrent hardware access to the same device. Xen protects

hardware by allowing only a single VM to directly interact with a given

device. The problem of multiplexing device access is addressed using split

drivers: a single VM manages each physical device and multiplexes access

to that device between other VMs.

The management of devices for virtual machines is the topic of this thesis,

and the approach taken in Xen is discussed in great detail in Chapter 3.

Device virtualization is responsible for providing the resource partitioning

for resources other than processors and memory.
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This section has summarized the set of approaches taken by Xen to par-

avirtualize the x86 architecture. This paravirtualization has resulted in the

development of a stable, high-performance virtual machine monitor that is

now used in many production environments around the world. The next

section provides detail on a final aspect of Xen’s impact on commodity sys-

tems, that of live VM migration. Live migration is worth discussing in some

detail for two reasons. First, the ability to migrate a running VM between

physical hosts has a major impact on how systems may be managed, and is

an illustration of the attraction of VMMs to many organizations. Second,

this thesis argues that hardware virtualization introduces an effective archi-

tecture with which to extend device functionality. Live migration provides

an example that sets the stage for this argument by demonstrating the ability

to implement a useful new feature below the operating system.

Live VM Migration2.2.3

As mentioned above, virtual machine monitors maintain a narrow inter-

face between the VM and the hypervisor and a very limited amount of per-

VM run-time state when compared, for example, with managing processes

within a conventional OS. As a consequence, it is possible to perform op-

erations concerning the entire state of a VM—for instance suspending and

resuming its state to and from disk—because there are very limited state-

dependencies across the VM-VMM boundary.

Xen exploits this property, allowing a VM to be migrated to a new physical

host while it runs. Live migration is a powerful management tool, in that it

allows a facilities administrator to both balance load within a cluster, and to

free up a physical host for hardware maintenance. In both of these cases, the

administrator leaves the applications running within the VM undisturbed.

Live migration attempts to move most of the VM state to the new host while

the VM continues to run. The only effect visible to the migrating VM is a

brief pause in execution, as if it was descheduled, and the possible loss of

a small number of in-flight packets. Migration times for server workloads

result in service down times as low as 60ms.
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Stage 0: Pre-Migration
  Active VM on Host A

  Alternate physical host may be preselected for migration

  Block devices mirrored and free resources maintained 

Stage 4: Commitment
  VM state on Host A is released

Stage 5: Activation
  VM starts on Host B

  Connects to local devices

  Resumes normal operation 

Stage 3: Stop and copy
  Suspend VM on host A

  Generate ARP to redirect traffic to Host B

  Synchronize all remaining VM state to Host B 

Stage 2: Iterative Pre-copy
  Enable shadow paging

  Copy dirty pages in successive rounds.

Stage 1: Reservation
  Initialize a container on the target host 

Downtime

(VM Out of Service)

VM running normally on

Host A

VM running normally on

Host B

Overhead due to copying

Figure 2.5: Migration Timeline

Stages of Live VM Migration2.2.3.1

Figure 2.5 summarizes the migration of a VM between two physical hosts.

This process is effectively a transaction that can be aborted at all but the

final stage. Each stage in the figure proceeds as follows:

Stage 0: Pre-Migration. Migration begins with an active VM on physical

host A. To speed any future migration, a target host may be prese-

lected where the resources required to receive migration will be guar-

anteed.

Stage 1: Reservation. A request is issued to migrate an OS from host A to

host B. The system confirms that the necessary resources are avail-

able on B and reserves a VM container of that size. Failure to secure

resources here means that the VM simply continues to run on A unaf-

fected.

Stage 2: Iterative Pre-Copy. All of the pages of the VM’s memory are copied

from A to B. A limited form of shadow page tables is used to track

writes to copied pages, and the copy process iterates over the VM’s
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memory recopying any dirty pages. The rate of copying is compared

against the rate of dirtying as an indication of progress, and iterative

copy stops when progress diminishes.

Stage 3: Stop-and-Copy. The VM instance at A is suspended. Its network

traffic is redirected to B by generating an unsolicited ARP advertise-

ment that the interface now resides at the new host. CPU state and any

remaining inconsistent memory pages are then transferred. At the end

of this stage there is a consistent suspended copy of the VM at both

A and B. The copy at A is still considered to be primary and may be

resumed in case of failure.

Stage 4: Commitment. Host B indicates to A that it has successfully re-

ceived a consistent OS image. Host A acknowledges this message as

commitment of the migration transaction: host A may now discard

the original VM.

Stage 5: Activation. The migrated VM on B is now activated. The VM

restores device connections and continues to run as normal.

Migration Performance2.2.3.2

Figure 2.6 demonstrates the effectiveness of live VM migration. In the ex-

periment an Apache 1.3 web server is migrated between a pair of Dell PE-

2650 servers. Each host has dual Xeon 2GHz CPUs and 2GB of memory,

and the two are connected over a switched gigabit Ethernet using Broadcom

TG3 interfaces. As the VM is migrating between physical hosts, network

attached storage is used to achieve location transparent access to the system

image, which is accessed using an iSCSI mount exported from a NetApp

F840 storage server.

The web server VM is configured with 800 megabytes of memory, and is

loaded with 100 clients, each continuously requesting a 512KB file. As

shown in the figure, the server achieves an initial throughput of 870Mbit/sec.

Migration begins, and is configured to use a maximum initial bandwidth of

100Mbit/sec. The first copy iteration can be seen to reduce the achieved

bandwidth of web traffic during the approximately 60 seconds that are re-

quired to transfer the initial memory image. The copy process then iterates

several times over memory during the following ten seconds before stopping

VM execution and copying the final state. As shown, the copy throughput
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Figure 2.6: Results of Migrating a Running Web Server VM

increases during the iterative copy process, as the migration algorithm at-

tempts to use extra bandwidth to match the page dirtying rate. The total

downtime experienced by the server is 165ms, after which it returns to full

performance on the new physical host.

A more detailed exposition of live VM migration is presented in [CFH+05],

which discusses several other server examples and provides additional detail

on the iterative copy algorithm. The intention of describing VM migration

in this context has been to illustrate an example of the qualitative impact

that VMMs provide in managing computer systems.

Summary2.3

Hardware virtualization, initially developed in the 1960s for the manage-

ment of mainframe computers has received renewed attention as a means of

managing commodity computer systems. VMMs allow the resources of a

physical host to be divided between a set of virtual machines, each of whom

have the appearance of running on a single host. The key property achieved

by virtualization is isolation: servers may be consolidated onto common

physical hardware, and remain isolated from each other in all respects save

the failure of physical hardware. This isolation is not limited to performance

and resource control, as servers are also isolated in terms of configuration,

security, and administrative control.
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The administrative isolation achieved by VMMs is particularly relevant in

modern systems, where organizations are attempting to centralize comput-

ing hardware and increase its utilization. The introduction of VMMs divides

the administrative role in two parts allowing individual VMs to be adminis-

tered directly by the responsible system administrators, while hardware may

be administered by facilities administrators without requiring access to the

contents of individual VMs.

Xen is a virtual machine monitor for commodity hardware that achieves

the goals of hardware virtualization. Using paravirtualization—changing

the exported hardware interface and requiring that guest OSes be explicitly

ported—Xen overcomes the inherent problems of non-virtualizability pre-

sented by the x86 platform and also achieves drastic improvements in VM

performance.

The availability of a robust VMM for commodity hardware is demonstrat-

ing the opportunities to achieve qualitative change on software systems by

working below the operating system. An example of this type of change is

live VM migration, which allows a running VM to be relocated to a new

physical host with only milliseconds of downtime. Live migration exploits

the coarse granularity of the VM, and the limited shared state that exist

between it and the VMM. Moreover, the approach is independent of the

contents of the VM being migrated and so applies to any operating system

that runs on Xen.

Another example of the benefits of using virtualization to work at a low level

within the system is that of device management. The next chapter presents

the challenges and opportunities of designing and managing virtual device

interfaces and presents a set of approaches for accessing and extending de-

vices in VMM-based environments. The remaining chapters of the thesis

validate this approach by demonstrating examples of virtual devices.
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Chapter 3

The Soft Device Architecture

This chapter motivates and explains the core mechanisms proposed by this

thesis, phrased as solutions to three successive architectural problems re-

lating to I/O devices encountered in the design and deployment of VMMs.

These problems are as follows:

1. Device support in a VMM. How should device access within a VMM

be structured as to allow guest OSes to share hardware resources while

balancing issues of performance, dependability, security, and software

maintenance effort?

2. Device-level extensions. How can device-level system interfaces be ex-

tended to allow the safe introduction of new features with reasonable

performance, while making extension development both reasonably

easy and portable across OSes?

3. Managing device access in VMM-based clusters. As virtualization is

deployed into large cluster environments, how can devices be managed

in a facility-wide manner, while catering to new capabilities, such as

migration, that are afforded by VMMs?

The first of these problems has been encountered and addressed in the course

of the group’s work on Xen. Our paper on safe hardware access [FHN+04]

describes how the use of various techniques, in particular split device drivers,

may be used to address the many challenges faced in providing device access

in a VMM. The design and implementation of split drivers is presented in

this chapter as necessary background to understanding the extension frame-

work that I have designed and built. While split drives are work in col-

laboration with the group at Cambridge, the exposition in this thesis is of
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considerably greater detail than has been published in the past, and serves

as a contribution of this thesis in the same vein as the Xen history presented

in the previous chapter.

This chapter describes how the split driver model may be extended to allow

generic device extensibility, and then describes how extensions to individual

devices on a single physical host may be aggregated across a collection of

hosts to form device services, allowing the isolation of device provisioning

and management within a cluster environment. At the end of this chapter,

the reader should understand how the three problems described above are

solved by my work. The remainder of the thesis aims to validate these

mechanisms by describing a set of useful device extensions that have been

built above them.

While these contributions stem from experience in the development of Xen,

I will further argue that the ability to provide low-level device extensions has

hitherto been impractical in conventional operating systems, and is a strong

motivation for the broad deployment of VMMs on future systems. The next

section provides a detailed argument for the benefit of device extensions and

the challenges involved in providing them. The remainder of the chapter

then presents the solutions to the three problems described above.

Extending Devices3.1

At the core of this thesis is the notion of a low-level device extension. In

general terms, an extension is a transformation of the behaviour of a device

that exists behind the interface to the device that is presented to an operating

system. As such, device drivers themselves, which map OS interfaces onto

physical device hardware are one form of extension. However, the work in

this thesis is primarily concerned with extensions that add new functionality

to a device, as if that functionality were a part of the device itself. This com-

position of physical hardware and software extensions, shown in Figure 3.1,

are described as soft devices. Soft devices preserve the interface presented

to the OS, and so may be easily deployed in place of the raw device by na-

ture of interposition. They may optionally present an out-of-band control

interface, allowing the extension to be manipulated by external tools.
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Figure 3.1: Soft Device Overview

The ability to easily construct device extensions is desirable to both hard-

ware and software developers for similar reasons. OS developers may desire

to provide new, low-level functionality that is not available in-hardware. By

extending a disk, for instance to provide encryption, at or very near the de-

vice driver interface an extension may be applied across the file systems that

are provided by the OS, while concurrently remaining applicable across the

wide range of physical disk devices that may be used. Conversely, hardware

designers may desire to prototype new functionality in software first, TCP

offload for instance, to evaluate the benefits of new features and their impact

on system software prior to beginning expensive hardware prototyping.

Performance and Safety3.1.1

On conventional systems, providing device extensibility is a very challeng-

ing problem. As a subset of existing work into the more general problem

of operating system extensibility, device extension code must strike a bal-

ance between requirements for both performance and safety: On one hand,

extensions must be sufficiently low-overhead as to be realistically deploy-

able, while on the other they must not represent a liability to the system in

the case of crashes. The first requirement has traditionally meant attempt-

ing to move extensions into the kernel, where they do not incur overheads

on protection domain crossings. Meanwhile, the second requirement has

historically involved the exploration of mechanisms to ensure the safety of

extensions that run in the same protection domain as privileged code, such

as type-safe languages.

This thesis argues that VMMs provide a considerably more appropriate cut-
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point for the introduction of extensions than do OSes because the interface

to devices that is visible at the VMM level is considerably narrower that

that of the OS. With regard the two issues just mentioned, performance and

safety, the approach taken in this thesis will be to isolate extensions in a sep-

arate virtual machine. This extreme isolation of extensions results in what

is likely the highest possible degree of safety that can be provided on con-

ventional hardware: extensions are isolated from both crashes and resource

over-consumption by merit of the VM sandbox. By beginning with strong

isolation, this approach treats performance simply as a requirement of any

practical solution, specifically that extensions must be “fast enough” to de-

ploy in practise. The performance impact of VM isolation will be demon-

strated later in this chapter to be sufficient to build deployable extensions for

both disk and network devices. Rather than focusing on microbenchmarks,

performance is characterized using complete, whole-extension benchmarks

to demonstrate the ability to saturate both disk and network interfaces on

modern server-class hardware. It is worth noting that while this is not a

performance-centric thesis, that the results described here far exceed the

published results of other recent VMM-based extension work [WCSG04],

which is unable to saturate device hardware due to substantial extension

and virtualization overheads.

Software Engineering3.1.2

While concerns of performance and safety have dominated past research

into the more general problem of OS extensibility, they are only a portion

of the set of concerns that should be considered. In practical terms, modern

systems have been at an impasse with regards the development of deploy-

able extensions for quite some time. Considering device drivers as an exten-

sion (as described at the start of this section), developers must re-implement

driver support for each OS that uses a piece of hardware, and often across

versions of individual OSes. The difficulty of maintaining OS extensions at

the device level has been described with respect to tracking the Linux kernel

for the Nooks driver isolation work [FGCW05, SBL03]. The lack of uni-

formity, and in some cases availability, of driver interface across OSes has

been described as a barrier to entry for new OSes and a considerable over-

head to device vendors [UDI99]. Indeed, one of the major contributions

of the Flux OSKit [FBB+97] was to provide a bridge to an existing pool of
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drivers for new OS projects. This is a crucial point in the consideration of

operating systems throughout recent history: Drivers themselves have not

been portable across operating systems, and so a generalized notion of de-

vice extensions has obviously been impossible. A major claim of this work

is that the structure of a VMM lends itself intrinsically to freeing OSes from

the device-level ossification that has been present in systems over the past

twenty years, and represents a major opportunity to enable innovation in

low-level systems code.

The problem of supporting physical devices was encountered in the early

versions of Xen in that, as with most previous systems, physical device

drivers were a part of the VMM itself. The original version of Xen was

based on the Linux kernel, and was left having to track changes to that

source in order to support new emerging devices. This situation held for al-

most a year of development, and proved to be a tedious and time-consuming

task. Xen tackled the problem by removing device support from the VMM

altogether, opting instead to present raw device interfaces to “device VMs”.

This approach, which is described in the following section, allows the use of

physical device drivers from any OS that runs on Xen, and frees the VMM

from needing to track a specific OS’s device support.

This is equally applicable for soft device-based extensions. A major concern

in allowing the development of extensions is catering to maintainability: Ex-

tensions should remain useful over time, despite the fact that the OS code

bases that they serve are both varied and rapidly evolving. The split de-

vice architecture described in the next section introduces narrow, idealized,

device interfaces which form the basis of extension mechanisms. By inter-

posing on these interfaces, extensions may be applied across any OS that is

used on the VMM.

Besides maintenance, a second major issue in allowing the construction of

device extensions is the interface available to the developer. Traditionally,

such extensions are written directly within the source of the target OS. In

addition to the maintenance concerns already discussed, this form of devel-

opment imposes a great deal of initial overhead on the developer. Working

within the source of an OS requires that the developer have a reasonably

thorough understanding of the subsystem that they hope to extend, in ad-

dition to general programming idioms such as memory allocation and lock-
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ing, which are specific to individual OSes. This developmental barrier to

entry makes extension development unattractive, especially to novice devel-

opers, and results in code that is likely to destabilize a system. The extension

mechanism described in Section 3.3 allows the development of extensions in

user-space of the isolated extension VM. Developers are free to use whatever

OS and development tools they desire to work with, and may also incorpo-

rate debuggers, which are often unavailable when developing within the OS.

This is similar to the approach taken with user-level device drivers in other

systems [EG04,Chu04,Hun97].

VMMs are a very coarse grained tool for the decomposition of systems soft-

ware. They provide isolation at the level of an entire operating system, and

only primitive communications mechanisms across VMs. The solutions de-

scribed in the remainder of this chapter aim to demonstrate that in the case

of devices this decomposition is a a useful one specifically because of the

strong isolation that is provided between the component parts: Not only

are extensions isolated from crashes and resource exhaustion that would

traditionally render a system unstable, but their source code and adminis-

tration are separated from that of both the devices and the OSes that they

are applied to.

Split Drivers3.2

As described above, including device support directly within the VMM

presents two major problems. First, a driver base is typically borrowed

from an existing operating system such as Linux, resulting in the software

maintenance responsibility of tracking that source to ensure that drivers re-

main up-to-date. Second, as drivers are a major source of bugs resulting

in system instability, their inclusion in the VMM itself destabilizes the plat-

form as a whole. As the VMM forms the bottom-most software layer in a

system, it is desirable to minimize its footprint in the interest of achieving

some confidence of reliability and security. At the time of this writing, the

Xen hypervisor for x86 is almost exactly 60K physical source lines (SLOC)

of C and 1727 lines of assembler1. In contrast, the Linux 2.6.12 drivers

1All source measurements were gathered using SLOCCount, available at
http://www.dwheeler.com/sloccount/.
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subtree contains 2.1 million source lines of code. Not only is this a massive

amount of code, it is also rapidly changing. A November 2000 analysis of

the 2.2.16 kernel reported only 870,000 source lines of driver code, and a

total kernel size (including drivers) of just over 1.5 Million SLOC [Whe00].

To address this issue, Xen uses an approach involving split drivers. Physical

device drivers are removed from the VMM and run in isolated VMs, where

faults may be contained and native OS drivers may be used. A pair of virtual

device drivers is then used to allow client, or front end domains to have

access to physical devices managed by the back end VM. The remainder of

this section elaborates on the motivation for split device drivers and explains

the details of their construction.

Isolating Driver Code3.2.1

As of Xen 2.0, drivers were removed from the hypervisor and run in driver

VMs. The VMM’s responsibility was thus reduced to the simpler task of

isolating access to device hardware to device VMs managing individual de-

vices. On the x86, achieving this isolation involved the following general

mechanisms:

• I/O registers. Memory mapped device registers are restricted to the

managing device VM; Xen validates attempts to include device regis-

ters in a VM’s page tables. The x86’s I/O port space access bitmap is

updated on context-switch into a VM to ensure that I/O port access

instructions (e.g. INB and OUTB) may only be applied to managed

devices.

• Interrupt notification. Xen retains control over the system’s interrupt

controller and provides a virtualized interrupt notification to the ap-

propriate VM. This interrupt virtualization, called an event channel is

described below.

• Device configuration. Xen virtualizes access to the generic PCI con-

figuration space through which devices are detected and configured.

VMs are able to see only the devices that they manage, and the hy-

pervisor is able to validate configuration requests to ensure that they

pertain to a permitted device.
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This approach allows unmodified drivers to be hosted in individual driver

VMs, where crashes may be isolated and drivers may be restarted upon

failure without necessitating the restart of client VMs. A single weakness

in the isolation provided by this model is that of device access to machine

memory through DMA on modern systems: While drivers are prevented

from accessing memory outside their own VM, they may program device

DMA to read or write arbitrary memory within the system. This problem

is a hardware weakness that is addressed by the availability of IOMMUs on

modern chipsets; with the use of such MMUs, devices may be restricted to

access a specific subset of the host’s memory.

Practically speaking, this DMA weakness on current x86 hardware does not

present a security or stability problem with regard to the interface presented

to frontend VMs in the split driver model. Front ends access devices through

narrow interfaces in which all addresses passed to devices are validated and

typically translated; the DMA weakness is simply that malicious (or very

badly broken) drivers in the backend VM could potentially compromise

memory isolation in the system in the absence of an IOMMU.

VM Device Interface3.2.2

With drivers themselves isolated in individual VMs, a second major design

issue in the VMM is in deciding how to represent devices to VMs wishing

to share access to a single device. While devices with a single client VM may

be exported directly, many devices – storage and networking in particular

– will be used by many VMs concurrently and the hardware interface may

not be safely shared.

The problem of multiplexing access to device hardware has been a funda-

mental issue in the design of VMMs throughout their history, and there

are two general solutions: hardware emulation, and idealized interfaces.

In hardware emulation, a VM is presented with a virtual piece of hard-

ware, typically a simple and common device for which drivers are broadly

available. The VM runs the associated driver, and the VMM emulates this

hardware, decoding operations and mapping requests down on to the phys-

ical device as appropriate. This approach is taken by VMware worksta-

tion [SVL01], where the desire to support a wide range of unmodified op-

erating systems clearly supersedes the requirement for high-performance de-
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Figure 3.2: Split Driver Structure

vice access: As physical devices often involve several emulated I/O instruc-

tions per actual operation, this approach generally involves a reasonably

high overhead.

A second approach to sharing device access is to present an idealized inter-

face representing a class of device (e.g. a generic network interface) to the

VM, and to write a new device driver specifically for this interface. This is

the approach taken in Xen, and it has been used successfully in the past by

other systems [BDGR97b,EFO95,WSG02].

Figure 3.2 shows the structure of split drivers that result from the combi-

nation of isolating physical drivers into driver VMs and exporting access to

these devices over idealized device interfaces. Virtual devices are accessed

over device channels – a combination of shared memory and event notifica-

tion – between front end and back end VMs. The remainder of this section

details the design and implementation of split drivers.

The Data Path: Device Channels and Grant Tables3.2.3

Device channels are the general term used to describe communications be-

tween VMs above Xen. Xen does not attempt to abstract inter-VM com-

munications by providing a specific inter-process communication (IPC) API.

Instead, it provides the primitive mechanisms upon which arbitrary forms
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of IPC may be composed. These primitives are broken into two compo-

nents: Notification mechanisms, provided by the event channel interface,

allow one VM to send a one-bit signal to another. Data Transfer mecha-

nisms allow the sharing and exchange of memory pages between VMs. By

building on top of these two sets of interfaces, VMs may construct arbitrary

communications mechanisms, allowing complete flexibility in issues such as

message batching and buffer sizes.

