
Algorithms for predicting the secondary structure of

pairs and combinatorial sets of nucleic acid strands

by
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Abstract

Secondary structure prediction of nucleic acid molecules is a very important prob-

lem in computational molecular biology. In this thesis we introduce two new algorithms

for: (1) secondary structure prediction of pairs of nucleic acid molecules (PairFold), and (2)

finding which sequences, formed from a combinatorial set of nucleic acid strands, have the

most stable secondary structures (CombFold). Our algorithms run in polynomial time in

the sequences lengths and are extensions of the free energy minimization algorithm [72] for

secondary structure prediction without pseudoknots, using the nearest neighbour thermo-

dynamic model. Predicting hybridization of pairs of molecules is motivated by important

applications such as ribozyme - mRNA target duplexes, primer binding prediction and DNA

code design. Finding the most stable concatenations in combinatorial sets of strands is use-

ful for SELEX experiments and for testing whether sets in DNA computing or tag libraries

concatenate without secondary structure.

Our results for PairFold predictions show over 80% accuracy for sequences of up to

100 nucleotides. The performance goes down as the sequences increase in length and as the

number of non-canonical base pairs, pseudoknots and tertiary interactions, none of these

considered here, increases. The accuracy of CombFold is similar to that of the free energy

minimization algorithm for single strands, being just a polynomial method for structure

prediction of a combinatorial set of strands. We show that although complex, CombFold

can quickly predict large concatenations of sets drawn from the literature. In the future,

these two algorithms can be combined to predict the most stable duplexes formed by two

combinatorial sets.
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Chapter 1

Introduction

One of the most important problems in computational molecular biology is structure pre-

diction of nucleic acids. RNA molecules play a crucial role in cellular processes and their

function is directly related to their folding into complex tertiary structures [48]. DNA and

RNA strands are also used in biomolecular computations and in self-assembly of nanostruc-

tures [9, 10]. Researchers have studied the problem of nucleic acids structure prediction for

more than two decades. In this thesis, we start from the state-of-the-art algorithms for nu-

cleic acid secondary structure prediction and extend them to the problems of (1) predicting

secondary structure of a pair of nucleic acids and (2) finding, out of a combinatorial set of

RNA or DNA short strands, which combination has the most stable secondary structure.

In this chapter, we first give background on RNA, DNA and secondary structures.

Then, in Section 2, we define the problems that we deal with in this thesis and we give

motivations to support why this work is important. A summary of contributions is given in

Section 3, and some notations and conventions that we will use throughout this thesis are

enumerated in Section 4. The last section gives a brief outline of this thesis.

1.1 Background

The central dogma in molecular biology (Figure 1.1) is that, in an organism, the genes, which

constitute the genetic code made of DNA (deoxyribonucleic acid), are first replicated, and

then transcribed into RNA (ribonucleic acid). This is premature messenger RNA (pre-

mRNA), which in higher organisms (i.e. eukaryotes) are first processed to eliminate some

non-coding sequences, called introns, and they become mature messenger RNA (mRNA). In

simpler organisms (i.e. prokaryotes), there are no introns, and the genetic code is directly

transcribed into mature mRNA. This is translated into proteins, which have well defined

functions [19].

DNA and RNA molecules (also known as nucleic acids) are composed of sequences

of four types of nucleotides or bases: Adenine (A), Cytosine (C), Guanine (G) and Thymine

(T) for DNA or Uracil (U) for RNA. In organisms, the genetic material is usually double-

stranded DNA and the RNA is single-stranded. For this reason, RNA is more flexible
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Figure 1.1: Central dogma in molecular biology for eukaryotes.

and can form a much greater variety of complex three-dimensional structures than double-

stranded DNA (dsDNA). However, single-stranded DNA (ssDNA), used in in vitro experi-

ments or in DNA computing, can also form complex structures.

The linear sequence of an RNA or DNA strand constitutes the primary structure

or sequence. The set of base pairs that form when a nucleic acid sequence folds is called

secondary structure. These pairings arise from the Hydrogen-bonding forces between pairs

of bases. Thus, in an RNA or ssDNA secondary structure, each base can be either free (not

bonded with any other base) or Hydrogen-bonded to another base. The tertiary structure

is the three-dimensional geometry of the arrangement of bases in space. Much research has

been done on understanding secondary structures, while the information we currently have

about tertiary structures is relatively sparse. It is believed that once secondary structures

are known, they can provide useful information about tertiary structures as well.

Throughout this thesis, we focus on predicting secondary structures from primary

structures of RNA or ssDNA molecules. Although there are other factors that influence

secondary structure formation, it is believed that the sequence has the greatest contribution.

The most common Hydrogen-bonds which will lead to secondary structure formation are

between C and G, and between A and T (or U for RNA). They are called Watson-Crick (W-

C) bonds. (C.G) pairs are more stable, because they involve three Hydrogen connections,

as opposed to (A.T) or (A.U) pairs, which involve two Hydrogen connections.