Event Channels3.2.3.1

Event channels provide a notification mechanism between VMs— effectively

a virtualized interrupt controller. Each VM has a bitmap of 1024 “ports”,

on which it may receive a one-bit notification. The API provides a pair

of interfaces to bind ports between VMs, generating mappings in Xen that

are represented by the tuple (domain1, port1, domain2, port2). Once a

channel has been established, either end may request that Xen generate a

notification, which will result in the event bit being set for the receiving VM

and a hint to Xen that it should be scheduled at some point in the future.

Aside from notification requests, Xen provides simple interfaces to manage

event channels. A channel is created in one of two ways: Either a special

privileged domain will request the creation of a channel between a pair of

domains, in which case Xen will bind the channel and return the pair of

newly assigned ports. Alternatively, a VM may request an unbound channel

be created between itself and another domain. In this case, Xen will assign a

local port to the unbound channel and at some time in the future the remote

domain may request to connect to the (domain, port) pair, resulting in the

completion of the binding.

Handling notifications is left to OS implementations, where they are gener-

ally bound to the interrupt subsystem. XenLinux provides mechanisms to

assign interrupt handler functions to specific ports, allowing a convenient

binding between event mechanisms and the existing code. The event inter-

face also provides a matching bitmap to the notification ports on which it

may mask inbound notifications. This provides a means for a VM to request

that Xen not activate it on the arrival of new events to a given port.
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Shared Memory3.2.3.2

In order to allow data to be efficiently moved between domains, Xen pro-

vides a set of primitive operations to manage shared memory. The pres-

ence of a VMM adds an additional level of virtualization to memory in the

system: We refer to the physical memory on a system as machine mem-

ory as it is addressed using the physical memory addresses on the machine.

This memory is then subdivided and presented to a VM as a pseudophys-

ical memory region, which the VM will treat as physical memory. These

terms to describe memory in a VMM-based system are carried forward from

Disco [BDGR97b].

Xen maintains a table mapping the assignment of machine pages to pseudo-

physical page addresses in each domain. Each machine frame on the host

is either unallocated, or belongs to a specific domain. Domain pages are

both typed and reference counted by Xen: typing ensures that Xen is aware

of special-purpose (e.g. page table) pages and can validate them specially,

while reference counting ensures that mapped pages remain available until

all mappings in a VM are released.

Paravirtualized OSes achieve high-performance by working with both pseu-

dophysical and machine page addresses. A VM may directly fill PTEs using

machine frame numbers, allowing them to be used directly by the hardware

after being validated by Xen. VMs typically take advantage of a physical-

to-machine mapping table to translate between pseudophysical frame num-

bers, used by an OS to manage memory, and the machine frames used by

Xen. The range of pseudophysical pages a host has represents the maximum

amount of memory that may be assigned to that host. However, it is possi-

ble to reduce the memory that is actually assigned to a host using a balloon

driver [Wal02]. Installed in a guest OS, the balloon driver provides a means

to internally reserve an amount of memory, and then release the underlying

machine pages back to Xen. This is a useful technique to resize the amount

of memory available to a VM at runtime.

To share memory in Xen, it may be either mapped or transferred between

domains. Memory may be mapped into a VM’s pseudophysical address

space by first releasing a range of pages using the balloon driver. To allow

virtual memory mappings to these “foreign” pages, Xen provides a hypercall

interface that allows machine addresses from other domains to be mapped
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into a VM’s page tables. These calls ensure that mappings are valid and

permitted, and that pages are correctly reference counted.

In some situations, it is not appropriate to simply map memory belonging to

a foreign domain. A primary example of this is in providing high-speed net-

work communications, where we desire to deliver a received page directly

to the intended VM without incurring an extra copy. As the destination is

not known until the page has been received into memory and the packet

headers have been examined, it is impossible to pre-map a destination page

to receive the page into. Instead, VMs use the balloon interface to relin-

quish a set of pages to a free list, into which packets are received. Pages

containing received packets are then transfered to the appropriate domain,

the ownership of the page is transferred and the page is added to the VM’s

pseudophysical memory.

Grant Tables3.2.3.3

The map and transfer facilities described above provide the necessary prim-

itives for page sharing between VMs, but do not provide much flexibility

in terms of managing the ability to share pages. Until Xen 3.0, the ability

to modify memory mappings was a single privilege flag in a VM’s domain

structure – a VM could either make no foreign memory requests at all, or it

could modify mappings belonging to any domain on the system.

Motivated primarily by the need to provide an isolated device driver inter-

face, but also by the broader goal of designing general page-sharing mech-

anisms for VMs, grant tables were added as an extension to the existing

memory mapping interface described above. Grant tables reflect a sim-

ilar approach to the unbound event channel allocation scheme described

in 3.2.3.1: A VM may “grant” access to a page of its memory to another

domain, and at some point in the future, the remote domain may map that

page into its own address space.

The grant table interface introduces the explicit notion of a foreign map-

ping: the ability of a VM to map a page that it does not own, given the

owning VM’s permission. To create a foreign mapping of a memory page,

a VM must present a valid grant reference to the hypervisor in lieu of the

page number. This reference comprises the identity of the granting VM,

and an index into that VM’s grant table. Every VM owns a private grant
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table that it shares only with the hypervisor, in which each entry is a tuple

(map, V, P,R, U) permitting VM V to map page P into its address space;

asserting the boolean flag R restricts V to read-only mappings. The flag U

is written by the hypervisor to indicate whether V currently maps P (i.e.,

whether the grant tuple is in use).

When the hypervisor is presented with a grant reference (A,G) by a VM B,

it first searches for index G in VM A’s active grant table (AGT), a private

table that is only accessible by the hypervisor. If no match is found, it reads

the appropriate tuple from the guest’s grant table and checks that T=map

and V =B, and that R=false if B is requesting a writable mapping. Only if

the validation checks are successful will the hypervisor copy the tuple into

the AGT and mark the grant tuple as in use. The AGT is a private, in-

hypervisor copy of the VM’s grant table that also includes additional book-

keeping data such as mapping reference counts. Since it cannot be accessed

by a malicious or buggy VM, the hypervisor can guarantee the integrity of

this critical data.

The hypervisor tracks uses of grant references by associating a usage count

with each AGT entry. Whenever a foreign mapping is created with reference

to an existing AGT entry, the hypervisor increments that entry’s count. The

grant reference cannot be reallocated or reused by the granting VM until the

foreign VM destroys all mappings that were created with reference to it.

The grant table interface supports transfer operations similarly: A transfer

tuple is of the form (transfer, V, P ), permitting VM V to transfer ownership

of one of its pages to the specified VM. A transfer tuple permits the transfer

of a single page.

Communication Rings3.2.3.4

The current split drivers structure each device channel as a bi-directional

ring buffer with two pairs of producer/consumer pointers. A balanced num-

ber of request (client to server) and response (server to client) messages are

passed back and forth on the ring.

As shown in Figure 3.3, a ring is partitioned into request and a response

queues, and domains only work within their own space. This can be thought

of as a double producer-consumer ring – the ring is described by four point-

ers into a circular buffer of fixed-size records. Pointers may only advance,
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Request Consumer

Private pointer

in backend VM

Request Producer

Shared pointer

updated by 

frontend VM

Response Consumer

Private pointer

in frontend VM

Response Producer

Shared pointer 

updated by

backend VM

Request Queue - Requests queued by the frontend, but not yet accepted by the backend

Outstanding Messages - Message slots waiting a response from the backend

Response Queue - Responses from the backend in reply to request messages

Unused message slots

Figure 3.3: Shared-Memory Ring

and may not pass one another.

By adopting the convention that every request will receive a response, not

all four pointers need be shared and flow control on the ring becomes very

easy to manage. Each domain maintains its own consumer pointer, and the

two producer pointers are visible to both. As shown in Figure 3.3, request

and response message regions chase each other around the ring.

To ensure safety in accessing the shared memory region, drivers keep pri-

vate copies of in-use ring data. This generally includes retaining copies of

requests that are being processed, and private versions of producer pointers.

This “defensive” approach to managing the shared data structure provides

stability in the case of a misbehaved or malicious driver on the other side

of the ring, and furthermore enables recovery after driver failure or VM

migration.

Bi-directional rings can trivially be converted into uni-directional rings by

using only a single pair of producer/consumer indices. Unbalanced com-

munications, for instance console I/O, may be implemented using a pair of

uni-directional rings – one in each direction.
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After initialization, the frontend and backend are connected over a 
device channel consisting of a shared-memory ring (allocated by the 
frontend) and a pair of event channels. 
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As block reads are issued to the frontend driver, requests are added to 
the ring containing grant references to pages (a,b, and c) into which the 
data should be placed on arrival from disk. 
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Once a batch of requests has been placed on the ring, the frontend 
issues an event channel notification to the backend, activating the 
backend’s interrupt handler. 
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Upon receiving notification, the backend reads and validates the 
pending requests from the ring, maps the granted pages, and issues 
block read requests to disk using the physical device driver. 
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The block device transfers data directly into the frontend’s memory.  On 
completion, the backend writes response messages onto the ring, and 
sends an event notification to the frontend. 
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The frontend receives the notification and calls its associated block 
interrupt handler.  It removes the batch of pending responses from the 
ring, and passes the filled pages up to the higher levels of the OS. 
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1 2

3 4
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Figure 3.4: Device Channel Example: Block Read

Device Channel Example: Block Read3.2.3.5

Figure 3.4 shows a high-level illustration of how device channels are used to

issue a block read request across a split driver. Once the device channel has

been initialized, the frontend places a set of read requests on to the shared

ring. Request messages placed on the ring are described in more detail later

in this section; they contain details such as the virtual block address to read

and grant references for the pages of memory into which the inbound data

should be placed. Requests often arrive in batches, both due to the nature

of block workloads and the existence of OS prefetching techniques. Once

a batch of requests has been placed onto the ring, the frontend will send a

notification on the event channel to trigger activation of the backend driver.

The event channel maps to an interrupt handler in the backend driver. When

the notification is received, the backend will remove pending entries on the
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ring, advancing its request consumer pointer as described above. Each re-

quest is validated, the grant references are mapped into the backend VM,

and requests are issued to the physical device driver.

As references to the machine pages to read into are included in the request

as grant references, the data is transfered directly to the frontend’s memory.

The backend is notified as read operations complete, at which point it writes

response messages onto the shared ring and then notifies the frontend that

requests have completed.

Block writes work almost identically to reads, except that data moves from,

instead of to, frontend memory. The mechanism of passing request messages

on shared rings with references to associated data pages and using event

channel-based notification to achieve batching are common to other split

drivers. As described later, the network drivers use grant transfer as opposed

to mapping operations.

The Control Path: Control Interfaces and XenStore3.2.4

The control interfaces in Xen have evolved constantly throughout its devel-

opment. In complement to the device channels, the control interfaces serve

to provide a non-performance-critical, general API to allow management

tools and VM-based OSes to share control information. The control inter-

faces are used to perform tasks like device setup, which is generally a two

phase process: First, the control tools indicate to a backend driver what

virtual devices it should export to a new VM. Second, the VM boots and

probes its associated backends for available devices, and negotiates device

channel-based connections to them.

XenStore3.2.4.1

Xen unifies VM configuration data in a persistent store. XenStore provides a

hierarchical name space within which configuration data can be exchanged.

The store provides a persistent view of the configuration state of the system,

and a point of indirection through which many clients may interact with

regard to a common set of configuration interest. This approach is similar

to shared whiteboards as used in distributed computing, and as such is in-

tended to scale out beyond a single host to allow configuration management

for a VM clusters. XenLinux includes a XenBus driver, which allows the
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Figure 3.5: XenStore Overview

mapping of portions of the store onto the Linux device enumeration mech-

anisms. In this manner, virtual device configurations may be written into

the store, and trigger registration in a guest VM as if a device had been

hotplugged into the system.

XenStore’s hierarchical name space bears a strong similarity to a traditional

file system. Each domain is represented by a subdirectory in the store, and

aspects of a domain’s configuration are placed in subdirectories within that

domain’s tree. Values in the store behave much like files in a traditional

file system, but generally contain human-readable text. The store supports

transactional updates, so that sets of new name-value bindings may be ap-

plied all at once, or not at all.

Communication through the store is achieved by registering watch points on

subtrees in the hierarchy, essentially a subscription to the region of interest.

After a watch has been registered, changes to the associated subtree will fire

the watch, and indicate the value within the subtree that has changed.

Figure 3.5 provides a simplified high-level view of the structure of XenStore.

The figure shows configuration information relating to block devices, and

the clients involved in block device connection: The domain builder, which
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is a component of the Xen control tool set; and a frontend and backend VM

that will form a split driver-based connection for a block device. The dia-

gram shows a subset of the control information and mechanisms involved

in device set-up, and is intended to provide an overview of this process. A

detailed account of block device setup is provided later in this section.

Device configuration and initialization involves collaboration between the

three entities mentioned above, using the store to share configuration data.

As a new domain is created, the domain builder tool, which runs in user-

space in domain 0, writes configuration information describing the new VM

into the store. In addition, it writes device configuration information into

the associated backend domains’ device subtrees. In the figure, the domain

builder performs a transactional update, adding a set of configuration data

regarding a new virtual disk to be served to VM B. On commit, this data

appears in the store, and results in the activation of a watch that the backend

domain, VM A, has registered. The backend driver will validate the new

disk request, and prepare for a connection from the frontend. Part of this

preparation will involve the addition of a second watch point, on VM A’s

device subtree, as specified by the frontend path.

When the frontend VM boots, the block driver will initiate the connection

of a new device channel. The control tools will have provided the back-
end dom id, which the frontend will use to allocate an unbound event chan-

nel, and a grant reference for the ring page. These entries are then written

to its directory in the store. The update will trigger the watch point that

was added by the backend, which will then connect to the device channel,

completing the initialization of the split driver.

Interactions with the store from user space are provided through libxen-
store, a library of accessor functions into the store. In-kernel interactions

are managed through the XenBus device driver. XenBus provides accessor

functions for the store and helper functions for common tasks such as the

initialization of device channels. In addition, it maps a VM’s device details

as represented in the store onto the OS’s device probing and hotplug code.

As mentioned, the block device description later in this section will provide

a more detailed overview of the use of XenStore and XenBus to initialize

devices.
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read(vblock) → page Read the data stored at virtual block address vblock,

placing it in the specified page.

write(vblock, page) Write the contents of page at the specified virtual block

address.

Table 3.1: Xen’s Virtual Block Device Interface.

The Virtual Block Interface3.2.5

The previous sections have explained the underlying mechanisms used in the

composition of split drivers. To illustrate how these are used in practise, we

now consider the implementation of the virtual block interface.

Data Path3.2.5.1

The device channel for virtual block devices in Xen makes use of a very sim-

ple protocol for block requests. The channel is a symmetric shared memory

ring (as described above) where a client VM issues requests, and a back-

end returns responses as the requests are completed. There is a one-to-one

relationship between requests and responses, although the backend is free

to reorder responses. The protocol currently consists of two simple request

messages, shown at a high level in table 3.1.

Figure 3.6 shows the C structure that describes a block request to detail

the vblock and page parameters shown in the table. A virtual block ad-

dress is described simply as a 64-bit sector offset from the start of the vir-

tual device. An extent of data to read or to be written is described as an

array of page-sized segments associated with the request. Each entry in

the frame and sects array describes a page in the client VM where data

should be read from or written to, and a range of sectors within that page

to operate on. Modern file systems generally interact with the disk at page

rather than sector granularities, but this interface ensures sector-granularity

access remains available when required.

Data pages are accessed using the grant map interface: The backend domain

releases a region of its physical memory, creating a hole in its own physical

address space. The size of this physical region is equal to the maximum

number of segments per request multiplied by the size of the request ring,

allowing a completely full block request ring to be mapped into the back-

end’s memory. The default Xen configuration uses a 64-entry shared ring,
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#define BLKIF_OP_READ 0
#define BLKIF_OP_WRITE 1

#define blkif_vdev_t u16
#define blkif_sector_t u64

typedef struct blkif_request {
u8 operation; /* BLKIF_OP_{READ|WRITE} */
u8 nr_segments; /* number of segments */
blkif_vdev_t handle; /* the device this request pertains to */
unsigned long id; /* private guest value, echoed in resp */
blkif_sector_t sector_number; /* start sector idx on virtual disk */

/* @f_a_s[4:0] = last_sect ; @f_a_s[9:5]=first_sect */
/* @f_a_s[:16] = grant reference (16 bits) */
/* @first_sect: first sector in frame to transfer (inclusive). */
/* @last_sect: last sector in frame to transfer (inclusive). */
unsigned long frame_and_sects[BLKIF_MAX_SEGMENTS_PER_REQUEST];

} blkif_request_t;

Figure 3.6: The Block Request Structure

with a maximum of 11 segments per request. These numbers are selected

largely out of a desire to maximize bandwidth, while allowing the shared

ring to fit on a single 4KB page.

As requests arrive in the backend driver they are validated and their data

pages are mapped into the empty pseudophysical address space. Requests

are then translated into real block I/O requests and issued to the block sub-

system. In the Linux backend, these requests are asynchronous and result in

a callback on completion. The callback handler fills out a response message,

and places this on the shared ring. It then uses an event channel notification

to indicate to the client VM that the request has completed.

Control Path3.2.5.2

Control operations relating to virtual block devices include adding and re-

moving block devices for a client VM, negotiating the setup of shared-

memory device channels, and interrogating device metadata such as a virtual

disk’s capacity and sector size.

As mentioned above, the configuration and control of virtual disks is man-

aged through XenStore. When a virtual disk is created, the control tools

will create a new directory in the backend’s block device directory. This

directory is typically named using a unique identifier of the device being ex-

ported, for instance the major and minor numbers of an exported physical
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disk (represented as UNIX device names in Figure 3.5 for readability). From

this point, device setup proceeds as follows:

1. Tools write details to disk to export in VMs’ device trees. Inside the di-

rectory, the tools will add entries describing the domain id of the client

VM, and a path to that VM’s frontend directory in the store. Entries

are also added describing the physical disk or partition to export, and

whether it is to be exported writable or read-only. Committing this up-

date will fire the backend driver’s watch point, resulting in it scanning

the new configuration data. In addition to writing the backend’s tree,

the tools add a subdirectory for the new virtual disk in the frontends

tree, including the ID of the backend VM.

2. The backend prepares to connect the device. On receiving the notifica-

tion the backend validates that the device is valid and instantiates data

structures to handle the new connection. It registers watch points on

both the new backend device directory, and the frontend’s directory

(which it has been granted permission to), and waits for the frontend

to start.

3. The frontend VM boots, and initializes the device. The frontend al-

locates the components of a device channel, writing details of an un-

bound event channel and a grant reference for the shared ring page

into its device subdirectory. The frontend driver adds a watch the vir-

tual disk subdirectory.

4. The backend connects to the device channel. The event channel is

bound and the ring page is mapped into the backend. The backend

then writes details of the virtual disk, including disk capacity, sector

size, and additional device-specific details.

5. The frontend completes the connection set-up. The frontend receives

the device info and completes the connection process, registering the

new device with the OS. At this point, the disk is available for access.

Device removal is handled by the tools simply by removing the frontend

directory. Both drivers take this as an indication that the device is no longer

available, disconnecting the device channel and removing outstanding state.
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The Virtual Network Interface3.2.6

The virtual network interface is similar in nature to the block interface. The

network interface is more complex in two significant ways, both of which

relate to the asynchrony of network traffic: First, as the numbers of packets

transmitted and received are not exactly symmetric, a single shared ring is

not sufficient as a device channel for network traffic. Instead, two rings are

employed, one for transmission and one for receipt of packets. Second, the

destination of an inbound network packet is not known until after it has

been written to memory and its protocol headers have been examined. This

makes it impossible to write received packets directly into memory already

belonging to the recipient VM.

To address this second issue, the grant transfer operation is used. The fron-

tend network driver relinquishes a set of pseudophysical pages to the back-

end, where they are added to a free list. As inbound network packets are

received, they are placed into pages on this list and protocol headers are

examined. Once the destination VM is ascertained, the packet-containing

page is transfered into the empty pseudophysical memory region provided

by the VM. If a VM is unable to provide sufficient free pages to accept in-

bound packets, the backend simply drops the excess packets, returning the

page to the free list.

Linux has an established history of being used to build PC-based routing,

NAT, firewall, and related packet processing hosts for small networks. The

network subsystem of the OS is very feature-rich, providing support for

filtering, limited processing, and forwarding of packets at all layers of the

protocol stack. The current backend driver simply maps VMs onto vir-

tual interfaces as provided by the Linux network subsystem, allowing the

packet processing facilities in Linux to be used to make packet forwarding

decisions. The in-hypervisor virtual firewall router [WHTP02] is no longer

used.

Typical Xen installations generally use one of two forwarding techniques

within the backend VM: The Linux bridge tools allow forwarding of packets

at the Ethernet frame level, and include support for MAC-address filtering

and proxy ARP. With a bridged interface, VMs appear as additional hosts

on the local link. Alternatively, the backend VM may be configured to use

the Linux routing tools, acting as an IP-level gateway for the client VMs.
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The bridging and routing extensions have comparable performance, and

both allow the use of additional network forwarding tools, such as traffic

shaping. The bridging tools are perhaps slightly easier to configure, while

the routing path is undoubtedly better tested given the large number of home

routers based on Linux.

Performance of Split Drivers3.2.7

Figure 3.7 demonstrates the overhead of split drivers on a set of system

benchmarks. All measurements in the graph were carried out on a Dell

PowerEdge 2650 dual-processor 3.06GHz Intel Xeon server with 1GB of

RAM, two Broadcom Tigon 3 Gigabit Ethernet cards, and an Adaptec AIC-

7899 Ultra160 SCSI controller. The SCSI controller hosted two Fujitsu

MAP3735NC 73GB 10K RPM SCSI disks. All tests used RedHat Linux

9.0 with the 2.4.26 kernel.