The sequence orientation of ssDNA and RNA strands is defined by two different

strands, called the 5′ end and the 3′ end. Consecutive base pairs can be formed only if

the sequences have opposite orientation. The following is a double stranded DNA primary

2



sequence of 30 nucleotides:

5’-ATGCGCGCTAGCATCGCTCGGCTAGCTGAT-3’

3’-TACGCGCGATCGTAGCGAGCCGATCGACTA-5’

Each base in the second strand is the W-C complement of the corresponding base in the

first strand. They can bind and form a double stranded DNA because all the corresponding

bases are complementary and because the strands are in opposite orientation. The same

rule is available for RNA or ssDNA. Consider the following simple RNA sequence:

5’-CCCCCCCCCCAAAAAGGGGGGGGGG-3’

It contains 10 C’s, 5 A’s and 10 G’s. The fragment 5’-CCCCCCCCCC-3’ can bind to the

fragment 3’-GGGGGGGGGG-5’ (read from the 3′ end to the 5′ end), but it cannot bind to the

fragment 5’-GGGGGGGGGG-3’ (read from the 5′ end to the 3′ end), because it does not have

the right orientation. Thus, most probably, the first C will bind to the last G, the second

C will bind to the G before the last base and so on.

The first step in understanding RNA or ssDNA secondary structures is to identify the

substructures of which they are composed. We call elementary structure any substructure

which cannot be decomposed in any other substructure. Figure 1.2 shows an example of a

complex secondary structure, which contains all elementary structures that we consider in

this work. The bullets represent bases, the thin gray line indicates the backbone that holds

all the nucleotides together in the molecule, and the thick black lines indicate paired bases.

The 5’ and 3’ ends are indicated, and a numbering for the base positions is provided, with

the first base considered to be at the 5’ end. Each base can only participate in at most one

base pair. The elementary structures are marked by rectangles and their names are added

aside. The elementary structures we consider here follow:

• A hairpin loop or hairpin contains one closing base pair and all the bases between

the paired bases are unpaired. The hairpin marked in the figure contains 5 free bases.

Formally, the tuple (i, j) defines a hairpin loop in a given secondary structure if i and

j are paired, and k is a free base, ∀k, i < k < j;

• A stacked loop, also called stacked pair, contains two consecutive base pairs. The tuple

(i, j) defines a stacked pair if i and j are paired and i + 1 and j − 1 are paired. A

stem or helix is made of a consecutive number of stacked loops. The helix marked in

the figure has 5 stacked loops;

• An internal loop, sometimes called interior loop, is a loop having two closing base pairs,

and all bases between them are free. The tuple (i, j, i′, j′), with i+1 < i′ < j′ < j−1,

defines an internal loop if i and j are paired, i′ and j′ are paired and k is a free base,

∀k, i < k < i′ and j′ < k < j. The asymmetric internal loop marked in the figure has

3 free bases on one side and 4 free bases on the other side.
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Figure 1.2: Example of a pseudoknot-free secondary structure containing all elementary structures.

A bulge loop, or simply bulge, is a special case of internal loop, which has no free base

on one side, and at least one free base on the other side.

Note that, in fact, a stacked loop is also a special case of internal loop, with no free

bases on both sides. In this work, we will consider stacked loops and internal loops

to be distinct elementary structures, but we include bulges in the internal loop case,

unless otherwise specified;

• A multi-branched loop or multi-loop is a loop which has at least three closing base

pairs. The tuple (i, j, i1, j1, . . . im, jm), with m ≥ 2, i < i1 < j1 < . . . < im < jm < j

defines a multi-loop with m + 1 branches if i pairs with j, i1 pairs with j1, . . . , im
pairs with jm and k is a free base, ∀k, i < k < i1, j1 < k < i2, . . ., jm < k < j. The

multi-loop marked in the figure has 3 closing base pairs and 6 free bases;

• A multi-domain loop, or simply multi-domain, is a loop with at least one closing pair.

The tuple (i, j, i1, j2, . . . , id, jd), with d ≥ 0, i < j < i1 < j2 < . . . < id < jd defines a

multi-domain if i pairs with j, i1 pairs with j1, . . ., id pairs with jd and k is a free base

∀k, 1 ≤ k < i, j < k < i1, . . ., jd < k ≤ n, where n is the length of the sequence. We

call domains the whole secondary structures which are closed by the closing pairs of

a multi-domain. In other words, the domain closed by (i, j) is the set of all base pairs

whose indices are in the interval [i, j]. Note that if we virtually make the sequence
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Figure 1.3: Structure of a hairpin ri-

bozyme bound to an mRNA target.
Figure 1.4: A simple pseudoknotted struc-

ture.

circular by merging the 5’ and 3’ ends together, we obtain a hairpin, internal loop

or multi-loop. The multi-domain marked in the figure contains two branches and 7

free bases. These free bases are called external bases, because they are not inside any

domain, but they are between domains or between a domain and a molecule end.

Note that, if the whole structure contains only one domain and no external bases,

then there is one multi-domain, and the pair (1.n) constitutes its only closing pair.

The bases which are neighbours of a closing pair of a multi-domain or multi-loop are

called dangling bases. The dangling bases neighbouring to the multi-domain marked in

the figure have positions 2, 98, 101 and 123. The ones neighbouring to the multi-loop

have positions 6, 57, 59, 93 and 94.

When we refer to secondary structures, we assume that at least one base pair exists.

In some situations, it is possible that no pairing between any two bases exist. In this

case we say that the molecule is structure free.

All these elementary structures have been used before with these names [24, 33, 71],

except the multi-domain structure, whose exact name we introduce here for convenience

later.

Another way to understand a secondary structure is to think of it as a set of helices,

connected to each other by internal loops, bulges, multi-loops or multi-domains, and some of

them ended in hairpins. Note that the secondary structure represented in Figure 1.2 is just

a graphical, convenient way to visualize the set of base pairs of the folded molecule. In other

words, the geometrical positions of the base pairs and free bases do not have any meaning

and do not matter other than for visualization purposes. In our representation of secondary

structures, if the backbone location is straightforward, we omit it. The structure used in

Figure 1.2 will be used again in Chapter 3, together with its RNA sequence (Figure 3.2).
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Extending the notion of secondary structure for a single molecule, the secondary

structure for a pair of molecules S1 and S2 is a set of base pairs, with each base of S1 and

S2 occuring in at most one pair. Figure 1.3 shows an example of a duplex structure, which

represents the typical structure of a hairpin ribozyme (the bottom structure), binding to its

mRNA target (the top structure). Having this structure, the ribozyme executes its function

by cleaving the mRNA target at the site indicated by the red arrow.

The loops that we just enumerated are all elementary structures, which are cur-

rently considered by computational programs for secondary structure prediction without

peudoknots. Pseudoknots are very important structures, being sometimes crucial for the

RNA function, but making prediction more complicated. The tuple (i, j, i′, j′) defines a

pseudoknot if i and j are pairs, i′ and j′ are pairs and i < i′ < j < j′. Pseudoknots are not

considered in this work. Figure 1.4 shows an example of a simple pseudoknot, marked by a

rectangle. It contains two helices, and if we take any pair from the first stem and any pair

from the second stem, they satisfy the inequality mentioned above. Inside the pseudoknot

and/or outside the pseudoknot, the structure can have any elementary structures discussed

before, or even other pseudoknots.

Tertiary interactions between a base which is already paired and a free base, or

between two already paired bases, are possible. These and other interactions, such as Hy-

drogen bonding between a base and the backbone, between backbone and backbone, binding

of metal ions, water interactions, all contribute to the stability of RNA structure. These

are part of tertiary structures and are not considered in secondary structure estimations.

An example of a long, complicated structure determined by comparative sequences

analysis [22] in Gutell Lab [21] is given in Figure 1.5. It contains all elementary structures,

three pseudoknots and two tertiary interactions.

In the analysis of the algorithms we propose, we will refer to different types of RNAs.

Thus, more background describing the most important RNA classes is necessary. Depending

on its type, RNA molecules can have different functions. RNAs can be grouped in two

general classes [19]: (1) The informational RNA class is formed of messenger RNA (mRNA

and pre-mRNA), the intermediary between the genes and the proteins, which are illustrated

in Figure 1.1. (2) Functional RNAs, which are not translated into proteins, but are active as

RNA. Although the genes that encode functional RNAs are relatively few, the active RNAs

count for a large percentage of the RNA in the cell. They are more stable than informational

RNAs, and they need abundance to carry out their function. Three very important classes

of functional RNAs that we will refer to later in the thesis are: (1) transfer RNAs (tRNAs)

are short RNA molecules (less than 100 bases long), which have an important role in mRNA

translation into proteins; (2) ribosomal RNAs (rRNAs), some of them exceeding 4000 bases

in length, which also have a central role in the translation machinery. They are part of

ribosomes, which are large macromolecular assemblies composed of several types of rRNAs

and about 100 different proteins. (3) ribozymes are RNA molecules which act as enzymes

and catalyze a specific biological reaction. Recent studies of last ten years reveal that
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Figure 1.5: Secondary structure of a 16S rRNA from Gutell Database [21]. The structure has been

determined by comparative sequence analysis.
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functional RNAs have a much more important role than originally thought, when proteins

were considered to do nearly all functional tasks in the cell.

1.2 Problems and motivations

In this thesis, we try to solve two main problems: (1) secondary structure prediction of a

pair of nucleic acid molecules and (2) secondary structure prediction of combinations formed

from a combinatorial set of nucleic acid molecules. In this section, we briefly explain the

problem statements and motivate their study.

Secondary structure prediction of a pair of molecules

We define the basic problem of secondary structure prediction of a pair of nucleic acid

molecules as follows: given two RNA sequences S1 and S2 and a thermodynamic model M ,

find the pseudoknot-free secondary structure R with the smallest free energy change under

the model M , in which S1 and S2 can fold. Note that the solution R may include base

pairing between the two molecules, as well as base pairing within each molecule.

The algorithm we propose for solving this problem is called PairFold and is presented

in detail in Chapter 5. It is motivated by predicting interactions between any two DNA or

RNA molecules. Examples include: (1) a ribozyme and an RNA target [25, 27, 43, 47, 53,

60, 68]; (2) a probe or primer and a target RNA molecule [68]; (3) pairs of DNA strands

in DNA code design [55]; (4) pairs of strands in biomolecular nanostructures [39, 69]; (5)

molecular tags in a polymer library [10]. Concrete examples where PairFold is useful will

be given in Section 5.5.

Secondary structure prediction of a combinatorial set of molecules

Consider the following sets of short RNA strands (also called words):

S1 S2 S3 S4 S5

1 UAGCGA CAGCGUAAUAU AUGCG AUAGCGGUA AUCG

2 AUAGAU AGAUGCGCGGU GAGCGCAAG CUGC

3 UAGGCUAGCGU GCGA

If we take one word wij from line j of each set Si and concatenate them together, we

obtain what we call combinations. For example, the sequence UAGCGA CAGCGUAAUAU AUGCG

AUAGCGGUA AUCG is the combination w11w21w31w41w51. Note that the number of possible

combinations is exponential in the number of sets which contain at least two words.