Using a native Linux 2.4.26-SMP kernel installation as a baseline (L), the

graph shows two relative performance figures for each benchmark. The

first measurement evaluates the overhead of virtualizing device access into

the backend VM (Xen0): this evaluates just the isolation mechanisms in

Xen for virtualizing device registers and interrupts. In the Xen0 tests, the

server is run directly in the driver VM. The second relative result (XenU)

measures complete isolation using a split driver to isolate the benchmark

application in its own VM. This adds the additional overhead of routing

device requests over a device channel to the backend VM. In all cases, the

benchmarked OS is configured to use 512MB of memory. In the XenU

results, the driver domain has 256MB of memory, but does not use the

buffer cache. Configuring all benchmarked VMs was intended to to ensure

that the Linux instances being tested were as identical as possible.

The set of benchmarks is as follows:

• Linux build time - The time to build a Linux 2.4.26 kernel stored on

the local ext3 file system.

• Postmark (PM) - A filesystem benchmark developed by Network Ap-

pliance which emulates the workload of a mail server. It starts by

creating a set of 2,000 files with sizes of between 500B and 1MB each,

and then performs 10,000 transactions on them. Each transaction is
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Figure 3.7: System Benchmarks of Split Drivers

composed of a set of file operations including creation, deletion, and

appending of data. In total, over 7GB of data is transfered to and from

the disk.

• OSDB-OLTP - An open source database benchmark that creates and

populates a database and then runs a battery of queries and updates

against it. The database used is PostgreSQL 7.3.2, and the benchmark

is configured to use a 400MB database.

• httperf-08 - A workload generator for web server benchmarking. In

this case, httperf was configured to evaluate server latency, by allowing

only a single outstanding request at a time. As such, this is effectively a

ping-pong test for a single 64KB static web page, served using Apache

2.0.40.

• SPEC WEB99 - An industry standard benchmark for evaluating web

servers and the systems that host them. The test workload involves a

mix of request types: 30% involve the generation of dynamic content,

16% are HTTP POST operations, and 0.5% execute a CGI script.

Disk activity in this benchmark involves a 2.7 GB dataset of served

data, and the generation of access and POST logs.

With the exception of httperf split drivers are within 10% of native perfor-

mance. The httperf result illustrates the main weakness of the split driver

approach: As device requests are routed across multiple isolated protection

domains, there is a per-request overhead in terms of latency. As the httperf

example allows only a single outstanding request, it is not network bound.
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The test achieves a maximum bandwidth of approximately 200Mbit/s, and

is limited on the end-to-end latency of request processing. In general, this

is not a problem for server workloads, as request pipelining and batching

allows latency to be amortized across requests and achieves a high through-

put, as shown on the other benchmarks. A lesson from the httperf result is

that this approach to isolation is costly for certain specific workloads such as

fine-grained cluster computing, where synchronous dispatch is used to issue

small pieces of computational work to hosts in a cluster. This latency over-

head is a result of a design decision in Xen to optimize for the more common

requirement of high throughput: the latency overhead is even more costly in

the next section on device extensions as an additional stage is introduced to

the pipeline; throughput, however, remains very high.

Figure 3.7 shows an interesting result for OSDB-OLTP, in which the split

drivers actually outperform native Linux. This is a result that has recurred in

many situations while investigating virtual block I/O for Linux. The virtual

memory system in Linux is rather complex with regards the handling of

dirty pages. Experience shows that the introduction of a request pipeline

at the block interface tends to stabilize this behaviour, and often improves

performance. This result is repeated in the next section with regard to soft

devices for block I/O.

In concluding the presentation of the split driver approach, it is worth reiter-

ating that split drivers achieve three main benefits in a VMM-based system:

1. Drivers are isolated against failure. Driver code executes in an iso-

lated VM, and is given direct access to hardware. A thin virtualiza-

tion layer in the hypervisor virtualizes and/or validates access to sen-

sitive resources such as interrupt dispatch, I/O register access, and de-

vice configuration. Using this approach, driver failure is isolated, and

driver VMs may be rebooted in the presence of failure and returned to

a stable state without affecting the frontend VM. Most importantly,

by removing drivers from the VMM, the system as a whole is more

stable.

2. Unmodified device drivers may be used. By allowing direct hardware

access to entire OS units, driver VMs may capitalize on existing driver

source. Any OS that runs on the VMM may be used to host device

drivers, freeing the VMM from the need to track changes to driver
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Figure 3.8: High-level View of a Traffic-limiting Soft Device

code in an existing OS code base.

3. Devices may be shared across a variety of OSes. Split drivers export

access to physical devices across device channels by presenting an ide-

alized interface to a class of device. This idealized interface is easy

to write a new frontend driver for, allowing new OSes to be rapidly

modified to use virtualized devices within the VMM.

In addition to these three benefits, the introduction of the narrow, idealized

interfaces that are used on device channels facilitates the interposition of

device extensions. The next section extends the split driver approach by

allowing the introduction of new extensions to devices independent of the

frontend OS, and backend driver.

Soft Devices3.3

As stated in the introduction of this chapter, a major problem in the design

of systems is that of determining how to allow the safe introduction of new

software-based features to devices with reasonable performance, while mak-

ing this extension development both reasonably easy and portable across

OSes. By extending the device channel interfaces used by split drivers, exten-

sions may be interposed between the front and backend drivers, examining

and modifying device requests as they are issued.

As an example of such an extension, consider a modified network interface

that includes traffic shaping and rate-limiting functionalities, which make it

difficult for malicious software to generate certain forms of attack traffic.

This soft device is shown at a very high-level in Figure 3.8. By implementing

52



3.3. Soft Devices

this functionality in an extension interposed on the virtual network device

interface, several benefits are achieved:

1. Security. As the new traffic limiting feature is intended to limit mali-

cious behaviour, it should not be included directly within the host OS,

which may be compromised and modified.

2. Proximity. Conversely, by placing the extension as a portion of the

virtual network device, a tight coupling is maintained. In this example,

the extension need not drop offending traffic, as it would were it added

outside the physical host as a network device. Instead, it may simply

opt not to dequeue packets from the transmit queue, deferring queuing

overhead onto the VM itself.

3. Portability. As mentioned previously, implementing the extension out-

side the context of both the frontend and backend VMs allows source

independence from both of these implementations. Extensions may be

applied to any OS on the VMM which accesses the network using the

split driver. Moreover, as explained later in this section, extensions

may be written in userspace, allowing complete freedom of develop-

ment environment.

4. Isolation. Finally, as extensions may be written as user-space appli-

cations, and may further optionally run in their own virtual machine,

their failure is isolated from affecting the rest of the system. Exten-

sions may easily be shut down and restarted while serving requests

from running VMs.

The example of limiting malicious traffic within an extension is presented in

considerably more detail in Chapter 4. Tens of such device extensions have

been written over the course of this thesis; other examples include network

address translation to share the port space of a single IP address across a set

of VMs, copy-on-write and encrypted disks, and remote device access.

The remainder of this section discusses how a device tap may be used to

interpose on the device channel used by split devices. It then goes on to

present tap-based extension interfaces for both block and network devices.
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Figure 3.9: Overview of Device Tap Configurations

The Device Tap3.3.1

The device tap is a device interface-specific driver that provides a means

to extend devices in arbitrary ways by interposing on the device channel

between the frontend and backend VMs. For example: developers may

desire to simply trace request traffic in order to monitor usage patterns, they

may wish to modify in-flight requests, or they may desire to construct a

terminating device, which does not forward requests to a backend driver at

all.

In order to accommodate these varied modes of operation, the device tap

acts as a request switch for device channels. As shown in Figure 3.9, the

driver may be plumbed into the device channel between the frontend and

backend domains, and may operate on all requests that are issued. The tap
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driver is specific to the idealized device interface being used, but may be

placed in either a completely isolated VM, or alongside the backend driver

in the backend VM. Isolating extensions in a complete VM allows them the

freedom to be implemented in any OS, using whatever development tools are

desired. However, this approach incurs an additional overhead in terms of

context-switching. As shown in Figure 3.9, if extensions are written for the

same OS as the backend and physical device driver, the tap may be installed

in the backend domain, and performance is improved. As extensions are

generally written as user-level applications, this approach still maintains a

reasonably high level of isolation.

Figure 3.10, shows a more detailed view of the device tap itself. The single

device channel between the front- and backend drivers in the split driver

configuration is broken into two rings. The tap interposes on this channel,

appearing as a backend to the front and a frontend to the back. The de-

vice channels are then presented to applications in userspace using shared

memory rings, exported over a character device that may be mapped into

application memory. Where event channels were used for inter-VM notifica-

tion on device channels, poll() and ioctl() syscalls achieve notification

to and from extension applications and preserve batching of messages.
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Switching Modes3.3.1.1

The device tap itself acts as a switch for device messages. Once installed in

the device channel, it may be configured for a particular switching mode,

and will forward messages accordingly. Figure 3.11 summarizes three com-

mon switching modes used by the tap.

MODE PASSTHROUGH is the lowest-overhead switching configuration. In

this mode, messages are passed straight through the driver on to the opposite

ring, and completely bypass the user rings. Passthrough can be used to

implement kernel-level monitoring of block requests, or to implement soft

devices in-kernel for improved performance.

MODE INTERPOSE routes all requests and replies across the user rings. An

application must attach to the device tap interface and pass messages across

the two rings, allowing complete monitoring and modification of the request

stream at the application level. This mode can be used to modify in-flight

requests, for instance to build a compressed or encrypted block store. This

is the mode of operation that is used for the majority of examples described

in the later chapters of this thesis.

MODE INTERCEPT FE uses only the front-end rings on the driver, disabling

the back-end altogether. This mode allows the development of new device

functionality completely in user space of an isolated virtual machine. This

mode is used the the Parallax storage system, which acts as a user-space

backend and then sends requests to the file system or network using the

traditional OS interfaces.

In addition to passthrough and interposition modes, the original tap imple-

mentation provided support for applications to request copies of data, with

the intention that read-only access to data be made possible out-of-band,

without placing the extension code directly on the data path. For most ap-

plications this proved to be impractical: incurring a fixed copy on the data

path is expensive, and a copy-on-write mechanism for interdomain pages

does not currently exist in Xen. In practice, placing hooks on the data path

is sufficiently low overhead that this support has been removed as extrane-

ous.
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Figure 3.11: Examples of Forwarding Modes

User Interface3.3.1.2

As mentioned above, the device channels between the tap and the front- and

backend VMs are presented to userspace using memory mapping and sys-

tem calls for notification. As with the existing split drivers, this approach

avoids copy overheads and preserves the batching of messages on the device

channels. For the device tap implementations discussed later in this section,

additional support has been provided in the form of library interfaces for

extensions. Libraries attach to the tap driver interface and provide data

structures representing the front-end connections from attached VMs. Ex-

tensions are able to attach to individual devices, and register to receive their

device requests.

An interesting avenue of exploration which has been left as future work is

allowing extensions to be installed directly into the kernel. One approach

of interest is that taken by the Click modular router [KMC+00], in which

routing extensions use a common API in both user and kernel mode. This

“develop in user, deploy in kernel” is an attractive approach to building

extensions that could be incorporated into tap drivers in the future.

The remainder of this section discusses device taps for block and network

devices that have been implemented as part of this work.
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The Block Tap3.3.2

The block tap is a tap driver that allows the extension of block devices. It

was the first tap driver to be implemented and was initially described in a

paper at USENIX 2005 [WFHD05]. The tap was originally implemented to

support the development of Parallax, which is described in detail in Chap-

ter 5.

Structure of the Block Tap3.3.2.1

The overall structure of the block tap is shown in Figure 3.12. This figure

shows two extensions written to the library interface provided by the tap.

The library generates control messages to an extension manager as client

VMs add and remove virtual block devices. Based on watch points in Xen-

Store, these messages may be used to trigger the instantiation of extension

code to handle requests for the associated virtual disk.

The figure shows two extensions, each serving block requests from a dif-

ferent VM. VM B is provided with a copy-on-write disk extension which

remaps writes onto an alternate backing store, rendering the disk served by

the backend as immutable. VM C is served by an extension which forwards

block requests to a remote host over the network, where they are issued to

a backend driver. The network connections are not shown in the figure for

clarity.
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Note that the front- and backend VMs all connect over existing block de-

vice channel interfaces, and are unaware of the existence of the tap or the

extension.

Technical Details of Block Tap Implementation

The block tap is implemented as a Linux 2.6 device driver, and has been

maintained in the Xen tree for almost two years. Over the course of its

development, several interesting technical challenges have been addressed in

order to allow user-level extensions to achieve high-performance.

The most notable of these challenges has been in extending the Linux mem-

ory management system to handle the presence of pages of memory that do

not belong to the virtual host. As a non-virtualized OS, it is understand-

able that this functionality is not a part of Linux; it is, however, crucial for

high-performance.

When writing user-level extensions that access hardware managed by the

extension VM, it is desirable to allow direct device access on pages of mem-

ory that have been mapped by the block tap from a client VM. While many

modern operating systems, including Linux, have facilities to issue direct

device requests (eliminating in-OS copies), memory mapped from a foreign

VM is not part of the extension VM’s pseudophysical memory, and as such

the OS is unable to generate the appropriate machine address to program

device DMA.

To solve this, the Linux memory management system was extended to allow

virtual address regions to be mapped as “foreign”. When an attempt is

made to resolve the machine address of a page mapped in a foreign region,

a special code path is taken, resolving the appropriate machine address in

the remote VM.

With this modification, direct block access (O DIRECT) and the Linux asyn-

chronous I/O (libaio) interfaces may be used in extensions on remote

pages. As discussed in the performance section later in this chapter, the

block backend driver has been reimplemented in userspace using the block

tap, and achieves almost identical performance.
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User-Level API3.3.2.2

As mentioned above, messages intercepted by the block tap may be passed

to extensions in userspace using communication rings and memory mapping

similar to inter-VM device channels. There are two components to this

interface: The low-level memory-mapped interface presented to userspace,

and the library interface provided by blktaplib.

Raw Interface

At the most basic level, the tap device simply exports a character device node

to applications. This device node (/dev/blktap) can be mmap()ed into

application virtual memory. The mapped virtual memory region is sparse; it

includes the rings for forwarding requests and responses to respective front

and backend domains, and a large region into which foreign data pages

may be mapped. As discussed above, this sparse region of virtual memory is

marked as containing foreign virtual memory mappings to allow direct I/O

access from extensions.

In addition to the mmap() interface, the device provides an ioctl() which

may be used to signal that there are outstanding messages to be read by the

driver, and a poll() interface to receive upcall notifications of new pending

messages from the driver. Allowing applications to interact with the shared

memory area directly rather than providing read() and write() interfaces pre-

serves the decoupling of data transfer from notification described earlier in

this chapter. The ioctl() and poll() interfaces combine to provide an OS-to-

application analogue of the event channels used between VMs, and ensure

that request batching is maintained.

In addition to signaling, the ioctl() interface allows the mode of the request

switch to be changed, and provides an interrogation interface for debugging.

Library Support

In order to facilitate the development of extensions as user-level applica-

tions, the libblktap library provides higher-level interfaces to block de-

vice extensions. While this library was originally intended simply to elimi-

nate repeated code, it has evolved over the past year to become a key com-

ponent of the system.

The user-level API was initially motivated by the Linux IP chains / IP tables
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interfaces, in which a series of filters and queues — effectively a list of func-

tion invocations — could be applied to packets as they were processed by a

host. This approach has also been used in research systems concerned with

flexible but efficient packet processing in the past [Ros94,MP96,HP91].

The original library presented two “chains”, one for requests and one for

responses, to which function hooks could be attached. Similar to other ap-

proaches, the hook functions would be called on a per-message basis, and

would return a verdict regarding the treatment of the message. Requests

could be passed, indicating that they should be forwarded on to the next

hook, or dropped, indicating that processing should stop. As the block pro-

tocol is symmetric, hooks issuing a drop verdict are responsible for injecting

an appropriate response back to the client VM; the drop verdict simply pro-

vides a way for a hook to consume an in-flight request.

The initial implementation has evolved in several ways. Rather than having

a single set of chains for all block requests, the library now provides a virtual

disk abstraction to applications. As disks are registered by the Xen control

tools, the library provides a callback to indicate that a new disk has been

created. Request-handling function chains are now contained within this

virtual disk structure, allowing applications to build per-disk handlers to

provide whatever behaviours they desire.

Figure 3.13 shows an overview of the library interface to block devices. The

register new blkif hook() call is used to register a function that will

handle new disks as they are instantiated by the control tools. This function

initializes necessary private state, for instance by opening the image file that

will back a virtual disk, and sets function pointers to handle interrogating

disk metadata. Additionally, a number of request and response message

hooks are added to handle requests to the disk from the client VM. The

code shown in the figure is a summarized version of the code used in the

userspace block backend, described in Chapter 5.

This move to a per-disk abstraction was motivated by the language-level

support for device virtualization described in [WCSG04] and [WCG04]2.

2Andrew Whitaker kindly sent me a copy of the Denali virtual disk source, which I did
not manage to incorporate, but from which I took the notion of a per-disk abstraction for
extensions.
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/* Functions returning details on the virtual block device. */
long int get_size(blkif_t *blkif);
long int get_secsize(blkif_t *blkif);
long int get_info(blkif_t *blkif);

/* Request/response handlers. batch_done is a hint from the
library, indicating the last message in a batch. */

int blkback_request(blkif_t *blkif, blkif_request_t *req,
int batch_done);

int blkback_response(blkif_t *blkif, blkif_response_t *rsp,
int batch_done);

struct blkif_ops blkback_ops = {
get_size: get_size,
get_secsize: get_secsize,
get_info: get_info,

};

int new_blkif_handler(blkif_t *blkif)
{

/* Here we establish any private state, open image files, etc. */
...

/* Register operations for quering virtual disk metadata. */
blkif->ops = &blkback_ops;

/* Finally, add handlers for requests/responses for this disk. */
blkif_register_request_hook (blkif, blkback_request);
blkif_register_response_hook(blkif, blkback_response);

}

int main (void) {
...
register_new_blkif_hook(new_blkif_handler);
...

}

Figure 3.13: Example of the blktaplib Interface
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The Network Tap3.3.3

The network tap adds extension support for network devices in Xen. It was

developed to explore a more general notion of device extensions after the

initial block tap implementation had been completed. The ability to quickly

develop network extensions has been very useful, and examples of its use

are presented in Chapters 4 and 6. The traffic limiting example in Chapter 4

has recently been published at HotNets [KWC+05], and is the subject of

ongoing work.

Linux Packet Forwarding and Netfilter3.3.3.1

Linux has an established history of being used to build PC-based routing,

NAT, firewall, and related packet processing functionality for small net-

works. The network subsystem of the OS is very feature-rich, providing

support for filtering, limited processing, and forwarding of packets at all

layers of the protocol stack. When network forwarding was moved out of

Xen and into a privileged VM (between the 1.0 and 2.0 releases of Xen), the

in-hypervisor packet forwarding code [WHTP02] was removed in favour of

the existing Linux forwarding mechanisms.

To take advantage of the Linux forwarding tools, the backend driver proxies

client VM connections as virtual interfaces in the backend VM. This leaves

the backend VM with one or more physical network interfaces, handled by

physical device drivers, and a set of virtual interfaces connected to individual

frontend VMs. Xen installations generally use one of two forwarding tech-

niques within the backend VM: The Linux bridge tools allow forwarding of

packets at the Ethernet frame level, and include support for MAC-address

filtering and proxy ARP. With a bridged interface, VMs appear as additional

hosts on the local link. Alternatively, the backend VM may be configured

to use the Linux routing tools, acting as an IP-level gateway for the client

VMs. The bridging and routing extensions have comparable performance,

and both allow the use of additional network forwarding tools, such as traf-

fic shaping. The bridging tools are perhaps slightly easier to configure, while

the routing path is undoubtedly better tested “in the wild,” given the large

number of home routers based on Linux.

To enable arbitrary processing of in-flight packets, Linux’s netfilter interface

allows packets to be forwarded to userspace over a netlink socket and pro-
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struct ipq_handle *h;

h = ipq_create_handle(0, PF_INET);
status = ipq_set_mode(h, IPQ_COPY_PACKET, BUFSIZE);
do
{

status = ipq_read(h, buf, BUFSIZE);
switch (ipq_message_type(buf))
{

case IPQM_PACKET:
ipq_packet_message_t *m = ipq_get_packet(buf);

/* Arbitrary processing of the packet happens here. */

status = ipq_set_verdict(h, m->packet_id,
NF_ACCEPT, 0, NULL);

break;
}

} while (1);
ipq_destroy_handle(h);

Figure 3.14: Example of the libipq Interface

cessed by arbitrary applications. As mentioned above, this is the approach

that was initially used to prototype network tap-based extensions, as com-

bining this user-queueing with a VMM allows packets to be processed in

userspace outside the client OS that they relate to.

Figure 3.14 shows a simplified version of the IP queuing example code on

the libipq manpage3. Error checking has been removed to ease readabil-

ity. This example demonstrates the structure of a typical packet processing

application, which after initializing a connection to the ipq netlink socket,

sits in a loop processing packets. The call to ipq set mode() indicates

how much of the packet is to be copied to user-space; the example copies

the entire packet, while it is also possible to only process packet metadata.

ipq set verdict() passes a verdict on a packet, either NF ACCEPT or

NF FAIL, to the kernel. The call may optionally include a pointer to a re-

placement packet to send, should the processing application desire to modify

the packet contents.

3The libipq library and manpages are maintained as part of the large netfilter project.
Additional information is available at http://www.netfilter.org/
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Structure of the Network Tap3.3.3.2

The network tap shares the same structure as the generalized tap interface

described earlier, but uses the ring-pair-based network device channels. The

tap has been incorporated as a component of the network backend driver

that allows requests to be redirected through user-space. The tap and back-

end share a common VM, as shown in the third example in Figure 3.9.

Packets retain their batching as they are shuttled from kernel to user-space.

For this reason, the tap achieves considerably higher performance than the

Linux user-queuing code, which context switches at a per-packet granular-

ity and copies packets instead of mapping them. The per-packet interface

provided by libipq can be preserved by providing library support above

the net tap, allowing libipq-based extensions to run.