The input set of sets will be called Input-Set, and the set of all possible combina-

tions will be called Combinatorial-Set. We define the basic problem of secondary structure

prediction of a combinatorial set of nucleic acid molecules as follows: given an Input-Set

8



IS and a thermodynamic model M , predict which combination, out of all elements of the

Combinatorial-Set CS formed from IS, folds to a pseudoknot-free secondary structure with

the lowest minimum free energy.

The algorithm we propose is called CombFold, and is described in detail in Chapter 6.

Applications where CombFold is useful include: (1) biochemical experiments altering a

consensus nucleic acid sequence, such as directed mutagenesis or SELEX experiments [38];

(2) information storage in DNA computations, where all combinations of a combinatorial

set are used. It is important that none of the strands fold on themselves in the temperature

range at which they are used [9, 10, 14]; (3) combinatorial sets are also used as molecular

bar codes in applications such as massive parallel signature sequencing [10].

1.3 Contributions

This section describes the main contributions of this thesis in the order they are discussed:

1. The Nearest Neighbour Thermodynamic Model (NNTM ) for RNA secondary struc-

ture prediction has been described before by Zuker et al. [71]. However, their report

misses some cases when compared to their implementation of mfold and the similar

program from the Vienna RNA package [24, 61]. Thus, a new implementation of

the RNA secondary structure prediction algorithm by Zuker and Stiegler [72] would

be difficult without consulting previous implementations. The description of NNTM

that we give in Chapter 3 is meant to be a complete description of this model. A

thorough understanding of it is necessary for new implementations or extensions of

the secondary structure prediction algorithm;

2. A thorough analysis of the accuracy of our program SimFold and of two popular

secondary structure prediction programs (mfold [35, 70] and RNAfold [24, 61]) is the

first one showing more characteristics about the data sets and also pointing out that

the performance on some tRNA sequences, in terms of percentage of base pairs found,

appears to be poorer than reported earlier by Mathews et al. [33] (Chapter 4);

3. An algorithm similar to our method underlying PairFold, to predict secondary struc-

tures of pairs of nucleic acid molecules, has been briefly described by Mathews et

al. [32], but no analysis on real biological data has been performed. We give a thor-

ough analysis of PairFold on sets of ribozymes found in the literature and on primer

binding prediction. We also discuss several other useful applications of PairFold, such

as prediction of DNA or RNA duplex formation and DNA code design. Moreover, we

created the RNAsoft web site [41], which offers online access to PairFold. Information

about this web site have been published in a special issue on Web based software of

Nucleic Acids Research journal [5];

4. Our algorithm underlying CombFold has been developed in parallel by Cohen and

Skiena [12], but for a different problem. We offer an analysis of data sets from the

9



DNA computing literature, and give other useful applications, such as for SELEX

experiments. Part of this work has been presented at the DNA 8 Conference (Eight

International Meeting on DNA Based Computers, Hokkaido, Japan, 2002) and ap-

peared in the conference proceedings [6]. A full version of this paper has been ac-

cepted to appear in the journal Natural Computing [6]. Online access to CombFold is

also available on the RNAsoft web site [41], and information about this software have

been published in the Nucleic Acids Research Journal [5];

5. Finally, our extension to CombFold for calculating suboptimal combinations is the

first one that we are aware of. There are at least two reasons for which this is useful

information: (1) for both DNA computation and SELEX experiments, where knowing

the next most stable combinations is important; and (2) returning the k most stable

combinations can cover some of the impreciseness of the energy model we are using.

1.4 Notations and conventions

Throughout this thesis, the following notations and conventions will be used:

• Given a sequence S, its default orientation is from the 5′ end (left) to the 3′ end

(right), unless otherwise stated;

• To represent secondary structures, sometimes we use the dot-parenthesis (or dot-

brackets) format. This contains three characters: “(”, “)” and “.”. A left bracket

corresponds to a base which is paired to a base upstream, a right bracket denotes a

base paired to a base downstream, and a dot denotes a free base. For example, the

secondary structure of the simple RNA sequence given in Section 1.1 can be depicted

as follows:

CCCCCCCCCCAAAAAGGGGGGGGGG

((((((((((.....))))))))))

Note that this representation is only valid for pseudoknot-free structures.

• Two nucleotides between round brackets and separated by a point (e.g. (A.U)) signify

a base pair.

1.5 Thesis outline

The most important work related to the research reported in this thesis is first presented

in Chapter 2. The basis of the secondary structure prediction calculations considered in

this work resides in the standard Nearest Neighbour Thermodynamic Model, which will

be described in great detail in Chapter 3. Our two algorithms: PairFold and CombFold,

10



are extensions of the free energy minimization algorithm [72]. Full understanding of this

method is necessary for understanding our proposed solutions. We call this basic algorithm

SimFold, and we explain its underlying equations in Chapter 4. A discussion on complexity

and a thorough performance evaluation are given. Chapter 5 explains our algorithm for

structure prediction of pairs of molecules, PairFold, and gives several applications and per-

formance evaluations on biological data. Chapter 6 proposes a polynomial time algorithm

for prediction of the most stable combination of a combinatorial set, CombFold. An exten-

sion, to predict the k most stable combinations, is included. Two heuristic approaches are

discussed, along with practical applications. Finally, we conclude the thesis in Chapter 7

and we present ideas of how this work can be continued in several ways. Some details

additional to data analysis discussed in Chapters 4 and 5 are given in Appendices A and B.

Because the two algorithms we propose are based on the Nearest Neighbour Thermo-

dynamic Model, which is complex and not very well explained in the literature, we dedicate

the whole Chapter 3 to detailed explanations of this model, although this is not our work

(other than collecting the proper information). Similarly, since our two solutions are in fact

extensions of the Zuker and Stiegler’s [72] free energy minimization algorithm for secondary

structure prediction, we explain it in detail in Section 4.1. Our work starts with showing

that our implementation of Zuker and Stiegler’s algorithm is reliable (Sections 4.2-4.4) and

continues with our proposed solutions, in Chapters 5 and 6.
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Chapter 2

Related Work

RNA folding and secondary structure are very important for RNA function. Experimental

studies on RNA secondary and tertiary structures have been carried out continuously after

the Watson-Crick binding discovery in 1953. In the last 25 years, applications of computa-

tional methods to problems in molecular biology, including RNA folding, became more and

more prominent.

The quantity of information about RNA structures is rapidly increasing every year.

However, depending on the length of the given RNA sequence, the number of possible sec-

ondary structures can be very high. For instance, for a 16S rRNA of 1500 nucleotides,

there are approximately 15,000 possible helices (less than 100 will be in the final structure).

The maximum number of combinatorial arrangements of all possible helices, which will

eventually lead to different structures, is about 4.3 × 10393 [22]. In vitro experiments for

some specific RNAs such as hairpin ribozymes show that they behave very similarly to the

experiments in vivo [48]. However, there are studies which show that in vitro RNA folding

experiments cannot reliably simulate the complex intracellular environments existing in the

cell [48]. Thus, there is still a lot of unknown information about what happens in the cell.

The computational methods that currently exist try to capture as much information as

possible from the existing knowledge. Still, this knowledge is rudimentary with respect to

some rules and contributions of other factors that participate to the folding of RNA. More-

over, in order to ensure that the computational methods are efficient (and thus practical),

thermodynamic methods are often highly simplified.

Section 1 of this chapter describes previous work related to the secondary structure

prediction for single RNA or DNA molecules. This work is related to all three algorithms

described in this thesis: SimFold, PairFold and CombFold. Section 2 presents work for

predicting secondary structures for pairs of molecules, and this is relevant to our PairFold

algorithm. Section 3 gives information about algorithms for predicting secondary structures

of combinatorial sets, which is directly related to CombFold.
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2.1 Secondary structure prediction for single molecules

In this section, several different methods are explained for predicting secondary structures

without pseudoknots, and two algorithms for predicting pseudoknotted structures are sum-

marized.

Free energy minimization algorithm

A very popular algorithm for finding the minimum free energy (MFE) secondary structure

without pseudoknots of an RNA molecule is Zuker and Stiegler algorithm [72]. This method

is the basis of the algorithms proposed in this thesis, and will be described in great detail

in Chapter 4. Its input is the primary RNA sequence, and it uses a dynamic programming

algorithm to find the secondary structure with the minimum free energy. The basis of this

method is the Nearest Neighbour Thermodynamic Model (NNTM), which will be described

in Chapter 3. NNTM contains rules about base pairing formation and tabulated free energy

and enthalpy parameters.

Briefly, the main idea of the free energy minimization algorithm is that the bases of

the RNA molecule are numbered from 1 to n, starting from the 5′ end and finishing at the

3′ end. Then, for each i and j with 1 ≤ i < j ≤ n, the problem is to determine which of

the four elementary structures (hairpin loop, stacked loop, internal loop or multi-branched

loop), with the exterior pair (i.j), has the lowest free energy. Recurrence relations are

applied and a two dimensional matrix with all minimum free energies for each i and j is

filled. As for the standard dynamic programming algorithm, backtracking is necessary to

build the path (i.e. the set of base pairs) that gives the MFE secondary structure.

The complexity of Zuker and Stiegler’s algorithm is O(n4) for time and O(n2) for

space. It has been reduced to O(n3) for time by Lyngsø et al. [31], but the space required

increased to O(n3). Other approaches [24] assume that the free bases on both sides of

internal loops are bounded by a constant c (e.g. c = 30). This reduces the time complexity

of Zuker and Stiegler’s algorithm to O(n3) with no penalty on the space.

Wuchty et al. [66] extended the MFE secondary structure prediction algorithm to

generate all suboptimal secondary structures between the MFE and an upper limit. Gener-

ating suboptimal structures is important for at least two reasons [66]: (1) The energy model

on which the minimization algorithm relies is imprecise. Also, there are unknown biological

constraints, which are not taken into consideration by the energy model. Thus, the true

MFE structure might be one of the suboptimal structures with respect to the parameters

used. (2) Under physiological conditions, RNA molecules might fold to alternative struc-

tures, whose energy difference is small. Also, it is speculated that specific folding pathways

capture molecules in local minima [20]. Mathews et al. [33] show that, on average, the

accuracy of the prediction algorithm increases by more than 20% when 750 suboptimal

structures are generated, as opposed to generating the MFE structure only.

Different implementations of the free energy minimization algorithm exist. The
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program mfold [70, 71] was the first one to implement Zuker and Stiegler’s algorithm and

is available online [35]. It also incorporates Wuchty et al.’s [66] extension for generating

suboptimal structures. The Vienna RNA Package [24] implements Zuker and Stiegler’s

algorithm, together with the partition function calculation, which will be discussed later in

this section. It is available online and is free open source software [61].