Additionally, the grant transfer mechanism makes mapping data pages to

user space considerably more straight forward within the tap. As the trans-

fer of pages actually results in the tap domain owning the data pages, they

may be mapped to user space using the existing OS mapping operations and

do not require the use of OS modifications for foreign memory access as

described in regard to the block tap.

Performance3.3.4

I now consider the performance costs of the soft device architecture on

real device workloads. The degrees of isolation provided by the soft de-

vice framework allows a gradient of separation for extensions both in terms

of increasing safety (through isolating extension failure) and in terms of de-

coupling extension source from the code bases that they interact with. In

the weakest form, an extension may be placed in-kernel, in the backend

driver; this is effectively the same as traditional ad hoc device extensions

which modify arbitrary kernel code, requiring an understanding of the ker-

nel, and resulting in extensions that are tightly coupled with the kernel. As

separation increases, extensions built on the soft device architecture may

be promoted to user space and/or moved to an isolated virtual machine.

These garner the benefit of additional isolation, but result in performance

overhead due to the additional protection domain crossings involved.

While the benefits of isolation for safety and separation of code bases are

65



3.3. Soft Devices

Block Throughput (Bonnie 1.03, 2GB)

Char Write Block Write Rewrite Char Read Block Read

Th
ro

ug
hp

ut
 (K

B/
s)

0

10000

20000

30000

40000

50000

60000

70000
Xen0
XenU
XenU−blocktap

Figure 3.15: Block Throughput

rather difficult to measure empirically, the study of efficient cross domain

communications has been well explored in existing systems literature, pri-

marily with respect to microkernels [BALL90,Lie93], but also more recently

with respect to Xen itself [CG05, MST+05]. One of the interesting results

that we have realized in the development of Xen is that these context switch

overheads can be amortized over batches of requests. As discussed in sec-

tion 3.2.7 the worst workload for soft devices, and for split drivers in gen-

eral, is that of small message, synchronous ping-pong style communications,

where latency rather than throughput is critical. Fortunately, this class of

applications is small, the only example that has been raised from the Xen

community to date has been a class of MPI-based applications for scientific

computing.

In [HWF+05] we argued that a key benefit of the VMM structure is that it

is a practical realization of the isolation goals touted by microkernels. As

argued above, building extensions at the application level in OS-granularity

containers provides developers freedom of development environment and

portability of extension code. The question that this section aims to evaluate

is whether or not this approach to extensions is practical in real systems. To

address this, I examine the overhead of soft devices on macro-benchmarks

for both disk and network.

Block Device Overhead3.3.4.1

Block devices are sufficiently slow relative to processor speed that achieving

low overhead for extensions is relatively easy. Figure 3.15 shows bonnie
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Figure 3.16: Block Request Timelines

results for the block tap. The results compare the block tap to the block

backend, each serving a client VM on a second CPU. The baseline result is

that of Linux running in domain 0, indicating the direct throughput to disk

without using the split driver. In general, the tap is capable of saturating the

block device in all configurations.

As an aside, these results show an interesting aspect of performance mea-

surement for devices that the group has seen throughout the work on Xen:

Device interactions above a VMM are sufficiently complex as to be sensitive

to small changes in the environment. In the three cases below, the block tap

achieves slightly better performance for small writes and block reads, while

the backend driver outperforms considerably on rewrite. These results were

repeatable across sets of three tests each on the same configuration, and

likely represent timing and batching artifacts. Similar behaviour is shown

below with regard quantizations on network receive and these device sensi-

tivities have been discussed by other researchers in [MST+05].

Figure 3.16 presents a more detailed view of how in-flight requests are com-

posed from a performance perspective. The diagram plots profile time-lines

of a set of requests taken from a trace of sequential reads issued by the fron-

tend. In this test, requests are passed through the block tap to a user-level
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Figure 3.17: Network Throughput

implementation of the backend driver. Requests are then issued to the ker-

nel using the Linux AIO interfaces. As this is a sequential read, each of the

horizontal bars in the plot reflects a request to read 44K (11 pages) of data.

This diagram illustrates how the overheads imposed by the extension inter-

faces are dwarfed by the time required to satisfy block I/O requests, shown

as the large light-green region in the middle of each bar.

Net Device Overhead3.3.4.2

The interrupt rate involved in handling modern network interfaces presents

a considerably more formidable challenge for device extensions than do

disks. Figure 3.17 shows throughput achieved for a 2GB network transfer

using ttcp. As with the block throughput measurements above, all results

represent the mean of three consecutive trials. The graph shows transmit

and receive throughput at packet sizes of both 1500 and 550 bytes. An MTU

of 1500 is the default for Ethernet, while 552 is commonly used by dial-up

PPP clients and puts considerably higher stress on the I/O system due to the

packet rates generated (190,000 packets per second at 800Mb/s). These val-

ues are taken from a larger set of results which characterize throughput for

MTUs ranging from 1500 down to 300 and sampling at 50-byte intervals.

The first three bars in each cluster of the graph represent configurations

discussed in the performance section of the presentation of split drivers.

From left to right they show a normal Linux Installation (Linux), Linux

running in Xen with direct hardware access (Xen0), and Linux running in

a frontend VM using split drivers. As discussed earlier in this chapter, split
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Configuration Ping RTT (Overhead)

Linux on Xen – No split drivers 155µs

Split driver 206µs (25%)

Split Driver + Net tap 220µs (30%)

Table 3.2: Network Latency Overhead

drivers track the performance of native device access, but incur an overhead

on packet processing of small MTUs.

The two remaining bars show the throughput achieved using the network

tap (NetTap), and the Linux IPQ interface. In both cases, packets are

mapped to userspace, and immediately returned to kernel by a no-op exten-

sion. While both of these incur overhead, the network tap is clearly superior.

For MTUs between 1500 and 550, the IPQ throughput degrades linearly;

the interface involves no batching and incurs a context switch on every

packet. The network tap has much better performance: It tracks the na-

tive Linux results with an approximately seven percent overhead for MTUs

down to 750 bytes, and then begins to decay as the CPU becomes saturated.

As mentioned above, the worst case workload for split drivers and tap-

based extensions are those requiring low-latency synchronous traffic. This

form of workload is effectively non-existent in both enterprise and desktop

environments where applications are generally focused on throughput and

present considerable opportunity to amortise switching overheads through

batching. In order to provide some insight into the overheads on single-

packet performance, Table 3.2 presents average ping times and the associ-

ated overheads using the network in three configurations. As shown in the

table, the introduction of split drivers imposes a 25% overhead on ping la-

tency on a local gigabit network. The addition of the tap, resulting in the

forwarding of requests through user-space adds an additional 5% to this—

context switches to user cost considerably less than world switches across

VMs. These results aim to punctuate the fact that in the case of low-latency

synchronous workloads—likely composed of only a very small number of

scientific computing applications—the latency and CPU overheads of the

techniques presented in this thesis are likely to be prohibitively expensive.

The network results demonstrate that the tap is capable of sustaining high

throughput on a network saturation benchmark, and that it far outperforms
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the network extension interface currently offered by Linux. While there is a

higher overhead concern than exists with extending block devices, these re-

sults are reasonable to deploy extensions in production systems – especially

where the network is not saturated. Moreover, network extensions should

benefit from both faster processors and parallelism: moving the extension

code to a separate CPU should result in a reduction in overhead, based on

the experience of split drivers. The current trends in hardware are clearly

towards an increase in the number of processing elements available on a

host, and so this approach seems quite attractive as future work.

This concludes the presentation of support for device extensions. Tap de-

vices extend the device channel-based communications used by split drivers

to allow new functionality to be added to devices below the virtual machine.

This support for the development of soft devices provides the following ben-

efits:

1. Extensions are resistant to tampering. As device extensions execute

outside of the VM that uses the device, they are considerably more

secure against exploits to that OS. This is useful in adding features that

enforce behaviour, such as the network traffic limiting that is presented

in Chapter 4, and in building “trusted” extensions to hardware.

2. Extensions remain co-located with the client VM. While extensions

run outside the virtual machine accessing the device, they are still on

the same physical host. This is preferable to implementing extensions

on a separate host such as a network gateway or remote storage server,

as extensions are directly involved in the device interface. This pro-

vides a more immediate mechanism to provide feedback, and avoids

the need to queue outstanding requests.

3. Extension source is decoupled from front- and backend OS code. This

source isolation has two benefits. First, extensions are portable across

any OS for which a device frontend is available, unlike proprietary

OS-specific extension mechanisms or, worse, direct modifications to

the OS kernel. Secondly, extension developers are freed from having

to track changes to kernel interfaces over time.

4. Extension execution is strongly isolated. Finally, as extensions are

written as user-space applications, and optionally run in their own vir-
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tual machine, their failure is isolated from affecting the rest of the sys-

tem. Extensions may easily be shut down and restarted while serving

requests from running VMs.

The next section explains how a set of local device extensions may be ag-

gregated across hosts in a cluster environment to manage a class of devices,

such as storage, as a service.

Device Services3.4

In addition to allowing the extension of local devices, this thesis argues that

the combination of isolating extension code in virtual machines and inter-

facing with client VMs on simple, narrow, virtual device interfaces provides

an ideal environment for the construction of device services, particularly in

VM hosting environments involving large numbers of physical machines.

This approach to building services behind device interfaces is beneficial from

several perspectives. In the short term, many large-scale (∼10K physical

machines) hosting facilities are in the process of deploying virtualization.

This deployment means effectively increasing the number of active operat-

ing system instances by a factor of between ten and one hundred. While

virtualization allows them to increase the number of isolated servers that

they are capable of hosting, it also carries the consequence of dramatically

increased load on storage and network facilities. Examples such as the par-

allax storage service (Chapter 5) and aggregate rate limiting (Chapter 4)

address immediate needs that have resulted from this sudden increase in

scale.

From a more general perspective, structuring services in a data center en-

vironment as an aggregation of service VMs that interact with client VMs

over device interfaces allows the isolation afforded by virtualization to be

carried beyond the local host and into a facility-wide environment. After

detailing the general structure of these services, this section will discuss how

soft devices may be composed to form strongly isolated cluster services.
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Figure 3.18: Structure of a Device Service

A Device Service Architecture3.4.1

Figure 3.18 shows the structure of a generalized device service. A set of

four physical hosts is shown, where a network-wide service is hosted across

the entire cluster, composed of individual service VMs on each physical ma-

chine. On a given physical host, a service VM may include three main com-

ponents: physical device drivers with direct access to local devices being

managed as part of the service; a service application, running as a device

extension in user-space of the service VM; and a client-VM-facing interface,

provided by a device tap or backend driver.

Where desired, individual service VMs may be further decomposed, as men-

tioned earlier in this chapter, to isolate extensions into a separate VM. This

is shown in the case of physical host D in Figure 3.18, where the service

VM has been decomposed into a backend VM, which hosts the physical

device and associated driver, and an extension VM, where the user-level ex-
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tension server is run. This decomposition may be desired to further isolate

failure, or to allow extensions to be developed in a completely different OS

environment than the one that the physical device driver is available for.

This method of structuring device services achieves four kinds of service

isolation in a VM cluster environment:

1. Performance Isolation. Overload of a service slice will not have cas-

cading effects onto unrelated VMs in the cluster.

2. Security Isolation. Services present only device interfaces, limiting ex-

posure to security exploitation.

3. Failure Isolation. Crashes and related failures in service VMs do not

compromise the stability of non-dependent VMs.

4. Administrative Isolation. A device service represents a single cluster-

wide administrative domain.

Beyond performance isolation, the remaining three categories represent the

so-called “-ilities” of systems research; they are clearly desirable, but are

difficult to validate empirically. The remainder of this section discusses each

of the four in more detail and provides initial evidence to support the as-

sociated claims. In the remaining chapters of this thesis, I construct two

cluster scale device services and claim, anecdotally, that they exhibit these

properties.

Performance Isolation3.4.2

One of the fundamental benefits of virtualization touted throughout the re-

cent resurgence of research into the area has been the ability to provide

strong performance isolation between VMs that are co-located on the same

physical host. This isolation is of clear benefit in placing service VMs on the

same physical host as clients as it is desirable to be able to ensure that the

distributed device service will not detrimentally affect the clients (who are

typically the paying customers) in a hosting environment.

The use of VMMs, Xen in particular, to achieve performance isolation was

illustrated in our early work on the project. Specifically, [BDF+03] demon-

strated system-wide performance isolation using industry standard bench-
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marks such as SPECWeb.

Interestingly, while a VMM is demonstrably capable of very effectively iso-

lating coarse-granularity workloads within a system, the accounting of some

forms of device-level access remains a very difficult problem. Providing fair,

and accounted access to disk in particular is a difficult problem that remains

open for examination in the future.

Security Isolation Through Narrow Interfaces3.4.3

A key aspect of this isolation is the narrow device interfaces provided to

the client VMs. This is the only visible aspect of a service, and so can be

more easily verified for security. A distributed service is composed of VMs

that may be placed on an isolated subnet, and kept separate from any form

of VM interaction. The Xen network interface already provides facilities

to prevent any form of spoofing from client VMs, “stamping” outgoing

packets with the appropriate MAC and IP addresses [BDF+03].

The only VM-facing interface offered by the device service is that of the

device channel presented to the frontend driver in each client VM. The entire

environment of device services in a cluster — client access over narrow, host-

local interfaces and the ability to clearly isolate the service network from

clients — allows us to avoid many of the problems faced by traditional

distributed systems.

Failure Isolation and Fate Sharing3.4.4

Just as virtualization on the single host allows us to isolate two co-located

servers from all but failures in physical equipment and the VMM itself,

this approach to building cluster services allows a horizontal isolation of

a distributed service throughout the cluster environment.

In this manner, virtualization allows services to be composed using an iso-

lated “slice” of the cluster, composed of a set of VMs on separate physical

hosts, each serving local client VMs over local device channel connections.

A novel aspect of this approach relative to other distributed or peer-to-peer

service structures is that each server VM shares fate with its clients for the

majority of failure conditions. For example, while it is still possible for net-
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work disruptions to interfere with the distributed service cluster-wide, we

have high degrees of assurance that local device channels will remain ser-

viceable.

The use of VMMs to isolate failing software extensions, specifically device

drivers, was presented in [FHN+04]. In that paper we demonstrated the

ability to isolate device driver crashes, and restart driver VMs with minimal

disruption to clients.

Administrative Isolation3.4.5

In addition to the isolation of individual services from other VMs within a

cluster, this approach also allows a high degree of administrative isolation,

especially where service VMs actually manage physical components of each

host. For example, a storage service may actually control the local disks in

each physical machine within a cluster, allowing a single administrator to

specialize in storage administration, having remit over all aspects of storage

throughout a hosting facility. This includes the ability to administer the

entire vertical stack of software pertaining to a given service, including low-

level tasks such as the upgrade of device drivers, across the hosting facility.

This approach is similar to that of virtual appliances [SBC+03], but applied

to cluster wide services, and to lower-level interfaces.

Device services are an attractive approach to managing I/O resources in large

computer installations because they allow the isolation achieved by VMMs

to be applied to the management of devices. An example of this approach is

Parallax, a device service for managing storage resources which aggregates

local disks and network-attached storage into a single centrally-managed fa-

cility. Parallax has been initially described in a paper at HotOS [WRF+05],

and is the subject of ongoing research in the lab. The system is presented in

detail in Chapter 5.
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Summary3.5

This chapter has presented the core approaches taken to virtualizing and

extending devices by this thesis. In a VMM environment, split drivers are

used to isolate driver VMs, which run unmodified drivers and export them

to client VMs over idealized interfaces. A device tap may be interposed on

this interface and used to host device extensions, which may be written in

userspace using high-level languages and development tools. These exten-

sions, or soft devices, may then be aggregated within a cluster environment

to compose device services, which allow the isolation provided by VMMs to

be applied to the management of I/O devices across a large compute facility.

Table 3.3 summarizes the material presented in this chapter by restating the

original problems as described in the introduction and briefly revisiting the

key aspects of each solution. The remainder of this thesis attempts to vali-

date these techniques by describing extensions and device services that have

been constructed above these mechanisms. Chapter 4 presents a network

soft device that aims to prevent denial-of-service attacks being hosted from

within VMs. Chapter 5 describes Parallax, a device service for the man-

agement of storage in cluster environments. Chapter 6 describes the use of

disk and network extensions to support the addition of a new architectural

feature—tainted data tracking—to a virtual machine.
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Device Support in a VMM (Split Drivers)

Problem How should device access within a VMM be structured as to al-
low guest OSes to share hardware resources while balancing issues
of performance, dependability, security, and software maintenance
effort?

Key aspects of split drivers as a solution:

Multiplexing Idealized interfaces allow new OSes to be rapidly modified to use
virtualized devices. Split drivers allow multiple VMs to safely share
access to a common physical device.

Source
Independence

Isolating drivers in OS-granularity units and directly exporting
hardware allows existing physical drivers to be used. The VMM
does not need to track driver-OS interfaces, and may use drivers
from any OS.

Isolation Driver code executes in an isolated virtual machine. System is pro-
tected from most forms of driver crashes. Driver VMs may be re-
booted for recovery.

Device-level extensions (Soft Devices)
Problem How can device-level system interfaces be extended to allow the safe

introduction of new features with reasonable performance, while
making extension development both reasonably easy and portable
across OSes?

Key aspects of device taps as a solution:

Tamper-
resistance

Device extensions execute outside of the client VM and are pro-
tected against tampering, even if the OS is compromised.

Proximity Extensions are directly associated with hardware interfaces. OS be-
haviour may be controlled for activities such as rate-limiting and
resource control.

Source
Independence

Extensions are portable across OSes. Extension developers need not
track changes to OS-device interfaces over time.

Isolation Extensions are written as user-space applications, and optionally
run in their own virtual machine. Failure is isolated from affecting
the rest of the system. As with split driver backends, extensions
may easily be shut down and restarted while serving requests from
running VMs.

Managing device access in VMM-based clusters (Device Services)

Problem As virtualization is deployed into large cluster environments, how
can devices be managed in a facility-wide manner, while catering to
new capabilities, such as migration, that are afforded by VMMs?

Key aspects of device services as a solution:

Performance
Isolation

Overload of a service slice will not have cascading effects onto un-
related VMs in the cluster.

Security
Isolation

Services present only device interfaces, limiting exposure to security
exploitation.

Failure
Isolation

Crashes and related failures in service VMs do not compromise the
stability of non-dependent VMs.

Administrative
Isolation

A device service presents a single cluster-wide administrative do-
main.

Table 3.3: Summary of Approaches to the Management of Virtual Devices
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Chapter 4

Soft Devices for Traffic
Management

The virtualization of network resources has been of particular interest in

recent years, as facilities such as virtual hosting providers and academic re-

search networks strive to provide data-link (typically Ethernet) layer access

to shared network resources in a fair, and isolated manner. My original in-

volvement with network virtualization was with the network subsystem of

Xen, which was described both as a Planetlab design note [WHTP02] and

in the original Xen paper [BDF+03].

This chapter explores the application of device extensions to address prob-

lems relating to the management of network resources in VMM-based envi-

ronments. As with other examples that are presented throughout this thesis,

device extensions are particularly relevant in that they first present an op-

portunity to cleanly extend systems in a manner that has hitherto been dif-

ficult to achieve. Second, they address emerging problems that result from

the scale, and division of administrative responsibility that are presented by

large VMM-based environments. These two characteristics may be restated

specifically in terms of network resources as follows:

1. The ability to place isolated extensions at the network edge.

Soft devices are an especially powerful abstraction with regard to net-

work resources in that, unlike in-OS extensions, they cannot be di-

rectly subverted under the compromise of administrative access on the

client OS. Secondly, extensions may limit a VM’s ability to transmit

data by directly applying back-pressure: they may simply refuse to ac-

cept transmissions, forcing the burden of queueing onto the client OS
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itself.

2. The need to manage network resources in VM clusters.

The division of the administrative role that occurs in VM environ-

ments, first discussed in Chapter 2, leaves facilities administrators re-

sponsible for the management and accounting of resources available

to VMs. This responsibility is particularly prevalent with regard to

network resources, where administrators may be at least partially re-

sponsible for Internet traffic generated by individual VMs. As such,

administrators desire techniques to ensure that VM traffic is appropri-

ately accounted and well-tempered.

This chapter aims to present a general overview of the challenges of net-

work device virtualization beyond those mentioned in Chapter 3. While

the coverage in the previous chapter was concerned with the architecture

of network virtualization support, the coverage here mentions additional

issues that exist above the split driver implementation.

Additionally, this chapter presents an example that validates the ease and

flexibility of development of device extensions based on the soft device

framework. The example described here is that of a packet symmetry-based

rate limiter, which prevents VMs from generating common forms of denial-

of-service (DoS) traffic. The general approach of traffic symmetry has re-

cently been presented at HotNets [KWC+05], while the treatment of the

material presented in this chapter is specific to VMM-based environments.

The symmetry-based limiter aims to provide an initial demonstration of the

applicability of device extensions to solve real problems in VM environ-

ments.

Network Device Extensions in Xen4.1

Before describing a more advanced network extension, it is worth noting

that the existing network virtualization provided to VMs above Xen already

augments the physical network interface with a variety of extensions.
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Preventing Source Address Spoofing4.1.1

The first example of this augmentation is in virtual network support to pre-

vent the transmission of packets whose source addresses do not match the

configuration of the virtual interface. This “antispoof” feature was demon-

strated in the context of programmable network interfaces by previous re-

search in the lab [PF01] which was in turn based on earlier packet-filter

work such as DPF [EK96]. Additionally, similar features have recently been

added in Windows XP Service Pack 2, which explicitly prevents the gen-

eration of UDP packets containing a source address that is not currently

assigned to a physical interface.

As the network backend driver maps packets that are queued for transmis-

sion, it copies out a range of data from the beginning of each packet into

its own private address space. The copied region includes the source ad-

dresses from the Ethernet and IP frames, which may be validated against

the transmitting virtual interface. Maintaining this data as a private copy

prevents tampering by the transmitter after validation and allows the back-

end to “stamp” packets with the appropriate MAC source address before

transmission.

This facility has been in place since the original version of Xen. On al-

most all interfaces, scatter gather DMA is used to link the copied region of

packet headers with the remaining payload data mapped from the transmit-

ting VM.