Partition function algorithm

McCaskill [34] proposed another dynamic programming algorithm for pseudoknot-free fold-

ing of an RNA molecule, which permits calculation of probabilities of various structures.

This involves calculation of the partition function:

Q =
∑

S

e−∆G(S)/RT

from statistical mechanics, where the sum goes over all possible structures in which the

RNA molecule can fold. Although this sum has a number of terms that is exponential in

the molecule length n, the partition function calculation can be done in time O(n3). Once

the partition function Q is calculated, we can calculate the probability of a given structure

S: P (S) = 1
Qe−∆G(S)/RT . However, what is more relevant for biological function of RNA

structures is an ensemble of related structures (also called kinetically clustered objects)

interchanging more or less rapidly between each other [34]. The focus is on the equilibrium

probabilities of substructures common to an ensemble or class of related structures. These

substructure classes are very important because they allow the display of the most signif-

icant features of the ensemble. Finally, the equilibrium probability of occurrence for each

possible base pair can be calculated, and a mirror image including the base probabilities

(one triangle) and the optimal structure (another triangle) can be drawn for good visual-

ization. McCaskill [34] evaluated his method on four biological RNA sequences with known

structures. He showed that the real base pairs have been predicted with high probability,

although not always the highest probability. The partition function algorithm has been

incorporated in the Vienna RNA Package [24, 61].

There are two major drawbacks of both the free energy minimization algorithm and

the partition function algorithm: (1) they cannot predict pseudoknotted structures; (2)

they heavily rely on the simplified thermodynamic model.

Comparative analysis methods

Comparative analysis methods predict secondary structures and early stages of tertiary

structures of evolutionary related RNA molecules. They overcome the two major drawbacks

of the aforementioned methods: pseudoknotted structures and imprecise thermodynamic

model. Gutell Laboratory [11, 21] has started determination of the 16S and 23S rRNA

secondary structures since early 1980s, when only two molecules of each class were available.
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The comparative analysis method is based on two simple and profound principles [22]:

(1) “different RNA sequences can fold into the same secondary and tertiary structures”;

(2) “the unique structure and function of an RNA molecule is maintained through the

evolutionary process of mutation and selection”. In 1999, 7000 homologous 16S and 1050

23S aligned rRNA sequences where used in covariation-based structure models [22] and the

result was compared to the experimentally determined high-resolution crystal structures of

the 30S and 50S ribosomal units (which include 16S and 23S rRNAs, respectively). Several

methods constitute the class of comparative analysis: (1) covariation analysis predicted

97-98% of the base pairs which are present in the 16S and 23S rRNA crystal structures; (2)

tentative covariation-based method predicted about 45% of the base pairs; and (3) motif-

based method predicted 70% of the base pairs. In conclusion, these methods predicted

nearly all of the standard secondary structure base pairings and helices in the 16S and

23S crystal structures, and they have also identified tertiary base-base interactions. The

major drawback of this method is that a large number of evolutionary related sequences is

necessary for good accuracy.

Combinations of using the thermodynamic model as well as comparative analysis

have been tried. Hofacker et al. [23] presented a method for computing the secondary struc-

ture of a set of aligned RNA sequences, using both thermodynamic stability and sequence

covariation. They show that only 5 rRNA related sequences and an automatically generated

alignment were necessary to correctly predict over 80% of the base pairs. Their program

is implemented under the name of RNAalifold, which is available online from the Vienna

RNA Package web site [61].

Pseudoknotted secondary structure prediction

Predicting RNA secondary structures including pseudoknots from the primary sequence of

a molecule and using a thermodynamic model is a great challenge. Firstly, the pseudoknots

can be very complex; secondly, the forces that drive the formation of pseudoknots are not

well understood, thus the model being a rough approximation of what is believed to happen.

Lastly, and most importantly, it has been proved that finding a minimum energy structure

among all possible pseudoknots is NP-hard, although the energy function used in the proof

is highly idealized [30].

Rivas and Eddy [40] proposed a free energy minimization dynamic programming al-

gorithm which, apart from the elementary structures considered by Zuker and Stiegler [72],

also includes pseudoknots. This was considered to be the first algorithm to optimally deter-

mine a large class of pseudoknots. The algorithm is complex and its worst case complexity

is O(n6) for time and O(n4) for space. They show that their algorithm does not predict

spurious pseudoknots for a set of tRNA. They also predict 54 out of 63 SELEX-selected

HIV-1-RT-ligant simple pseudoknots, and most pseudoknots in short viral RNAs.

The recent work of Dirks and Pierce [13] introduces a partition function algorithm for
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nucleic acids secondary structures which contain the most physically relevant pseudoknots.

The algorithm has a complexity of O(n5) for time and O(n4) for space. Although the class

of predicted pseudoknots is more restricted than in [40], this algorithm has the advantage of

permitting study of conformational ensembles of most relevant structures. On the class of

pseudoknots they can predict, they show their results are slightly worse for the false positives

and slightly better for the true positives when compared to Rivas and Eddy’s algorithm.

The thermodynamic parameters for the pseudoknots have been generated individually by

each group.

2.2 Secondary structure prediction of pairs of molecules

The closest related work to PairFold for predicting pseudoknot-free secondary structures

for pairs of nucleic acids is by Mathews et al. [32]. They predict equilibrium affinity of

complementary DNA or RNA oligonucleotides to an RNA target. Briefly, given a structured

long RNA molecule S = s1s2s3 . . . sn and the oligomer length l, their first program, called

OligoWalk, generates the oligos which are Watson-Crick complements of every window of

length l from S. There are n − l + 1 such possible oligos, for example the first one being

3′ − s̄1s̄2 . . . s̄l − 5′, where s̄i is the Watson-Crick complement of si. The target polymer

can be in the folded or unfolded state, and the same for the oligomer, which can also be

unimolecular or bimolecular. Assuming that the oligo will disrupt preexisting structure in

the region of complementarity and will form a helix, OligoWalk calculates the standard

free energy change of the duplex, which they call ∆G◦
3. Then, they calculate “the overall

free energy change of binding”, ∆G◦
overall, which takes into consideration the stability of the

newly formed helix and the total concentration of the oligonucleotides. Performing a walk of

n− l+1 steps along the target RNA, they try to find correlations between ∆G◦
3 or ∆G◦

overall

and three types of experiments drawn from the literature. They find correlations suggesting

that OligoWalk can be useful for designing oligomers capable of binding to targets.

The drawback of this method is that there is no guarantee whether or not the

oligomer will disrupt the local structure of the target RNA. Even if the free energy of the

duplex is low, thus the duplex being considered to be stable, there might be another region

in the target RNA to which the target site would prefer to bind. In primer design and other

oligomer-target binding problems, one would like to predict whether a given oligomer will

be able to bind to that specific target site, and eventually use this information for primer

design.

In the same paper, Mathews et al. [32] report a second program, an extension of

mfold [70], but for bimolecular secondary structure prediction. Given two nucleic acids S1

and S2, a third sequence S is created by concatenating the two sequences and by adding a

3-nucleotide “molecular linker” between them. The three nucleotides will be restricted not

to bind to any other bases in the two given sequences, and the free energy of the loop thus

created will be an intermolecular initiation penalty plus the dangling ends free energies.
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The intermolecular linker can appear in hairpin loops, bulges or internal loops, multi-loops

or external loops. The Zuker and Stiegler’s [72] algorithm is modified to deal with these

situations.

The two programs: OligoWalk and the bimolecular secondary structure prediction

program (which we refer to as BSSP) are incorporated in the RNAstructure package [42],

a software package for Windows. However, only OligoWalk out of the two seems to be

functional at the date of this thesis.

The algorithm behind the BSSP program seems to lead to the same results as what

we propose as PairFold. However, PairFold is a more elegant extension of the Zuker and

Stiegler’s algorithm. Since, to our best knowledge, no evaluation of the BSSP program has

been performed, it is not clear whether the results of the two programs are always the same.

A software tool close to OligoWalk is ProbeSelect by Li and Stormo [29], which

designs probe oligomers for DNA microarrays. The best probes are selected based on the

most favorable free energy, and also on maximization of the difference between this free

energy and the free energy of the probe binding to any other mismatched target. To

calculate this free energy quickly, they created a heuristic which is assuming the perfect

alignment of alternatives. They expect their program to provide a good approximation to

the optimal probes set for a complete genome.

Another, simpler extension of the mfold program is the “2-state hybridization server”

[70], which is available online on Mfold web page [35]. It also adds a linker between the two

input sequences, and it forces the bases in the linker not to pair. To our understanding,

only the hairpin loop special case is covered. The free energy, enthalpy, entropy and melting

temperatures are returned, but no information about the secondary structure is output by

the program.

HyTher software tool, available online at [26], takes as input two RNA/RNA, RNA/

DNA or DNA/DNA sequences of equal length. It only calculates the free energy of stacked

pairs or mismatches at the corresponding positions in the two input sequences. No minimiza-

tion algorithm for finding the most favorable duplex structure is performed, the assumption

being that the two input sequences will have matches or mismatches at corresponding po-

sitions. Thus, the free energy returned with this assumption may be greater than the free

energy returned by a minimization algorithm (such as PairFold). Also, input sequences of

different length are not accepted.

2.3 Secondary structure prediction of combinatorial sets

An O(n3) algorithm for finding the combination with the smallest MFE structure out of all

possible combinations in a combinatorial set has been developed by Cohen and Skiena [12].

The problem they tried to solve was determining, among all RNA sequences coding for a

specific protein, which has the most stable secondary structure. They were interested in
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finding whether the real mRNA sequence was close to the RNA sequence they found. Their

underlying algorithm is very similar with our CombFold algorithm, it uses the nearest neig-

bour thermodynamic model and is based on Zuker and Stiegler’s [72] algorithm. Applying

their algorithm on 200 short microbial RNA sequences, they found that a minimized se-

quence has, on average, a predicted MFE of 2.657 times lower than the naturally occurring

sequence.
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Chapter 3

The Nearest Neighbour

Thermodynamic Model

All living organisms consume energy continuously. Their metabolism transforms energy

to heat, which is dissipated to the environment. Thermodynamics originates from the

Greek words therme (heat) and dynamis (power) and is the science which describes the

relationship between different forms of energy. In thermodynamics, the part of interest (e.g.

an organism) is seen as a system, and the rest of its universe is defined as the surroundings.

Whether or not a system can exchange energy with its surroundings, it is said to be open

or closed. All living entities are open systems.