Resource Isolation and Rate Control4.1.2

The backend driver must provide fair use of network resources across the

set of VMs which share a device. This enforcement is generally applied to

outgoing traffic, as the physical host is effectively powerless to limit inbound

traffic in a useful way. However, inbound traffic is limited in the case that

a VM has not donated sufficient pages of memory to receive arriving pack-

ets: Where donated pages are not available to transfer received pages, the

contained packets are simply dropped.

Packet transmission is managed by the backend driver iterating across the set

of device channels with pending outbound traffic. The backend maintains
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a list of channels awaiting transmission, and serves them in a round-robin

fashion, dequeueing and transmitting a fixed number of packets from each

interface at a time. VMs are prevented from enqueueing more packets than

may fit on the transmit ring in a manner that is analogous to queueing pack-

ets for transmission on a physical device. The backend can easily throttle

outbound traffic from a given VM by not dequeuing packets, and disabling

event notifications on the device channel.

Additionally, the split network drivers in Xen have built-in support for leaky

bucket-based, per-interface rate limiting. This support allows a hard limit to

be placed on the number of bytes that a VM may transfer within a window

of time, and is enforced within the backend driver.

Finally, as the network backend has been more tightly integrated with the

existing Linux networking code, the Linux network management facilities

are available to the control of traffic. The Linux bridge or routing utilities

may be used to handle traffic forwarding, while IP tables and rate control

extensions may be used to filter and shape traffic.

Migration of Network Addresses4.1.3

When migrating virtual machines within a cluster, the virtual network inter-

face must change physical location and its traffic must be redirected to reflect

this move. In order to minimize the period of disconnection, the migrating

VM carries its MAC address with it, and an unsolicited ARP advertisement

is sent to indicate that the interface has moved. This technique allows a VM

to be relocated within the context of a local subnet very efficiently and with

a minimum of lost packets; it is one of the key techniques used to achieve

the fast live migration of VMs [CFH+05].

Migrating VMs across subnets is also possible, but requires more careful

integration with packet forwarding in the cluster. At the point of migration,

associated routers will require reconfiguration to reflect the relocation of

the migrating VM. It is very likely that enhanced support for cross-subnet

migration will be developed in the near future.
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Virtual Private Networks4.1.4

Finally, support exists to use Ethernet-over-IP tunnelling to build virtual pri-

vate networks between VMs. In this configuration, the backend constructs a

VPN by maintaining a set of encrypted tunnels between participating phys-

ical hosts. The Ethernet link visible to a VM is then bridged over these

tunnels, and physically disjoint VMs communicate as if they share a com-

mon subnet.

In all of these cases, extension code runs above the unmodified physical

device driver, but outside of the isolated client VM. As extensions are fre-

quently used to achieve security or resource-limiting goals, their placement

outside the client VM ensures a great deal of resistance to from compro-

mised or otherwise malicious VMs.

Operator Responsibility and Denial of Service4.2

It is generally in the interest of Internet providers and hosting facilities to en-

sure that the network connectivity that they provide is not misused. At the

present time this incentive is largely an economic one: providers negotiate

the terms of upstream transit links, which typically charge based on a com-

bination of link rate and traffic volume. As a result, hosting compromised

machines that are used to perform DDoS may have a direct cost in terms of

bandwidth charges to the provider.

Legally speaking, DDoS represents a very challenging situation to resolve as

attackers are often difficult to identify, and the resources used are typically

compromised hosts belonging to third parties. It has been suggested that

service providers may have a legal responsibility to prevent their networks

from being used to host denial of service attacks [PP03,Rad01], as they may

be held liable as a negligent third party. To my knowledge, these assertions

have not been tested in court as many claims appear to be quietly settled by

lawyers and insurance companies [Sca01]. In the absence of clear regula-

tory guidelines, these articles all advise providers to adopt industrial “best

practices”, and to do everything they reasonably can to ensure that their

networks are not misused. Section 4.3 describes an approach based on the

symmetry of inbound and outbound packet counts that may be deployed as
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a network extension in VM hosting environments to drastically mitigate the

risk of DDoS attacks being sourced from compromised VMs.

Packet Symmetry Enforcement4.3

As mentioned in Section 4.2 providers are under increasing pressure to en-

sure that compromised hosts on their networks are not used to mount DDoS

attacks on others. This is especially true in hosting centres, where unlike

home DSL-connected workstations, hosts are server-class machines with

high-rate network connectivity. In such environments, a single compromised

host can generate DDoS traffic equivalent to hundreds of DSL users.

Fortunately, the ability to place traffic management extensions outside the

client OS, but on the same physical host provides administrators with a

unique opportunity to manage traffic. For instance, ingress filtering, as ad-

vised by RFC 2827 [FS00], can be employed at the virtual network interface,

where packet provenance may be absolutely determined at the resolution of

a fully-specified IP address.

This placement of extensions on the same physical host is similar to OS-

kernel-based traffic limiting techniques such as the virus throttling proposed

in [Wil02], “distributed firewalls” [Bel99], and Microsoft’s recently pro-

duced networking security enhancements released in Windows XP service

pack 2 [And04, Mic04]. However, OS-based approaches may be circum-

vented in the case of a system compromise: if an exploit gives ‘root’ or ‘Ad-

ministrator’ access, then an OS-based approach is effectively useless. This is

demonstrably true in the case of Microsoft’s extensions: SP2 limits a host to

no more than 10 partially open TCP connections to different remote hosts,

and disallows the use of raw sockets to generate UDP packets with IP source

addresses that are not assigned to an existing interface. Binary patches are

publicly available that allow both of these limitations to be removed by di-

rectly modifying the Windows network stack.

An additional, and unique benefit to limiting traffic at the virtual interface

is that extensions are not required to drop packets. Instead, they may opt

simply not to dequeue packets that a VM is attempting to transmit, forcing

that VM to bear the burden of queueing, while avoiding drops which may
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be misinterpreted as being an indication of congestion.

Packet Symmetry4.3.1

This work focuses on the observation that well-behaved connections exhibit

a balance between transmitted and received packets. For example, although

most TCP connections exhibit unidirectional data transfer, acknowledge-

ments still flow back from the receiver to the transmitter at a rate of ap-

proximately one ACK for every two segments received; even in cases of loss

we can expect this ratio to remain relatively small.

One can argue that symmetry also holds for the vast majority of UDP flows;

SunRPC protocols clearly possess symmetry, and even streaming media pro-

tocols such as RTP exhibit packet-rate symmetries of better than 6:1. It

seems reasonable to argue that any correct Internet protocol must exhibit

the flow of packets in both directions if it is to be responsive to conditions

in the network or at the peer host.

In light of these observations, many forms of malicious traffic may be con-

strained by rigidly enforcing a threshold of outbound packet symmetry. To

quantify this symmetry, the following metric compares the number of trans-

mitted packets (tx) and received packets (rx):

S = log
e

(

tx + 1

rx + 1

)

This metric for symmetry produces negative values when rx outweighs tx,

positive values when tx outweighs rx, and zero in the case of perfectly bal-

anced traffic. The absolute value of S measures the magnitude of the asym-

metry.

This model treats the transmission of reply or acknowledgement traffic as

an implicit signal that it is acceptable to continue to send to a specific desti-

nation. We enforce an asymmetry limit of S ≤ 2.0, a ratio of about seven to

one; this limit was established empirically through trace analysis performed

by Christian Kreibich, the details of which are described in [KWC+05].

As a general architectural approach, this addition of implicit signalling based

on response traffic addresses the weakness in the current Internet design
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Figure 4.1: Illustration of Asymmetry-based Rate Limiting

that allows DDoS attacks to be carried out in the first place: There is no

way for an end host to indicate that they do not wish to receive traffic

from a given source. This inability to signal has been observed by other

work, which has proposed more drastic architectural change to the net-

work [ARW03, ALPS03, HG04]. [ARW03] for example proposes using ca-

pabilities to prevent unwanted traffic: a server must explicitly grant a client

the ability to send. This explicit signalling requires modification to both

ends of a connection, whereas the symmetry-based approach is incremen-

tally deployable at the transmitting hosts.

A second major problem in DDoS prevention lies in identifying the hosts

that are at the source of an attack, who frequently spoof source addresses.

The difficulty in determining attack sources makes filtering attacks at the

receiving end very difficult and has motivated the proposal of trace-back

schemes such as [SWKA01,SPLS+02,YPS03]. The use of ingress filtering as

an extension to the virtual interface provides the invariant that a VM may

only generate packets from its assigned network addresses.

The asymmetry-based limiter delays, rather than drops packets at the trans-

mitting source. The approach acts like a punitive traffic shaper: As packets

exceed the threshold symmetry, it introduces a delay between transmitted

packets. This delay grows in proportion to the degree of asymmetry, throt-

tling the host’s ability to generate traffic.

Figure 4.1 shows an illustration of this asymmetry-based limiter using the

parameters used in the implementation described in the next section. The

graph plots the increasing value of asymmetry as a host generates unac-
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Figure 4.2: Simple DDoS Example: UDP Flood

knowledged packets. The asymmetry value crosses the threshold, marked

with the horizontal line at S = 2.0, at which point the delay function be-

gins to generate increasing per-packet delay penalties, for as long as the

asymmetry exceeds the threshold. Asymmetry is calculated within a sliding

window, so once a sufficiently large delay is generated, the host is effectively

prevented from generating traffic for the length of that window.

Prototype Implementation4.3.2

I have implemented an asymmetry-based traffic limiter as a soft device for

Xen. The implementation interposes on all traffic to and from the client

VM, calculating per-host-pair and per-flow symmetry values. As mentioned

above, the filter is calibrated to an asymmetry value of S = 2.0, which is

an approximately 7:1 ratio of transmitted to received packets within a one-

second sliding window. This is a liberal allowance, as it gives hosts the
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ability to send seven packets per second before any delay is introduced. In

a real world deployment, the ratio might be reduced, and the window size

could certainly be grown.

All traffic passing through the prototype with a symmetry value of 2.0 or

less are dequeued and sent to the physical driver for transmission. When

asymmetry exceeds 2.0, we begin to count packets as outstanding using a

monotonically increasing packet counter n. Each outstanding packet is then

delayed by 2n ms before it is transmitted. This delay continues to accrue

and be applied to transmit packets until the symmetry falls back below our

threshold value, at which point the timer is reset. This penalty function was

intended as a rough initial estimate, and will likely be reconsidered in future

work on symmetry-based enforcement.

Figure 4.2 shows an example of DDoS-like traffic. The graphs plot the

transmit packet rate and the resultant asymmetry of a UDP flood attack

against a remote host, a simple form of bandwidth consumption DDoS.

The two hosts are connected over 100Mbit links in a local LAN. The local

host transmits one KB UDP packets as fast as it can, saturating the link.

The symmetry value plotted in the lower graph raises logarithmically as the

attack continues.

Figure 4.3 shows the effect of symmetry-enforcement on the UDP flood. As

can be seen, the UDP transmission is aggressively limited at the threshold

due to the lack of received packets to offset the asymmetry. Compare this to

the scp-based file transfer shown in Figure 4.4: scp also saturates the link

(achieving a lower packet rate because it is sending larger packets), but as it

is a TCP-based protocol, stays well below the asymmetry threshold.

There are currently two implementations of the asymmetry extensions. One

extends the backend network driver to enforce host-granularity asymmetry:

All packets on a given virtual interface are counted together, and the host

is punished for violating symmetry across the aggregate of its connections.

This implementation has the benefit of being simple, and requiring very lim-

ited state. A second (original) implementation is written as an extension

using the libipq interface, and allows per-flow symmetry to be evaluated.

This requires the queuing of outstanding packets in the extension code, as

they must be transferred to the extension for their five-tuple-based flow to be

evaluated. A mechanism in the split network drivers to allow extensions to

87



4.3. Packet Symmetry Enforcement

Unacknowledged UDP flood of 1KB packets (limiting)
Pa

ck
et

 R
at

e 
(K

 p
ac

ke
ts

/s
)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Elapsed Time (s)
0 2 4 6 8 10 12 14 16 18 20 22 24

As
ym

m
et

ry

0
1
2
3
4
5
6
7
8
9

10

asymmetry threshold

Figure 4.3: Limiting UDP Flood Based on Packet Symmetry

“peek” at pending packets, and selectively dequeue specific messages would

allow VM-queuing to be preserved while enforcing flow-granularity symme-

tries.

While the work here describes symmetry enforcement in the context of a VM

environment, my work on this project with other members of the research

group, described in [KWC+05], considers symmetry in the larger context

of the global Internet. I intend to continue investigating this subject in the

future, as we plan to deploy a symmetry shaping device to limit external

traffic on a college network.
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scp−based transfer of a 128MB file
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Figure 4.4: High Throughput TCP Traffic Remains Unaffected

Summary4.4

This section has presented an overview of a set of network device modifica-

tions that are beneficial in supporting virtual network interfaces for virtual

machines. These environments provide both challenges and opportunities

that do not exist in existing hosting environments: as virtual machines are

deployed in large cluster environments, network access must support VM

migration and operators must become concerned with the increasing poten-

tial for compromised facilities to be exploited for the generation of malicious

traffic. Device extensions allow the introduction of new functionalities that

respond to these challenges below a VM’s device interface. As such, exten-

sions may efficiently interact with the VM, while remaining isolated from

exploitation.

A future area of interest in this work is the development of a device service
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to allow the accounting and rate-limiting of traffic generated by groups of

VMs, as they run across a subset of physical hosts. This service would

involve the development of a distributed version of a rate-control algorithm

such as leaky bucket. Initial investigations in this vein have shown that while

it is easy to rigidly divide a resource allocation (e.g. network throughput)

across a set of distributed hosts, giving each a share, that this allocation

is clearly suboptimal. A better solution would allow individual hosts to

sequentially transmit at the aggregate maximum, but still reactively limit

them in the case where the maximum is exceeded. The development of this

thesis has involved some initial investigation into this problem, but further

design and implementation is left as future work.

The symmetry-based rate-limiter is an example of a relatively simple, prac-

tical device extension that is beneficial in a virtual machine environment. It

has been recently published at HotNets [KWC+05], and is the subject of

ongoing investigation in the lab. The next chapter switches focus to explore

extensions for block devices, focusing on a device service that provides stor-

age for virtual machines.
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Chapter 5

Soft Devices for Storage

As with network resources, the move to VMM-based environments repre-

sents a fundamental shift in the requirements for storage, both in terms of

mechanistic issues relating to scale and bandwidth, and administrative re-

quirements for describing and deploying storage resources. Despite offerings

of “storage virtualization” products, almost all storage products that have

been available until very recently have focused exclusively on the unification

of a set of physical devices into a storage substrate that can be divided and

exported as logical disks. Virtual machines have placed new requirements

on storage in several dimensions:

• Capacity. Capacity is a key issue in the deployment of hardware vir-

tualization. First, as physical servers are capable of hosting an or-

der of magnitude increase in virtual machines, there is a concurrent

requirement for system images for these virtual hosts. Second, live

migration introduces a requirement that storage be more available

throughout a cluster, potentially introducing a need for additional

replication of data. Thirdly, if techniques for debugging [KDC05],

diagnosis [WCG04], and improved availability [QTSZ05] gain trac-

tion in deployed systems, there is a requirement for very fine-grained

snapshots of entire system images to be available in an online fashion.

• Bandwidth. As with capacity requirements, an increase in the number

of OS-granularity storage clients has a direct impact on storage band-

width requirements. This is particularly true during physical reboots

and the execution of timed maintenance tasks.

• Location Transparency. As suggested above, live VM migration im-

plicitly requires that storage be available in a location transparent
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fashion. While network-attached storage provides a high degree of

network transparency by nature, OSes have not traditionally changed

physical location within the network and configuration management

for this mobility must be addressed.

• Administration. Finally, the division of administrative roles described

previously has clear implications of storage. While system adminis-

trators managing VMs may take a large amount of responsibility for

the installation and management of system software, facilities admin-

istrators require tools to create and manage logical storage quickly

and efficiently, to account for its use, and potentially to guard against

systems which are exposed to threat due to the presence of vulnerable

software.

This chapter expands on the storage requirements presented by virtual ma-

chines and details approaches which have been taken in current systems.

It then introduces the Parallax storage system as an example of a device

service as introduced in Chapter 3. Parallax is a storage service designed

specifically for VMM-based clusters, motivated by the storage requirements

mentioned above. A prototype of the system was described in a paper at Ho-

tOS [WRF+05], and this chapter presents a detailed description of a more

complete implementation than presented previously.

Parallax: A Distributed Storage Service for Virtual

Machines5.1

Parallax is a device service, based on per-physical-host soft device exten-

sions that aims to address the storage problems presented above. Parallax is

based on a storage abstraction called a Cluster Virtual Disk(CVD). A CVD

is a virtual storage device that is available throughout a cluster, and pro-

vides a mapping of physical blocks on an underlying storage substrate into

a contiguous set of virtual blocks, which are exported directly to a virtual

machine. The CVD abstraction takes advantage of the commonality be-

tween disks used by VMs to aggressively share common blocks across disks,

and to easily create new disks based on well-known images.

While a prevalent issue in existing systems, concerns regarding capacity and
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bandwidth are only the immediate problem in VMM-based environments.

The design of Parallax aims to address the emerging research applications

of virtual machines that do not simply require support for scaling capacity

and bandwidth. Two applications in particular, large honey farms and VM

replay, require fast and efficient snapshots of virtual disk images.

Honey farms and Application Sandboxes

VMs have attracted considerable attention from the security community as

a means for intrusion detection. The Collapsar [JX04] project uses virtu-

alization to turn a single physical host into a honey farm of virtual hosts,

allowing the logging and detection of network-based attacks. More recently,

the Collaborative Centre for Internet Epidemiology and Defenses (CCIED)

has undertaken the construction of a VM-based honey farm containing a

million virtual hosts [VMC+05], where the creation of individual VMs is

triggered based on packet arrival.

In these situations, the use of VMs results in a dramatic increase in the num-

ber of system images that are required. Fortunately, the required VM images

are very similar and it is consequentially possible to share the common por-

tions. It may often, for instance, be desirable to manage numbers of disks

based on a small set of template images.

One of the key aspects of the CVD primitive is a copy-on-write block-level

virtualization of underlying storage. The implementation discussed in Sec-

tion 4.3.2 is capable of generating 10,000 new disks from a given template

in under 40 seconds.

Replay: Forensics and Debugging

A growing set of OS research efforts uses ‘time-travel’—the ability to rewind

and replay a VM through historical states—in order to add new functional-

ity. In this area, virtualization has been used both for the forensic examina-

tion of historical system state, and for analyzing state changes over time to

isolate the root-cause of failures.

BackTracker [KC03] is a system that uses virtualization to isolate and an-

alyze intrusions into a virtualized OS. More recently, the same set of re-

searchers have developed a time-travel debugger [KDC05] that allows a sys-

tem to be rewound, instruction by instruction, after a crash. The Chronus

system [WCG04], developed at the University of Washington, allows ad-
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ministrators to apply a probe over historical versions of a machine’s disk in

order to isolate the point at which a malfunction began. Chronus then iso-

lates the disk request that was responsible, in hopes that higher-level tools

might be able to resolve the problem.

In addition to these examples, there are several other clear opportunities

to take advantage of time-travel and the existence of past system states. I

expect that cluster-wide snapshot and replay tools will be available for VM

clusters over the next few years.

Preserving old state and allowing VMs to move forward and backward

through time presents a very interesting set of challenges for storage. The

ability to snapshot a virtual disk at runtime must be provided with virtually

no overhead. Furthermore, the system must be able to store and manage vast

numbers of snapshot versions. As a goal in this regard, and in light of expe-

riences gained through VM replay efforts at Cambridge, the Parallax design

assumed a goal of performing per-VM snapshots every 30 seconds. At this

rate, the system must account for the creation of almost three-thousand

snapshots per-CVD, per-day. As such, the snapshot mechanism has been

designed to be as space- and time-efficient as possible.

Overall System Design5.1.1

This section presents the design of Parallax, a distributed storage manage-

ment service for clusters of virtual machines. Parallax includes three com-

ponents: First, a distributed block store providing traditional storage vir-

tualization, location transparency, and redundancy. Second, a middle-layer

persistent cache to mitigate the performance overheads involved in storage

virtualization. Finally, Parallax builds CVD support above these underly-

ing block layers and presents access and management interfaces to virtual

machines. The design is motivated specifically by the requirements and ex-

amples presented above.

The design of both Parallax and the CVD primitive is based on a set of

simplifying assumptions, specific to virtual machines, that aim to provide

a system that is considerably more flexible and scalable than previous ap-

proaches to storage management. This section begins with a discussion of

these design decisions.
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Figure 5.1: Parallax High-Level Architecture

Simplifying Assumptions5.1.1.1

Virtual machine clusters present a new set of storage requirements but also

have several properties that greatly simplify the design of a storage system.

Parallax’s design is based on two initial assumptions specific to the provision

of whole system images in VMM environments.

Write Sharing Considered Harmful

Distributed storage has historically implied some degree of concurrency con-

trol. Write sharing of disk data, especially at the file system level, typically

involves the introduction of some form of distributed lock manager. Lock

management is a very complex service to provide in a distributed setting and

is notorious for difficult failure cases and recovery mechanisms. Moreover,

resolving write conflicts is a well-investigated area of systems research, and

one for which no general solutions exist.

Parallax’s design is based on the belief that persistent data sharing in a clus-

ter environment should be provided by application-level services with clearly

defined APIs, where concurrency and conflicts may be managed with appli-

cation semantics in mind. As such, the system explicitly excludes support
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for write sharing of CVD images. Instead the system maintains the invariant

that each CVD has at most one writer, greatly reducing the need for concur-

rency control. No communication between virtual machines is required to

access CVD images, only between the virtual machine using the CVD and

the block store. If virtual machines wish to communicate or share data, they

simply use explicit network-facing protocols rather than implicit shared-file

semantics. By avoiding write sharing completely, the state shared across

hosts is limited to mostly-static catalogues of storage serving hosts, which

only need updating in response to high-level administrative operations.

The reduction of complexity resulting from the removal of write sharing

is profound. Unlike Petal [LT96], Parallax does not maintain cluster-wide

global data structures for block allocation and concurrency control. The

more recent federated array of bricks (FAB) project, directly motivated by

Petal, mandates the use of voting protocols for consistency [SFV+04] and

requires an intricate snapshot algorithm [Ji05].

Deferred Redundancy

The virtualization of any address space involves the use of address mapping,

which in turn requires extra lookup steps. A difficulty for providing such

mappings, for disk especially, is that map lookups have the potential to incur

additional device accesses that can greatly hinder performance. The persis-

tent cache in Parallax provides an interposition point that gains improved

performance.

Thus the system is able to cache both blocks and mapping data locally while

replicated writes to the block store proceed in the background. Ongoing

work with the system will involve enhancing the block-device interface to

include synchronization and reordering barriers. These barriers may be used

to specify when it is safe to defer write-back or to perform parallel data

accesses, and when it is required that data is written back to the redun-

dant store to enforce higher-level semantics. Through their direct exposure

to this call, VMs will have the ability to selectively trade performance for

availability guarantees.

Cluster Virtual Disks5.1.1.2

Cluster virtual disks are the fundamental storage unit used by virtual ma-

chines in Parallax. A CVD is a single-writer extent of virtual storage, acces-
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read(vblock) → data Return the data stored at the specified virtual

block address.

write(vblock, data) Write the data provided at the specified virtual

block address.

cvd sync() Flush all outstanding writes to redundant store.

cvd snapshot() → snap id Take a snapshot of the current CVD image.

Table 5.1: VM Interfaces to CVDs

sible anywhere within the cluster. CVDs present virtual machines with the

interface in Table 5.1.

The read() and write() interfaces reflect the minimal block device interface

expected by a VM. CVDs additionally allow paravirtualized VMs to request

that data be explicitly flushed to the distributed store using cvd sync(). Fi-

nally the cvd snapshot() operation marks the current state of the disk as a

snapshot in the CVD history.

Virtual Block Mappings

The set of virtual block mappings in a CVD is stored in a radix tree that

resides in the same block store as the CVD contents. It maps contiguous

virtual block numbers from a single CVD to global block addresses, which

identify the block and its replicas in the distributed block store. Global

block addresses in the current implementation are 128 bits1 and the size of

the virtual block numbers is set at CVD creation time to the minimum size

necessary to fully address that image. With four kilobyte blocks, a radix

tree with a depth of three blocks is sufficient to map a 24-bit address space,

supporting CVDs up to 68 gigabytes in size.

Though the radix tree is stored in the distributed block store, it is also partly

duplicated in the local persistent cache and obeys the no-write-sharing con-

straint. The root block of the radix tree and other blocks mapping active

regions of the CVD are cached in memory as well, so no disk or network

activity is required to resolve most global block address lookups. In particu-

lar, virtually sequential data blocks share radix tree pages, resulting in good

performance for sequential lookups.

1One bit is reserved by the current radix tree implementation to distinguish between
read-only blocks inherited from an earlier snapshot or template and writable blocks created
as part of the currently active CVD.
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create(name, (snapshot)) →
CVD id

Create a new CVD, optionally based on an exist-

ing snapshot. The provided name is for adminis-

trative convenience, whereas the returned CVD

identifier is globally unique.

snapshot(CVD id) →

snap id
Force a snapshot of the specified CVD. This is

an administrative interface to the CVD snapshot

facility described in Table 5.1.

list() → CVD list Return a list of CVDs in the system.

snap list(CVD id) →

snap list
Return the log of snapshots associated with the

specified CVD.

snap label(snap id, name) Label a snapshot with a human-readable name

and mark it forkable.

snap collapse(

parent snap id,
child snap id)

Where the parent and child are co-linear entries

in the snapshot log, this deletes all snapshots

beginning with the parent and exclusive of the

child..

delete(CVD id) Delete the specified CVD. All snapshots are re-

moved backward in time to the last forkable

snapshot.

tree() → (tree view of CVDs) Produce a diagram of the current system-wide

CVD tree (see Figure 5.3 for an example.)

Table 5.2: Administrative Interfaces to CVDs

Snapshots

The root node of a radix tree uniquely identifies the CVD to which it applies.

This property facilitates support for lightweight snapshots, which require

only a single block duplication. The snapshot becomes a read-only template

from which the active CVD diverges over time using copy-on-write. Careful

construction of metadata allows this to proceed in a space- and time-efficient

manner.

A flag on each link in the radix tree indicates whether or not the target

block (which may be either data or a reference to a successive level of the

tree) is directly writable. All blocks created before the most recent snapshot

are immutable, while those created in the context of the active CVD can

be modified in-place. The links in the old root block are not changed, so

writable links provide a convenient way to identify all blocks that were

created during a specific CVD generation. To take a snapshot of a CVD

requires making a copy of its radix tree root block and marking all of its
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Figure 5.2: CVD Snapshot and Copy-on-Write

links as read-only. Every link on the path from the root of the radix tree to

the data block must be writable for the CVD to modify a block directly, so

this forces the CVD to copy blocks when it makes changes, including those

for the relevant path down the radix tree.

Figure 5.2 illustrates how the radix tree block mapping structure provides

snapshots and copy-on-write block access for CVDs. The figure shows

a simplified radix tree mapping six-bit block addresses with two address

bits per radix page. The example shows a CVD that has had a snapshot

taken, and successively written to a block of data at virtual block address

0x111111.

The snapshot operation copies the radix tree root block and redirects the

CVD record to point to the new root. All of the links from the new root are

made read-only, as indicated by the “r” flags and the dashed grey arrows

in the diagram. The address of the old root is appended, along with the

current time-stamp, to a snapshot log using a read-only link. The same

writable-link semantics that govern links within a radix tree apply to the

CVD record and snapshot logs and so a CVD mounted using a read-only

link is immutable and changes to it must be made in a copy-on-write fashion.
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Entries in snapshot logs may be mounted read-only for the purposes of VM

replay.

Copying a radix tree block always involves marking all links from that block

as read-only. A snapshot is completed using one such block copy operation,

following which the VM continues to run using the new radix tree root. At

this point, data writes may not be applied in-place as there is not a direct

path of writable links from the root to any data block. The write operation

shown in the figure copies every radix tree block along the path from the

root to the data (two blocks in this example) and the newly-copied branch

of the radix tree is linked to a freshly allocated data block. All links to newly

allocated (or copied) blocks are writable links, allowing successive writes to

the same or nearby data blocks to proceed with in-place modification of the

radix tree. The active CVD that results is a copy-on-write version of the

previous snapshot.

Administrative Interfaces5.1.1.3

The mapping and snapshot mechanisms act to maintain the invariant that

a CVD is a chain of read-only radix tree snapshots terminated by a single

writable radix tree. The distinction between a snapshot and a new CVD

forked from a template image is purely administrative; the same mechanism

is used in each case. My prototype installation maintains a set of well-

known “pristine” OS installations (FC2, FC3, Debian Sarge, and NetBSD)

and generates new CVDs based on these.

The administrative CVD interface is shown in Table 5.2. The CVD inter-

faces are made available through a set of command-line tools available in

administrative VMs. The implementation also provides some simple utility

tools, used to populate CVDs with existing images. To create a new CVD,

the create() interface is called and a name is provided to identify the CVD

for convenience. The create call returns a unique CVD identifier, which may

be used by a VM to mount the image. Newly created CVDs that are not

based on an existing snapshot have empty radix root blocks. They occupy

no additional space on the system, similar to a sparse file in most file sys-

tems.

Once a functional image has been created and properly configured, the

snap label interface may be used to mark it as well-known. This is partly an
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[root]

NetBSD Pristine
Mar 14 01:20:39 2005
snapid: (1050704,10)10 snapshots

Fedora Core 2 Pristine
Mar 17 12:27:32 2005
snapid: (1871224,2)

2 snapshots

Fedora Core 3 Pristine
Mar 10 08:38:55 2005

snapid: (16,1)

1 snapshots

ci test 1
Mar 14 00:29:10 2005

CVDid: 4

2 snapshots

rss  FC2 install
Mar 17 11:21:31 2005

CVDid: 6

1 snapshots

rss  FC3 Dev Image 1
Mar 10 08:03:09 2005

CVDid: 111 snapshots

rss  FC3 Dev Image 2
Mar 10 09:21:29 2005

CVDid: 2

1 snapshots

rss  FC3 Dev Image 3
Mar 10 09:21:58 2005

CVDid: 3

1 snapshots

rss  PLX TLS Test
Mar 18 16:47:02 2005

CVDid: 5

1 snapshots

Figure 5.3: CVD Tree View—Visualizing the Snapshot Log

administrative convenience, as CVD creation is based on system-wide snap-

shot IDs. The list of well-known snapshots is useful for quickly locating and

creating a new CVD.

Figure 5.3 shows sample output from the tree() interface2. The figure is a

simplified example showing 6 CVDs, each based on one of three labeled

snapshots. The tree tool, which uses AT&T’s graphviz3 to represent the

CVD hierarchy, collapses snapshots which do not represent forks and pro-

vides an easy-to-read representation of the current storage system state.

2The cautious reader will notice that some timestamps in the CVD nodes precede the
snapshot nodes on which they are based. This is due to the fact that the leaf node time-
stamp represents creation time, while the template time-stamp is snapshot time. The earlier
leafs represent the initial CVDs used to create the template snapshot.

3http://www.graphviz.org/
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Figure 5.4: Administrative Data Structures

Administrative Data Structures5.1.1.4

The block metadata structures within Parallax have been designed to allow

a set of physically distributed storage servers and virtual machines to share

access to a common global block address space without necessitating a com-

plicated distributed lock manager. While read and write operations made by

individual VMs are lock-free, several administrative-timescale concurrency

control checks are instituted, primarily for system safety. None of these

mechanisms functions at a granularity that introduces either performance

overhead or significant complexity.

Figure 5.4 shows an overview of the important block metadata structures.

This figure is a higher-level view of the per-CVD mapping metadata illus-

trated in Figure 5.2. Block metadata is divided into a set of concurrency do-

mains, where each domain has a single writer. The top of the figure shows

a single, cluster-wide data structure (Cluster Info) which presents a list of

“cluster managers”. Each cluster manager is responsible for the metadata

for a set of CVDs and their associated snapshot histories. A cluster manager

exports the set of administrative interfaces described in Table 5.2; since it

is the single writer for this entire set of metadata, it can be guaranteed safe
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access.

When a VM mounts a CVD, the cluster manager delegates write-ownership

of that CVD’s block metadata to it. The VM now becomes the single point

of access for administrative interfaces to the CVD for the duration of the

mount. In the figure, none of the CVDs are active, and so they all exist

within the concurrency domains of their associated CVD Managers.

The only piece of metadata that is potentially shared between writers for

common administrative operations is the snapshot log. Recall that the log

is a tree of timestamped pointers to individual radix roots, each entry repre-

senting a complete immutable file system snapshot. (An example snapshot

log is shown in Figure 5.3.) As operations are provided both to create a new

CVD based on an existing snapshot (resulting in a fork in the log), and to

delete groups of snapshots, the system must be careful to avoid conflicts.

This problem is addressed by adding two bits to each entry in the log, the

forkable and the deleted bits. As its name suggests, the deleted bit

indicates that a snapshot is no longer present in the system. The forkable
bit indicates exactly the opposite: that a specific snapshot is guaranteed

to be available. The forkable bit is set using the snap label() interface,

and allows administrators to safely create new CVDs based on snapshots to

which they do not presently have write access.

Administrative operations that modify the snapshot logs may only be ap-

plied by the single writer of the CVD owning that portion of the log. Snap-

shot log blocks are owned by the CVD that creates them; for example in Fig-

ure 5.3, the snapshot log belonging to “FC3 Dev Image 1” extends back to

the root, including the template snapshot, “Fedora Core 3 Pristine”. “FC3

Dev Image 2” has been created based on this image, and so will only own

the portion of the log back to, but exclusive of, this shared forkable entry.

Note that the depiction of the snapshot log as a tree is slightly misleading:

there is no distinguished root node, nor are there forward pointers. Instead,

the tree is implicitly traversed by tracing the snapshot logs backward from

each CVD’s active generation.

Deletion5.1.1.5

The frequent creation of snapshots has the potential to consume a consid-

erable amount of additional disk space. The original design was inspired
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by the arguments presented by Venti [QD02]: that storage was sufficiently

inexpensive and plentiful that deletion is unnecessary. However, after some

practical experience it became obvious that a delete mechanism would be

beneficial. In a production setting the claims made by Venti are realistic.

However, administrative policy may dictate that historical versions of data

be removed after some period of time.

As shown in Table 5.2, two notions of deletion are provided at the interface

level. In many cases, the desired action is simply to reclaim disk space by

removing redundant snapshots. This approach has been discussed histori-

cally in the context of versioning file systems such as Elephant [SFH+99]. In

more extreme cases, an administrator may desire to remove an entire CVD,

additionally deleting all snapshots associated with it. The latter problem is

very straightforward, as CVDs are single-writer leaf nodes on the snapshot

log. Their deletion involves first removing associated snapshots owned by

the CVD and then destroying the CVD itself.

Removing a snapshot can be described as a radix collapse operation. In the

base case of two neighboring parent and child snapshots with radix root

nodes Sp and Sc respectively, the operation collapse(Sp, Sc) will delete the

parent snapshot, removing all blocks that are not also used by the child;

in essence, blocks which have been overwritten by the child may safely be

removed from the parent.

The collapse algorithm relies on the observation that a writable path from

the radix root to an arbitrary block indicates that that block is owned by

the root. The algorithm performs a simple pairwise depth-first search of the

writable links in the two radix trees: links that are writable in both trees

may be deleted from the parent, while links writable only in the parent are

inherited by the child. All other links are left untouched.

Collapsing a range of snapshots is a simple extension of this approach. If

the parent and child are co-linear entries in the snapshot log rather than

immediate neighbors, deletion involves an iterative application of collapse()

on the specified child and its immediate parent, discarding the then-deleted

parent, until the specified parent is reached. As mentioned previously, entries

in the snapshot log are not removed, but rather have their deleted bit set.

Delete operations may not safely be applied across forkable snapshots, as

there may be other CVDs referring to blocks in these snapshots.
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Distributed Block Store5.1.1.6

The current implementation of Parallax uses a relatively simple distributed

block store. The CVD primitives and persistent caching are intended to

function above any block-level storage substrate and so apply equally in

systems where network attached storage is available. In light of this, the

distributed block store is intended for environments where a simple storage

substrate is desired over a set of commodity disks.

Storage is configured by building replica groups – collections of physical

hosts which will store replicated copies of block data. Each storage VM

maintains a list of replica groups available within the cluster, and is able to

interact with CVDs within these groups. At the moment, a CVD must exist

entirely within a replica group; a full image copy is required to move a disk

to a new group. This limitation will be addressed in a future version of the

block store.

Block servers within each replica group allow the allocation of virtual ex-

tents. A storage server will allocate a set of virtual extents and associate

these with a CVD. All writes to the CVD are effectively block appends to

the virtual extent. Virtual block addresses in the CVD are mapped, through

the radix tree, to a global block address representing the block offsets into

a set of virtual extents stored on servers within a replica group. The current

implementation uses groups of three servers.

Given the variety of distributed block-level substrates currently available,

both commercial and open-source software, the focus of Parallax has been

on the higher-level management of virtual disks through the design and sup-

port of the CVD primitive. As such, the current distributed block store is

complete enough to be functional but has not been a focal point within the

system. Future development of Parallax will explore a more complete block

store and also proper integration with existing network attached storage.

Persistent Cache5.1.1.7

The final component of Parallax is the per-machine persistent cache, which

interposes between CVDs and the distributed block store to provide higher

performance for frequently accessed blocks. The cache is quite simple since

all CVD information, except for administrative metadata such as the snap-

shot log, has at most one active writer. This allows blocks to be directly
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modified in the local persistent cache with no need for locking or invalida-

tion of remote copies.

The cache is of fixed size and maintains a list of each cached block, in LRU

order. Read requests are satisfied locally if the block is present in the cache.

If the block is not present then it is fetched into the cache and then serviced

as for a cache hit.

Modifications are always first written to the cache; writing back to the repli-

cated block store may then be deferred to trade reliability against perfor-

mance. If a VM synchronously writes its modifications back to the block

store then the replicated image is always up to date if the VM crashes (apart

from dirty pages in the guest OS’s buffer cache); however, performance will

suffer because ultimately the write bandwidth is limited to that of the block

store rather than the local disk. If writes are deferred for some time then

modifications can be acknowledged more rapidly to the VM at the cost of

seeing a somewhat time-delayed snapshot if the VM fails.

Implementation and Evaluation5.1.2

Having presented the design of Parallax, this section presents details of the

implementation of the system as a device service composed of device exten-

sions.

The Parallax Daemon5.1.2.1

The Parallax daemon is a user-level application providing CVD functional-

ity and managing local disks. It is written using the block tap interface and

currently totals about seven thousand lines of commented C source. The

daemon handles block requests from locally connected VMs, provides a lo-

cal persistent cache, and dispatches requests to the distributed block store.

The Blockstore Daemon5.1.2.2

The blockstore daemon manages one or more physical disk volumes ex-

ported to CVDs within Parallax. Each physical host contains a block man-

agement VM, which has physical access to the exported disks and runs both

of the daemons. The blockstore daemon is about fifteen hundred lines of

commented C source.
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Administrative Tools5.1.2.3

In addition to the two daemons, a set of command-line tools are available to

perform administrative tasks. These tools are small single-purpose utilities,

and map directly to the set of administrative tasks described in Table 5.2.

The Image Lifecycle5.1.2.4

This section considers the series of operations applied to create and manage

CVDs throughout their lifetimes. The deployment of a new disk image is

presented, as are the relevant performance figures as they arise. The current

implementation is fully functional in terms of the CVD features described in

Section 5.1.1, but has not been optimized for performance; while the current

throughput figures do compare reasonably with network disk access over

the open-source Cisco iSCSI initiator, I expect them to improve drastically

with further effort.

Composing and Deploying

Starting with a new system image for deployment in the cluster, a new CVD

is created. It is then populated using the cvd fill command.

$ cvd_create "FC3 deploy CVD"
Created image id 532.
$ cvd_fill 532 fc3.ext3.image
filling CVD 532 with fc3.ext3.image
done (4294971392 bytes).

The cvd fill command takes a local image file and copies it directly into

the distributed block store. When it is complete, a snapshot of the new

image is taken, it is labeled as well-known, and a set of new CVDs may be

created based on it.

$ cvd_snap 532
Snapshot id is 12094639439883 0.
$ cvd_label "FC3 Pristine" 12094639439883 0
Well-known snapshot "FC3 Pristine" created.
$ cvd_dup "FC3 Pristine" "FC3 vol " 500
Created 500 CVDs based on "FC3 Pristine"

(533 - 1032).

cvd dup is a simple shell script that iteratively calls cvd create to generate

a large number of disks based on an existing snapshot. CVD creation simply
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involves writing new CVD records and copying the existing radix root node:

the current implementation can create ten thousand usable CVDs based on

a template in under 40 seconds.

Utilization

Virtual machines may now be started based on the newly created CVDs.

Current measured disk performance is shown in Figure 5.5. The figures

shown represent a comparison of the current Parallax implementation to

the open-source Cisco iSCSI initiator4 connected to a Network Appliance

F840 filer. As mentioned above, the focus to date has been on the functional

aspects of the design presented in Section 5.1.1 and not on raw throughput.

The implementation of course also supports live migration— currently a

cvd sync() must be explicitly issued prior to the final relocation to ensure

correctness.

Deletion

Two command-line utilities are provided to allow the reclamation of storage

space. cvd snap delete may be used to delete a range of snapshots from

an existing disk, while cvd delete deletes the disk itself. Both deletion

tools use the radix tree scanning algorithm described in Section 5.1.1, and

are able to reclaim data at a rate of 8MB/s concurrently on each storage

brick in the replica group. Snapshot deletions do not remove pages in the

snapshot log; they remain for the life of the CVD. Snapshot log pages are,

however, a negligible overhead on storage consumption.

Implications of Copy-on-Write5.1.2.5

It is worth considering the consequences of using copy-on-write-based snap-

shots for regular OS installations. One concern with regard this issue is that

of scheduled system tasks making daily updates to the file system. In partic-

ular, updatedb—the indexing invocation of slocate—is typically run once

per night, and builds an index of all files in the file system.

A concern in the use of block-level CoW is that the file access-time (atime)

updates caused by a whole-disk scan will result in considerable copy-on-

write overhead. Figure 5.6 shows the block write overhead that result from

running updatedb on a 1.3GB Fedora Core install above a variety of com-

4http://linux-iscsi.sourceforge.net/
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mon Linux file systems. The overheads range from seven to about thirty

megabytes per day, which should be acceptable in most systems. Alterna-

tively, these overheads may be avoided by mounting the file system with an

option preventing access-time updates.

Future Work5.1.3

The prototype implementation demonstrates the efficacy of the Parallax de-

sign design and provides a useful working environment. It also suggests

several avenues for future work, a few of which are described here.
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Combining Duplicate Blocks5.1.3.1

Parallax provides a block-level interface to distributed storage that offers

private virtual disks, with the assumption that most users will use a conven-

tional file system over a CVD to provide a higher level storage interface. The

design has focused on aggressive copy-on-write mechanisms across snapshot

histories and between templates and their derivative images to share data

between VMs that need not even be aware of each other.

This type of implicit sharing can be extended even further to combine ad-

ditional redundant blocks that arise for reasons other than common CVD

ancestry. These reasons may include similar package installations on differ-

ent CVDs, duplicate files within a file system, or blocks of all zeros used by

an application to reserve space in a file. It is clearly worth investigating the

extent to which such serendipitously shared data accrues in typical deploy-

ment scenarios. The following two methods would provide the ability to

detect and exploit these duplicate blocks:

Block Janitor

The first potential extension is a background block janitor process that

searches for duplicate blocks stored in multiple locations in the store. Its

operation would be similar in spirit to the log cleaner process proposed in

log structured file systems [RO92]. The janitor will find duplicate read-only

blocks, link all related radix trees to one of the duplicates, and delete the

others.

Such an operation would interfere with the existing delete mechanism; since

links to the duplicated block would all have to be read-only to prevent in-

correct deletion, the existing delete mechanism would never be able to delete

such a block. The situation where blocks are independently created in multi-

ple locations and then all instances are removed is not likely to be common,

however, and would likely be outweighed by the storage gains from collaps-

ing duplicates.

Content-based Block Map

An alternative to the janitor is to re-implement the distributed block store

as a a service mapping content hashes to global block addresses, permitting

content-based addressing in place of the direct block lookups presently sup-
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ported. With this service in place, writes can still be made initially to the

local persistent cache and a content hash can be computed asynchronously

between the time the VM write operation completes and the block is flushed

to the block store. The content-hash map is then consulted, and a new block

is allocated only when the block does not already exist in the block store.

Slow operations like content hashing and collision detection are kept out

of the critical performance path, and read operations are completely unaf-

fected. As with the janitor, links to duplicate blocks must all be read-only

and may introduce block leaks under the current deleting rules.

Security5.1.3.2

While security is a clear concern for storage systems, its discussion has been

avoided in the text for fear of unnecessarily complicating the functional de-

scription of the design and implementation. The threat model on which the

Parallax design is based extends that of most other OS virtualization work:

Specifically, it assumes that the underlying virtualization software is pro-

tected by a set of narrow and clearly-defined interfaces from the overlying

virtual machines. VMs using CVDs have access only to the virtual block

addresses of the device, and not to the global block addresses used by the

distributed block store.

Arbitrary levels of security may be engineered into a cluster where Parallax

is deployed through combinations of isolating the storage VMs and block

store servers from client VMs using techniques such as network partitioning,

traffic filtering, encryption and authentication. For the most part though, a

hardened implementation is left as further work.

A secondary concern in the security of the current implementation is the re-

source consumption risk. A malicious VM could potentially consume large

amounts of disk data, starving other VMs. The performance starvation has

been addressed by virtual machine research in the past. Ensuring that VMs

cannot consume arbitrary disk space can be enforced by placing allocation

limits on individual CVDs. All allocations made in a CVD may be counted,

and when full old snapshots may have to be deleted to free space. This has

not been implemented in the current work, but should be rather straightfor-

ward.
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Current Status5.1.4

The Parallax work has attracted considerable interest, and development will

continue following the submission of this thesis. I am actively working with

the UCSD honeyfarm effort to incorporate the use of Parallax into their sys-

tem, and will also be working towards a Parallax deployment as a basis for

VM hosting on development and test machines in the Computer Laboratory

over the coming year.

Summary5.2

The deployment of VMMs in cluster environments presents many new chal-

lenges in the management of storage resources. This chapter has presented

the Parallax storage system as a device service which attempts to address

these issues. Parallax enlists the use of storage VMs as device extensions on

each physical host within a cluster. The Parallax server is a soft device-based

extension that runs in this VM and provides cluster virtual disks to client

VMs. The storage VM itself allows the benefits of device services presented

in Chapter 3; storage is unified into a single administrative slice within the

cluster and may be managed independently of other facilities. The Paral-

lax work has been one of the most fruitful aspects of this thesis, as it has

evolved into a larger development effort which will continue in the lab over

the following year.

While the Parallax work represents the most complex block device exten-

sion that has been constructed to date, it is hardly the only one. Earlier

local-host extensions included simple copy-on-write and encrypted block

devices. Additionally, a user-level version of the block backend driver has

been constructed, and was used as the source for the block throughput re-

sults described in Chapter 3. The user-level block backend is currently being

deployed in production systems to allow access to virtual file systems stored

in image files on network filers.

The next chapter discusses a final set of examples of device extensions. It ex-

plores opportunities for soft devices to be applied along with modifications

to other aspects of virtual hardware in order to build sweeping architectural

extensions in development systems.
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Chapter 6

Supporting System-Wide
Architectural Change

This chapter introduces a final set of examples of the application of device

extensions. The work presented here demonstrates that, in combination

with other techniques, device extensions may be used to introduce sweeping

architectural changes to a system, allowing developers to experiment with

new system-wide hardware features. Two specific examples are presented:

1. Device Support for Pervasive Debugging. Pervasive debugging (PDB)

involves the use of virtualization to enable debugging both vertically

through the entire software stack including OS and application soft-

ware, and horizontally across a set of virtual hosts. PDB effectively

adds a distributed, system-wide debugging layer with new virtual hard-

ware features such as physical address-based watch points and dis-

tributed breakpoints. Device extensions are used to extend debug trig-

gers down onto devices themselves, allowing debug entry based on

request addresses and data.

2. Device Support for Taint-based Data Isolation. Network-attached

computers are under constant threat of exploitation, and are protected

using various forms of firewall and intrusion detection. A major chal-

lenge in this form of admission-based protection is in discerning good

traffic from bad. Rather than attempting to block specific traffic, taint-

based isolation attempts to provide the invariant that data received

from the network may never be executed. Device extensions are used

to mark tainted data as it moves in and out of the system from net-

work and disk, while additional techniques are employed to track the
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propagation of tainted data at an instruction granularity.

Both of the applications described in this section have resulted from efforts

to apply device extensions to other research efforts in the lab. This chapter

provides general descriptions of these projects and focuses on the device-

level aspects of the work that represent my own contributions. In addition to

providing additional examples of the techniques presented throughout this

thesis, I believe that the collaborative nature of these investigations illustrate

the immediate benefit of low-level device extensions, and their applicability

to other research projects.

Device Support for Pervasive Debugging6.1

In recent years, virtualization has been revisited as a useful basis for research

in debugging. Two notable new approaches have been the the use of virtual

machine replay to allow “time-travel” debugging — extending the debug-

ger to step execution backwards as well as forwards in time [KDC05] —

and the use of virtual machines to debug large systems, entire OS instances

and distributed systems that span multiple OSes, by running a set of hosts

together on a common physical machine [HH05].

The pervasive debugging (PDB) project at the Computer Laboratory ad-

dresses the second of these two issues. It is specifically interested in using

VMM-based debugging extensions to broaden the scope of traditional de-

bugging tools. PDB extends scope in two ways: Vertical Debugging allows

control flow to be followed across layers of a system, through OS, appli-

cation run-time, and application code. Conversely, Horizontal Debugging

allows a distributed system composed of a set of virtual hosts to be run

together above the debugger, and facilitates the understanding of complex

error conditions that are often present in such systems.

Hardware Modifications in PDB6.1.1

Existing debuggers take advantage of hardware support for debugging. The

Intel x86 architecture, for instance, provides a set of four debug registers

which allow breakpoint and watchpoints to be set on executing code and
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data. Virtual addresses are installed in these registers, and flags are set to

activate them. In the case of an instruction breakpoint, the processor will

generate a fault when an attempt is made to execute code at the specified

address. In the case of a watchpoint, the processor will trap on attempts

to access data at the specified address. In addition to break- and watch-

points, the x86 provides support for single-stepping, in which a debug trap

is generated after the execution of each instruction.

The approach taken by PDB can be viewed as adding new hardware sup-

port for debugging within a system. This is done to a degree within non-

virtualized OSes to cope with the limited number of debug registers. If a

developer attempts to set more breakpoints than the number of debug regis-

ters supports, an OS will typically provide support in one of two ways: First,

it may enable constant single-stepped execution and examine each instruc-

tion in an attempt to emulate breakpoints in software. Second, and more

efficiently, it may use memory protection in combination with this sort of

emulation to mark pages containing break- or watchpoints to force traps

whenever data on those pages is accessed, at which point the debugger may

test accesses. This technique will be revisited, as it forms the basis of the

second example in this chapter, taint-based data isolation.

PDB’s addition of hardware support extends these techniques by taking ad-

vantage of virtualization to add debug features below the OS – effectively

in virtual hardware. Two examples of this are modifications to the system

to allow break- and watchpoints to be physically addressed, and applied to

a distributed system. In the interest of brevity, the discussion that follows

refers to both break- and watchpoints simply as breakpoints.

Physical address-based breakpoints allow conventional breakpoints to be

applied to physical as well as virtual addresses within a system. This func-

tionality is especially useful in OS development and in debugging applica-

tions which use shared-memory communications, where physical memory

may become aliased across a collection of virtual addresses. Using shadow

page tables [Wal02, Gum83, HR91], a VMM-based debugger may validate

newly created page table entries, treating them specially if there is a break-

point on the underlying physical page.

A second example of a virtual hardware capability added by PDB is that of

distributed breakpoints and distributed single-stepping. With these tools, a
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breakpoint may trigger the suspension of a collection of executing virtual

machines, and their progress may be followed in detail as a group. This

feature is obviously useful in isolating bugs in distributes systems and in

diagnosing system-wide failure conditions.

Soft Device Support for Debugging6.1.2

Existing application debuggers such as gdb1 are powerful development tools

both for isolating bugs, and for understanding how software functions.

Above the hardware debug facilities mentioned above, debuggers such as

gdb provide a very simple interface, allowing six operations on an applica-

tion: The debugger may read and write values in memory, it may read and

write registers, it may step to the next instruction, and it may resume normal

execution. Additionally, a set of operations are provided to establish break-

and watchpoints.

PDB extends the existing debug interfaces to provide the horizontal and

virtual-scoped debugging described above. However, debugging is still lim-

ited to interactions with CPU and memory. To address this, I have con-

structed soft device-based extensions to allow breakpoints on interactions

with I/O devices. For instance, the debugger may be triggered whenever a

new packet arrives from the network. While this is possible without the aid

of virtualization, for instance by placing a breakpoint at the top of an OS’s

network interrupt handler, it requires sufficient understanding of the OS

code to identify where this handler is. By adding device debugging support

to a VMM-based debugger, I/O paths may be debugged in an OS agnostic

fashion. Moreover, more complicated debugger activations, for instance fil-

tering for a specific type of packet, may be implemented once in the isolated

extension and applied to all OSes being debugged.

Unlike conventional watchpoints, which are specified according to memory

addresses in the debug target, specifying device-based watchpoints requires

a rather broader interface and is specific to a class of device. I have imple-

mented device watchpoints as soft devices for both network and disk.

Network watchpoints are implemented using a modified version of snort-

1gdb is available at http://www.gnu.org/software/gdb
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inline2, a popular intrusion detection program. Snort includes a packet

specification language that allows events to be triggered on matching pack-

ets. The implementation allows the debugger to push new packet-matching

rules down to the network soft device, and will trigger debug entry on their

arrival.

Disk watchpoints use a slightly simpler interface, allowing the specification

of blocks based either on virtual block address ranges, or on block contents.

Block content matches are specified using regular expressions, and when

activated, all blocks passing to and from a VM are scanned and an event is

generated on a match.

In both cases, the debug event is sent to the debugger and the device request

is queued. This allows the debugger to do any additional interrogation or

modification on the request message and VM before the message is deliv-

ered. Common actions are to switch the VM into single step mode or mod-

ify page permissions on the request page, and then allow the debug device

to deliver the request.

Understanding Intrusions6.1.3

By using the IDS rules that are included with snort, the network debugging

extension may be used to trigger debugger entry on the arrival of packets

containing system exploits. The resulting tool allows the debugger to be

used to trace arbitrary exploits from the moment that they arrive at the OS

interrupt handler, through to the point at which the system is compromised,

and forms a simple but useful illustration of this approach.

In addition to this, the device extensions for debugging may be used to per-

form fault injection and event logging. In general, the addition of device

extensions for debugging allow a flexible tool to facilitate complex debug-

ging tasks. In addition to the simple examples here, device extensions may

be applied in a cluster environment to trigger debugger entry on access to

a file used in a shared file system, or on transmission of particular network

packets. The example in the next section extends the techniques developed

in the work on device support for debugging to introduce a new system

feature that spans disk, network, memory, and CPU behaviour.

2snort-inline is available at http://snort-inline.sourceforge.net/
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1. Inbound packet arrives.  The memory containing the packet is 

marked as tainted and the packet is delivered to the protected VM.

4. Data is stored to or read from disk.  Tainted data is tracked 

even when written to persistent storage.

2. Protected VM accesses tainted data.  Accessing tainted data 

(a) switches the VM into emulation mode (b) in the control VM.

5. VM attempts to execute tainted data.  Attempts to execute 

tainted data are trapped and handled by control software.

3. Emulator tracks tainted data.  Tainting propagatesacross data 

movement instructions through both registers (a) and memory (b).

6. Normal execution resumes.  Once the processor state is free of 

tainted data (a), emulation stops and the VM resumes normally (b).
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Figure 6.1: Overview of Taint Tracking

Taint-based Data Isolation6.2

Most existing approaches to protecting computers from malicious software

involve the use of firewalls and intrusion detection systems (IDSs) to distin-

guish good traffic from malicious traffic. This is a complicated task, and is

increasingly prone to outbreaks in which an exploit propagates faster than

the signature or firewall rule required to protect against it. As an alterna-

tive, we chose to investigate a modification to the system in which network

data would be prevented from being executed on a host. By mandating that

data from the network be immutably non-executable, a system is protected

against the large class of exploits in which a host is tricked into running

malicious software.

Overview of Taint-tracking6.2.1

Figure 6.1 illustrates how tainted data is managed as it moves through the

system. In (1), a packet arrives at the host from the physical network inter-
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face. The packet is processed in the control VM, which is hosting the net-

work device and the pages into which the data has been received are marked

as tainted as they are transfered in to the protected VM’s pseudo-physical

address space.

Shortly later, in (2), the OS in the protected VM handles the interrupt in-

dicating that a new packet has been delivered. As it processes the packet

headers, the CPU attempts to load the tainted memory pages. This load

results in a fault, that causes the VM to be switched into emulation. The

current CPU state is transferred into a hardware emulator running in user

space of the control VM, where execution continues. The emulator has di-

rect mapped access to the VM’s memory, and so continues to execute the

machine in place.

As this execution progresses, as shown in (3), emulated instructions op-

erate on tainted data. The emulated processor microcode is modified to

track tainted data across memory and register stores. Additionally, stores

of untainted data result in the cleaning of tainted memory. In this manner,

well-behaved OSes will clean tainted memory as they zero freed pages.

(4) shows that tainted data is also tracked across storage to disk. The virtual

disk is modified to store an on-disk data structure mapping the location of

tainted data, as data is reread the memory it is placed in is marked appro-

priately.

If a VM attempts to execute a piece of tainted memory, as in (5), either

by loading the address of tainted pages into EIP or advancing execution

into a tainted region of memory, an instruction exception is thrown. This

exception can use an existing processor fault, such as invalid opcode, or we

may extend the processor to add a tainted execution-specific exception. In

an effort to avoid modifying the hardware interface, we opt for the former

of these two options in our work.

Finally, after processing a region of tainted data, the processor finds that

its registers have become clean. At this point, it executes to an appropri-

ate opportunity, and then transfers the processor state back to virtualized

execution.
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Device Extensions6.2.2

Tainted data is tracked across network and block device interfaces by im-

plementing taint-tracking soft devices. This approach is particularly useful

in this situation, as I/O-related data may be marked and tracked outside the

scope of the protected virtual machine.

Tainting Network Data6.2.2.1

As described in Chapter 3, Xen’s current network interface delivers packets

to individual VMs using page remapping. Inbound packets are received into

a system-wide pool of free pages, which have been “donated” by VMs that

use the network. A packet is written into an empty page, routed to the

destination VM, and delivered to that VM by mapping the page into its

physical address space, in place of a previously donated page.

The taint-tracking device extension marks all received data on network de-

vices as tainted. Page table entries containing tainted data are then marked

as not-present, resulting in a trap when a VM attempts to access them, after

which VM access may be analyzed in emulation until CPU registers are free

of tainting.

Processing packet headers results in considerable time spent in emulation,

and involves code that is generally well tested and trusted to be safe. As

a performance optimization, we allow the virtual network interface to be

configured to deliver untainted headers. In addition to mapping the packet’s

page to the receiving VM, we send a copy of the headers in shared memory,

which the protected VM may process without incurring taint faults.

Tainting Storage6.2.2.2

The virtual storage interface in Xen is structured similarly to that of the net-

work, but does not involve page exchanging as the target memory for reads

and writes always belongs to the protected VM and is known at the time

of request. The virtual disk device, running in the control VM, maintains

a persistent data structure – a sparse tree – identifying all disk blocks that

have been marked as tainted. On writes, the taint properties of memory are

preserved on disk. An additional benefit to this data structure is that it is not

part of the virtual disk, and so cannot be addressed by the protected VM.
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On reads from disk, the target pages are marked as read-only for the pro-

tected VM while the request is serviced, memory is remarked as tainted

wherever necessary, and then the data is made available.

The current implementation of taint tracking is not directly integrated with

Parallax. This integration will be pursued as future work, as the mapping

structures used by Parallax provide an ideal location to store taint annota-

tions.

Selective Tainting6.2.2.3

In some situations, it may be desirable to strike a further compromise be-

tween the performance overhead of taint tracking and the thoroughness of

the system. As an extension of the header exemptions described for the

taint-tracking virtual network interface above, snort may be used to mon-

itor all traffic that will be delivered to the protected VM, as described in

regard to device extensions for debugging.

This approach allows an interesting extension to the functionality of the

IDS, in which it may divide inbound traffic into three classes: Attack traffic,

for which IDS rules already exist, may simply be dropped as they normally

would by such an application. A white list may then identify traffic that

need not be tainted, for instance from trusted hosts or to particular trusted

services. Finally, remaining traffic may be treated as untrusted and passed

into the system with taint-based protection. One benefit to this technique is

that it allows administrators to focus on the set of traffic that they do trust,

rather than that which they do not, but does not require that unanticipated

traffic be dropped—it is just treated with an enhanced degree of precaution.

Summary6.3

This chapter has described an additional set of examples of device exten-

sions. In these examples, device extensions are coupled with modifications

and extensions to other aspects of the virtualized system, including memory

modifications, using shadow page tables, and changes to CPU behaviour, by

dynamically switching into emulated execution.
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Using these techniques, it is possible to experiment with sweeping new hard-

ware features. In one example, a VMM-based debugger is extended to allow

debugger entry to be triggered off of certain device accesses. In another, de-

vice extensions are used to track tainted data received from the network,

and the system is then modified to guard against its eventual execution.

Both of the examples here demonstrate not only the usefulness of device ex-

tensions in a VMM environment, but also the potential for their application

to broader systems features. Both of the projects described in this chapter

are recent, and ongoing work within the lab.
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Chapter 7

Related Work

Prior to concluding, this chapter places the work presented in this thesis

in the context of relevant related research. The work just presented covers

a broad range of systems topics, and the related work is consequentially

very broad. Prior work relating to network denial-of-service prevention as

relating to the symmetry-based traffic limiter was described in Chapter 4.

Similarly, relevant work on distributed storage pertaining to Parallax was

included in the presentation in Chapter 5.

This chapter aims to survey the broader research areas into which split de-

vices, device extensions, and device services directly apply. It begins with a

summary of the history of virtual machine monitors and then moves on to

survey the treatment of both access to device hardware and software exten-

sibility within operating systems. It ends by mentioning a sample of device

extensions that have been developed by other researchers, and which could

be applied using the techniques presented in the preceding chapters.

With regards the thesis of this work, a key insight that this chapter attempts

to expose is that of the design decision in computer systems development

that underpins the desire to provide extensibility in the first place. As with

many other systems features, the ability to cleanly extend any system in-

volves the introduction of a layer of indirection that necessarily carries with

it a performance overhead. The evolution of operating systems for personal

computers has been punctuated by the gradual adoption of techniques, pre-

viously used on mainframes, which improved the dependability and man-

ageability of the system at some cost in performance. Multiple protection

domains, multi-processing, shared libraries, and most recently hardware vir-

tualization are all examples of this evolution. The survey of related work
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presented in this chapter aims to demonstrate that where the performance

overhead of device extensions is acceptable, that the approaches demon-

strated in this thesis represent a powerful technique to develop and deploy

device-level extensions in modern systems.

Virtual Machines7.1

A virtual machine monitor (VMM), or hypervisor, is a narrow layer of soft-

ware that presents a set of isolated execution environments that closely

match the underlying physical computer. Each of these environments is

called a virtual machine (VM), and may contain an operating system and

associated set of applications.

Virtual machines have existed since the 1960s, primarily as an approach to

achieving improved utilization on expensive mainframes. Goldberg’s 1974

article in IEEE Computer, “Survey of Virtual Machine Research” [Gol74]

cites over 70 papers relating to VM research and development at that time.

The paper also identifies and discusses many problems relating to virtual-

ization such as issues in dealing with nonvirtualizable hardware, and tech-

niques to reduce virtualization overhead.

The paper also discusses many applications of virtual machines that hold

true today. It discusses the use of VMs to host legacy applications that are

“locked” to a specific operating system, to facilitate OS development and

testing, and to test and debug networks and distributed systems by virtual-

izing them on a single host. IBM’s VM/370 [SM79] was a VMM used on

IBM mainframes to achieve exactly these goals.

After a long period of relative inactivity, virtualization returned to sys-

tems research in the 1990s with the Stanford work on Disco [BDGR97b,

BDGR97a], and later Cellular Disco [GTHR99]. Disco used virtualiza-

tion to run commodity operating systems on non-commodity large-scale,

shared-memory multiprocessors: the work targeted NUMA machines and

was initially based on hardware simulation. They observed that adding

support to existing OSes would be prohibitively complex, and that virtual-

ization presented a viable approach to making use of the resources on such

systems. Disco showed that virtual machines were a useful and effective ab-
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straction for managing resources and providing hardware fault isolation on

SMP hosts.

In recent years, the performance of commodity x86-based hardware has

improved sufficiently that virtualization has become practical. Several com-

mercial packages have become available both for desktop (e.g. VMware

Workstation, Connectix Virtual PC), and server (e.g. VMware GSX/ESX

Server, Virtual Iron) environments. Workstation products have taken the

approach of providing a hosted VMM, which runs as an application above

the native OS. Typically this does not require modifications to the existing

host, but consequently results in high performance overhead. VMware’s

server products run on the “bare metal”, and are able to somewhat reduce

performance overheads. In all cases, the commercial virtualization offerings

are driven by the desire to host unmodified operating system binaries, due

to the need to transparently support existing software.

Unfortunately, the x86 platform does not provide direct support for virtu-

alization. Virtualizing the x86 hardware requires additional effort from a

VMM, as discussed in Section 2.2. To safely virtualize the x86 for unmodi-

fied binaries, a VMM must perform run-time transformations of the execut-

ing code, rewriting difficult-to-virtualize operations and replacing them with

appropriate calls. An alternative approach is to sacrifice support for unmod-

ified OS binaries, and make modifications to OS code that ease the interac-

tions between the OS and the VMM. Dubbed paravirtualization [WSG02],

the approach of adapting the VMM-OS interface has been used through-

out the history of virtualization to improve performance, and accommodate

difficult-to-virtualize architectures [You73,Gol74].

The influx of research into virtualization on the x86 platform has shown

considerable results over the past few years. Two significant research ef-

forts into building paravirtualizing hypervisors have been undertaken: De-

nali [WSG02] initially aimed to host thousands of virtual machines on a sin-

gle physical host as a platform for hosting Internet services. Xen [BDF+03]

was based on a goal of providing strong, resource-accounted partitioning

within the host and aiming to accountably divide a system between a smaller

number (i.e. 100) of VMs. These two projects, in conjunction with ex-

isting virtualization and emulation packages that have become available

for the x86 architecture (e.g. User-mode Linux [Dik00], Qemu [Bel05]),
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have led to a resurgence of investigations into the applications of virtual

machines. In aggregate, this research has demonstrated that not only are

virtual machines a useful tool for resource isolation and management, but

that they may be beneficially applied to tasks such as intrusion detection

and forensics [DKC+02, JX04, VMC+05], configuration management and

debugging [WCG04], software debugging [KDC05, HH05], and OS migra-

tion [HJ04,CFH+05]. Moreover, virtual machines have formed the basis for

many proposals to build distributed computing platforms [HHKP03,AR02,

GC04].

Interestingly, the administrative benefits that drove interest in virtualization

in the 60s and 70s have been partly responsible for the recent revitalization

in the research area. VMMs have become attractive as a potential solu-

tion to the management problems faced in large computing facilities such as

clusters and data centers [KUS+04,JX03]. The narrow layer of control soft-

ware provided by a VMM allows the separation of the traditional system

administrator role into two parts: A facilities administrator who manages

physical machines, performing repairs and service to hardware, and a soft-

ware administrator, who manages the OS and applications installed within

an individual virtual machine. Many commercial ventures (e.g. VMware,

XenSource, Virtual Iron) currently provide software and support for the use

of VMs to manages large system installations.

Device Access in Operating Systems7.2

The structure of device drive code within operating systems has been a long-

standing area of investigation in OS construction. While efficient drivers

are critical to the I/O performance of a host, drivers are a frequent source

of bugs and consequentially of system instability. Presumably due to per-

formance concerns, most current commodity OSes include driver code in

the same protection domain and address space as the kernel itself, and are

victim to severe crashes in the face of driver failure.

Drivers have been long-held as a common source of bugs in OS code. Static

analysis of the Linux 2.4.1 kernel for a set of relatively simple programming

bugs, such as calling a blocking function with interrupts disabled, found
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that 85% of bugs occurred within device driver code [CYC+01]. Many

approaches have been taken to isolate driver code in order to mitigate the

severity of crashes. Interestingly though, driver dependability has only re-

cently occurred as motivation for user-level drivers.

While microkernels such as Mach [BRS+85] typically include device drivers

within the kernel itself, several projects have explored extracting drivers into

their own protected processes. Mach 3.0 introduced “Device Independent

Drivers”, in an attempt to eliminate repeated code common to most drivers.

They specified low-level device interfaces for common device classes (e.g.

SCSI, Ethernet) and provided a minimal in-kernel driver to map a particular

device to this interface. Generic driver code then ran as a Mach process,

interacting with this interface over IPC [FGB91]. This work was extended

by Golub et al to allow multiple drivers to share multiplexed access to a

given physical device through the support of a resource manager in the ker-

nel [GSI93].

Several other microkernel systems have explored user-level device drivers.

The Raven system provided a minimal microkernel for hosting tasks on a

multiprocessor. The kernel provided simple interrupt dispatching, allowing

hardware drivers to run completely in user space [RN93]. The motiva-

tion behind Raven’s structure was that by delivering hardware interrupts

directly to drivers, the overhead of both context switches and data move-

ment across the kernel-user boundary could be avoided. Similarly, QNX

is a microkernel-based system, largely targeting embedded devices, that al-

lows user-level driver tasks to register for hardware interrupts and claims

improved performance as a result [Hil92]. U-Net [vEBBV95] presented a

narrow, virtualized ATM interface which could be driven by applications

in SunOS and was also motivated by the performance benefits of managing

hardware directly from the context of the client application.

Like Xen, Nemesis [LMB+96] was concerned with both isolation and ac-

counting of applications. By removing drivers from the kernel and provid-

ing a narrow dispatch layer, drivers could be executed in user space. Pratt’s

“User-Safe Device Architecture” claims that drivers may be made both safer

and accountable using this approach. Arsenic [PF01], demonstrated an

application of these techniques to a programmable network interface and

served as groundwork for the techniques used to manage devices in Xen.
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Almost all of these approaches have been specifically concerned with moving

driver code into user-space in developmental, often microkernel-based sys-

tems. More recently, several projects have applied this technique to isolate

“unmodified” device drivers. In particular, the Fluke kernel incorporated

drivers from several modern OSes which were wrapped with glue interfaces

from the OSKit [FBB+97]. This represents initial work motivated by the

pragmatic concerns of system dependability and software maintenance: Us-

ing existing unmodified drivers was seen as a necessary approach to keep

up with the rapidly evolving hardware market. The Exokernel also incorpo-

rated some OSKit drivers, while L4Linux incorporated Linux drivers above

the L4 microkernel [HHLS97].

Over the past few years, these approaches have also been applied to com-

modity kernels with the specific intention of improving system reliability.

Rather than running drivers directly as user-space applications, unmodified

drivers are isolated a hardware protection domain, but run as-if they were

still in-kernel. Nooks [SBL03] uses such an approach within Linux to iso-

late existing drivers. this is achieved by instrumenting the rather ambiguous

Linux driver interface to force a context switch, and carefully account re-

source usage by drivers so that memory may be returned to the system if a

driver crashes and is restarted. Both L4 [J. 04,LUSG04] and Xen [FHN+04]

allow unmodified drivers to run in isolated virtual machines, avoiding the

complexities of finding a cut-point through complex in-kernel driver inter-

faces. The approaches taken by both of these efforts are fairly similar, and

to my knowledge the work was carried out simultaneously by both groups

independent of one another.

In addition to supporting legacy drivers in isolated execution, several re-

cent efforts are reexamining the benefits of allowing driver development

and execution in user-space, both on academic microkernels [EG04], and

on Linux [Chu04]. These follow similar motivation to that of earlier work

on driver proxies for Windows NT, which observed that driver writing was

a difficult and error-prone process and that by redirecting NT I/O request

packets (IRPs) to userspace, driver construction could be facilitated [Hun97].

In addition to this work, there have been industrial efforts to set a com-

mon interface to device drivers that may be applied across OSes. The Uni-

form Driver Interface UDI [UDI99] was developed by a consortium of both
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hardware and OS vendors in an effort to enable the development of sta-

ble and portable device drivers. A common driver interface is a laudable

effort, and one which could easily be embraced by the work in this thesis.

Unfortunately, the project appears to have stagnated, as there has been no

new information posted to the UDI web site1 since 2001. The consortium

did produce a set of specifications which appeared to suffer from “interface

unioning” across the stakeholders: the idealized interfaces used in Xen have

taken the opposite approach, opting for simple, narrow interfaces to shared

devices. The position taken by this thesis is that in order for devices to be

shared in a VMM there must be some interface between device and client

VMs, and that it is in the interest of developers to keep this interface rela-

tively stable over time. Given that position, the techniques described in this

work may be applied to whatever low-level interface prevails.

The grant table-based approach to sharing memory among VMs, which is

described in Chapter 3 draws on a wealth of cross-domain memory shar-

ing work in the existing literature, most notably mechanisms such as those

described in Fbufs [DP93] and IOlite [PDZ00]. The grant table approach

extends that taken to cross-domain memory sharing in the L4 microkernel,

and uses very similar terminology. Somewhat confusingly, an L4 grant is

equivalent to a page transfer in Xen, while L4’s map operation corresponds

to a page grant in Xen. The L4 and Xen techniques are similar in that the

place the core components of memory sharing within the most privileged

part of the system. However, their use is rather different: L4’s operations

are tightly coupled with external pagers and memory sharing is exposed at

a high-level within the system, for instance to construct file systems. In its

current form, memory sharing in Xen is used almost exclusively for device-

level communications. Broadening the scope of shared memory use within

the VMM must be carefully considered as it represents a risk of increasing

the amount of cross-domain shared-state, which in turn may compromise

the benefits of isolation.

The extension work in this thesis follows the motivation of isolating ex-

tensions for safety and ease of development set out by previous work. By

working at the driver interface presented to VMs, extensions as described in

this thesis achieve isolation while remaining applicable across systems and

give the extension developer complete freedom with respect to the environ-

1http://www.projectudi.org/
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ment (OS, language, tools) that they work in.

Extensibility in System Software7.3

Extensibility — the insertion of extension code into a running operating sys-

tem — is a well explored area. Vino [SESS96] and SPIN [BSP+95] both used

language extensions and trusted compilers to generate and sign extension

code, and incorporated safe run-times within the OS to attempt to contain

misbehaving extensions. Exokernel [EFO95] and Nemesis [LMB+96] pro-

vided minimal near-physical interfaces in an effort to allow applications the

freedom to make low-level changes that extensions are used for in other

systems. The structure of these systems is similar to virtual machine moni-

tors in that a small kernel provides physical resource sharing and isolation

between coarse-grained protection domains.

Interposition on OS interfaces is also a long-standing approach to adding

functionality to systems. The extensibility-focused OSes above provided OS

support for extensions on OS-internal interfaces. SLIC [GPRA98] allows

calls to kernel interfaces such as system calls and signals to be intercepted

and redirected to extensions running in either kernel or user-mode. Their

approach used modifications to kernel binaries to allow extensions to be

added without modification to a kernel’s source. Similarly, several kernel

instrumentation packages such as DTrace [CSL04] and KernInst [TM99]

use binary patching to redirect OS execution at a function granularity. While

these approaches allow arbitrary OS extension, assuming access to the OS

symbol table, they provide little or no safety: extensions effectively have free

reign to access system resources and extension crashes can result in complete

system failure.

In addition to the mechanistic issues involved in actually applying exten-

sions to an OS kernel are the practical concerns with the portability and

maintenance of extensions. Most commodity OSes now provide some form

of support for inserting extension code into the OS kernel. However, ex-

tensions are generally specific to the OS version that they were written for.

Unlike the application binary interface (ABI), which is held static to ensure

that applications may run across versions of an OS, extensions are tightly
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coupled with internal OS interfaces, which are highly specific to an individ-

ual OS, and which change over time. [FGCW05] discusses the difficulties of

maintaining extensions that interact directly with OS source over time.

Device Virtualization and Extension7.4

The SPIN work was later modified to investigate the installation of “de-

vice extensions” on to so-called smart hardware – I/O devices with em-

bedded processors capable of running software within the device. In this

work, dubbed SPINE [FMBC98], the extensible aspects of the SPIN kernel

were moved to Windows NT 4.0 and support was written for a Myrinet

programmable network card. Extensions, written in MODULA-3 could be

installed on the NIC, allowing certain I/O operations to be carried out inde-

pendent of the CPU. SPINE’s extension model aimed to provide performance

improvements for devices: the authors present a video decoder that DMAs

incoming frames directly to the frame buffer, and a IP router that DMAs

packets across a pair of network interfaces.

Throughout their history, virtual machines monitors have explored two

main approaches to handling I/O devices, centered around the design de-

cision of whether to preserve the device’s hardware interface or to present

an alternate virtualized interface. Preserving the interface of existing hard-

ware, as described with regard to VMware workstation in [SVL01], has the

single clear benefit that VM-based OSes may use existing drivers. In this ap-

proach, the VMM captures device requests and passes them to some form

of a device emulator which translates them and issues them to the real de-

vice. While [SVL01] presents several possible performance improvements,

the approach is bound to involve a degree of inefficiency, as a logical request

(e.g. sending a packet) involves the emulation of a large number of instruc-

tions, each of which requite a transition out of the running VM. even so,

the benefit of supporting unmodified OS binaries may often be worth this

overhead, especially when modifying the OS is not possible.

An alternate approach is to explicitly modify device interfaces to support

virtualization. This technique, which has been used frequently [BDGR97b,

KEG+97,WSG02,BDF+03], presents an idealized device interface to the VM
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which eschews the complexity and overhead of emulation.

Work on Virtual Channel Processors (VCPs) [MN03] has argued for the use

of virtual machines to take better advantage of hardware parallelism for

I/O-related computation. Referring to the performance benefits that have

been achieved by other systems in offloading tasks such as protocol process-

ing onto a separate CPU [MS98, MS00, RBB+02], the VCP work proposes

placing I/O subsystems in isolated VMs and scheduling them on dedicated

CPUs. The basis of their argument is that the economies of scale that exist

for general purpose processors allows such CPUs to increase in performance

at a higher rate than processors on embedded devices. Similar to Disco, this

work argues for the use of VMs to take advantage of multiprocessors, but

at a sub-OS granularity.

µDenali’s proposal for “interposable virtual hardware” [WCSG04] is likely

the most similar work to that described in this thesis. Both approaches

argue for the use of interposition on VM device interfaces to implement ex-

tensions. The µDenali work takes a high-level view of virtual hardware,

and presents an initial argument for the validity of the approach while fo-

cusing on the need for a standardized interface to VMM operations. As de-

scribed in Chapter 2, Denali is a considerably less mature VMM, allowing

the multiplexing of single-threaded and single-address space “operating sys-

tems” that have been linked against Ilwaco, a BSD derivative kernel library.

Their work adopts IPC mechanisms similar to those in Mach [BRS+85] to

transport device requests, and provides mechanisms for VMs to interpose

on those transports. They argue that extensions should be provided with a

standard API extending beyond device interfaces to include issues such as

VM execution control (suspend/resume), access to VMM state, and to the

internals of VM state.

The work presented in this thesis extends the ideas introduced in [WCSG04]

by considering them in a mature VMM and applying them to real-world

OSes. Soft devices achieve considerably better performance, achieving re-

sults that make extensions practical to use in production environments. This

thesis additionally focuses on the development and management of practical

extensions, with particular interest in cluster environments.
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Smart Devices7.5

Applications of software extensions behind device interfaces are plentiful.

Notable examples include block extensions for secure [GNA+97], version-

ing [WCG04], distributed [LT96,SFV+04], and intrusion-detecting [PSG+03]

disks. Network devices have been extended to provide packet filtering, rate

limiting and admission control [EK96,PF01], protocol scrubbing [MWJH00],

and intrusion detection [WCSG04].

Extensions are frequently unportable, as they are developed either for a spe-

cific OS or behind a network protocol which may not be supported by all

OSes. Existing work demonstrates a wealth of exciting ideas for device ex-

tensions, only a sample of which are described here. VMM-based device

interfaces and the approaches described in this thesis allow considerably

more structure and support for the development of these extensions, and

facilitate practical deployment on commodity systems.
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Chapter 8

Conclusion

In concluding the presentation of this thesis, this section discusses opportu-

nities for further investigation, and summarizes the overall work.

Future Work8.1

Several aspects of this thesis remain open to additional investigation. This

section summarizes several opportunities for future work based on soft de-

vices.

Extending the Existing Extensions8.1.1

Three of the extensions described in this thesis have led to additional re-

search interest in the lab, and investigation into them is continuing beyond

the course of this thesis.

The Parallax storage service presented in Chapter 5 has received consider-

able interest and we are hoping to work toward a complete prototype which

will be used to manage disks on test boxes used for Xen development. It is

my hope that further development will lead to deployments in production

environments.

As mentioned earlier, the symmetry-based rate limiting work discussed in

Chapter 4 is an aspect of a larger investigation into symmetry-based limit-

ing. With Christian Kreibich, Jon Crowcroft, Steven Hand, and Ian Pratt, I

intend to work toward a deployment of a stand-alone symmetry-based lim-
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iter for deployment in a college network. We hope to explore the impact of

such a limiter on real traffic, in order to further validate the approach.

The taint-based memory protection presented in Chapter 6 is ongoing work.

We hope to work with the authors of the Vigilante [CCC+05] system to

combine our techniques for the protection of commodity system. In addi-

tion, the dynamic emulation described in brief in that chapter is a promising

approach for a variety of interesting system extensions which will certainly

continue.

Other Device Interfaces8.1.2

In addition to building additional extensions based on the current interfaces,

it will be worth while to apply these techniques to other device types. As

mentioned in Chapter 3, work is currently underway in the Computer Lab

to build a file system level split device driver. Additionally, it may be inter-

esting to explore interposition-based extensions for video or audio devices.

Summary8.2

This thesis has argued that an architecture based on virtual machine mon-

itors may be used to build device extensions that are safe, flexible, and

achieve reasonable performance. Chapters 1 and 2 framed the problem,

and provided an overview of the Xen virtual machine monitor.

In Chapter 3, I described a set of techniques for the construction, extension,

and aggregation of virtual devices and discussed the implementation of these

approaches for disk and network extensions for VMs running on Xen. The

development of extensions, or soft devices, was facilitated by device taps—

drivers which allowed extensions to interpose on the device channels used

by virtual machines. Measurement results were presented showing that soft

devices were of sufficiently low overhead to be practical for all disk and

many network applications.

I additionally introduced the notion of aggregating soft devices to form de-

vice services. Such services allow the I/O function provided over a specific

I/O interface, storage for instance, to be isolated as a separate entity within
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a cluster environment. This approach allowed such services to be isolated

in terms of performance, failure, security, and administration.

Chapter 4 explored extensions for network device management. It presented

an approach to preventing virtual machines in hosting facilities from being

exploited to perform denial of service attacks. The approach enforced a limit

on traffic symmetry, the ratio of transmitted to received packets, to throttle

the transmission capabilities of VMs who do not appear to be receiving

acknowledgement traffic from the hosts they are transmitting to.

As a second example area in which these techniques could be applied, Chap-

ter 5 presented applications of these extensions within the domain of stor-

age. It described Parallax, a storage system for clusters of virtual machines

that allowed fast and frequent snapshotting, and efficiently stored large

numbers of virtual disks based on a collection of common images.

Chapter 6 explored opportunities to combine device extensions with broader

changes to a VMM-based system. An initial example was to to support de-

bugging, where the introduction of device-based watch points allowed a

debugger to be activated based on the contents of device data. The chap-

ter went on to discuss the development of taint-based memory protection,

in which device extensions are combined with dynamic emulation to intro-

duce a sweeping new virtual hardware feature requiring changes to CPU,

memory, and device behaviour.

In summary, this thesis has demonstrated that the mechanisms provided by

virtual machine monitors may be combined to build a compelling frame-

work for device extensions. I believe that this approach to both extending

individual devices, and treating device functionality as a service within a

cluster of physical hosts is a useful approach to constructing system soft-

ware, and one which will gain considerable use in years to come.
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[HHLS97] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, and Se-
bastian Schönberg. The performance of micro-kernel-based
systems. In Proceedings of the Sixteenth ACM Symposium on
Operating System Principles, pages 66–77, Oct 1997. 128

[Hil92] D. Hildebrand. An Architectural Overview of QNX. In Pro-
ceedings of the Workshop on Micro-kernels and Other Kernel
Architectures, pages 113–126. USENIX Assoc., 1992. 127

[HJ04] J. Hansen and E. Jul. Self-migration of operating systems. In
Proceedings of the 11th ACM SIGOPS European Workshop
(EW 2004), pages 126–130, 2004. 126

[HP91] N. Hutchinson and L. Peterson. The x-kernel: An
ar5chitecture for implementing network protocols. IEEE
Transactions on Software Engineering, 17(1):64–76, 1991. 61

141



[HR91] Judith S. Hall and Paul T. Robinson. Virtualizing the VAX
Architecture. In ISCA ’91: Proceedings of the 18th Annual In-
ternational Symposium on Computer Architecture, pages 380–
389, 1991. 21, 115

[Hun97] Galen Hunt. Creating user-mode device drivers with a proxy.
In Proceedings of the 1st USENIX Windows NT Workshop,
Seattle, WA, Aug 1997. 32, 128

[HWF+05] S. Hand, A. Warfield, K. Fraser, E. Kotsovinos, and D. Ma-
genheimer. Are virtual machine monitors microkernels done
right? In Proceedings of the Tenth Workshop on Hot Topics
in Operating Systems (HotOS X), Santa Fe, New Mexico, June
2005. 12, 66

[J. 04] J. LeVassuer and V. Uhlig. A Sledgehammer Approach to
Reuse of Legacy Device Drivers. In Proceeedings of the
11th ACM SIGOPS European Workshop, Leuven, Belgium,
September 2004. 128

[Ji05] M. Ji. Instant snapshots in a federated array of bricks. Tech-
nical Report HPL-2005-15, HP Laboratories, 2005. 96

[JX03] X. Jiang and D. Xu. Soda: A service-on-demand architecture
for application service hosting utility platforms. In HPDC ’03:
Proceedings of the 12th IEEE International Symposium on
High Performance Distributed Computing (HPDC’03), page
174, Washington, DC, USA, 2003. IEEE Computer Society.
126

[JX04] X. Jiang and D. Xu. Collapsar: A vm-based architecture for
network attack detention center. In Proceedings of the 13th
USENIX Security Symposium, pages 15–28, 2004. 10, 93,
126

[KC03] S. T. King and P. M. Chen. Backtracking intrusions. In Proc.
19th ACM Symposium on Operating Systems Principles, pages
223–236, 2003. 93

[KDC05] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging oper-
ating systems with time-traveling virtual machines. In Proc.
USENIX Annual Technical Conference, 2005. 10, 91, 93,
114, 126

[KEG+97] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Granger,
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