The algorithms described in this thesis use the Nearest Neighbour Thermodynamic

Model (NNTM). This model assumes that the stability of a specific base pair depends on

the neighbouring bases. Base pair stability is measured by the standard free energy change

∆G◦. It is believed the most stable secondary structure of an RNA molecule or single-

stranded DNA molecule is the one which has the lowest possible free energy change. In

other words, the lower the free energy change, the more stable the secondary structure is.

First, we have to mention that none of what is explained in this chapter is our

work. Instead, it is a thorough explanation of the NNTM model, which is heavily used

in the algorithms we propose in this thesis. Section 1 describes the background on which

the NNTM model is based. Section 2 explains the thermodynamic parameters determined

by Turner’s Lab [57]. The way these parameters are actually used for calculating the free

energy of a secondary structure is explained in Section 3. An example of such calculation

is given in Section 4. The model and parameters described in this chapter can also be used

for pairs of RNA/RNA or DNA/DNA sequences. This particular situation is described in

Section 5. We conclude the chapter with a discussion and some limitations of this model.
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3.1 Background for NNTM

Calculation of standard free energy, enthalpy and entropy changes, equilibrium constant of

the reaction and melting temperature are very important for determining characteristics of

folded RNA or DNA. This section gives the background necessary to understand the role

and the meaning of these parameters and the mathematical relations that connect them to

each other.

It is important to mention that throughout this thesis we do not consider the dy-

namics of the RNA or DNA folding process. We only look at the RNA or DNA in the folded

state, i.e. after the folding process reached an equilibrium and its state does not change

any more (or the changes are insignificant).

Free energy, enthalpy and entropy

Free energy indicates the direction of a spontaneous change. It was introduced by J. W.

Gibbs in 1878, and it is abbreviated G. ∆G represents the work done by a system at

constant temperature and pressure when undergoing a reversible process. This system will

spontaneously evolve in the direction that minimizes the Gibbs function:

∆G = ∆H − T ·∆S, (3.1)

where G is the free energy, H is the enthalpy, T is the absolute temperature (in degrees

Kelvin (K)) and S is the entropy.

The quantity ∆G (measured in kcal/mol) is negative for “energy-releasing” pro-

cesses, and positive for “energy-consuming” reactions. Sometimes we use the notation

∆GT to denote the free energy change at a specific temperature T .

Enthalpy (H) is a measure of the heat flow that occurs in a process. The enthalpy

change (∆H) for an exothermic reaction (i.e. the heat flows from the system to the sur-

roundings) is negative. The enthalpy change for an endothermic reaction (i.e. the heat

flows from the surroundings to the system) is positive. The enthalpy (or enthalpy change)

is measured in kcal/mol.

Entropy (S) is a thermodynamic function which measures the disorder of a sys-

tem [54]. Thus, the entropy change ∆S measures the change in the degree of disorder. If

∆S is positive, it means there was an increase in the level of disorder. A negative value

indicates a decrease in disorder. The entropy (or entropy change) is measured in kcal/(mol·

K) or entropy units (1eu = 1cal/(mol· K)).

It is worth mentioning that enthalpy and entropy do depend on the temperature,

but the dependency is very small, at least for short molecules [46], and they are not taken

into consideration, but considered fixed for any temperature between 0◦C and 100◦C. Also,

the standard free energy and entropy changes depend on the salt concentration [45], which

in our study is assumed to be 1 M NaCl, and cannot be changed.
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∆G◦, ∆H◦ and ∆S◦ denote standard free energy, enthalpy and entropy changes, i.e.

measured at standard conditions such as pressure (1 atm), and the temperature of interest.

For nucleic acids, it is very important to determine thermodynamic parameters at the human

body temperature [46] as accurately as possible. It has been shown the measurements for

free energy change are more accurate than for enthalpy and entropy change (a standard

error of 2-5% for ∆G◦
37, versus 5-8% for ∆H◦ and ∆S◦) [46].

Since we look at the RNA or DNA secondary structure only when the folding process

reached its equilibrium, we measure the standard free energy, enthalpy and entropy changes.

If, at some temperature, enough energy was consumed by the process, then interactions

between the nucleotides of the molecule can happen. In this case, we say the molecule has

secondary structure. To get to this state, the process was energy-releasing and exothermic

(hence ∆G◦ < 0 and ∆H◦ < 0) and it tended to get ordered (hence ∆S◦ < 0). If not enough

energy was consumed, then there are no bondings between the bases. In this situation, we

say that the molecule is structure free, i.e it does not have secondary structure. The standard

free energy, enthalpy and entropy changes will be 0.

Equilibrium constant

Consider the general reaction scheme aA+ bB ⇀↽ cC +dD. Let CA, CB , CC and CD denote

the concentrations of the reactants A, B and the products C, D, measured in mol/l (or

Molar (M)). k =
Cc

C
·Cd

D

Ca
A
·Cb

B

is known as the equilibrium constant of the reaction. The free

energy change is given by:

∆G = ∆G◦ + R · T · ln(k),

where R is the gas constant (1.98717 cal/(mol· K)), and T is the absolute temperature. If

the system is at equilibrium, ∆G = 0. Hence, ∆G◦ can be calculated if the concentration

of the reactants and products is known:

∆G◦ = −R · T · ln(k) (3.2)

Depending on the reactants’ type and their concentration, the equlibrium constant

k can get one of the following values:

• k = 1/(CA + CB) for self-complementary oligonucleotides1;

• k = 4/(CA + CB) for non-self complementary molecules if CA = CB;

• k = 1/(CA + CB/2) for non-self complementary molecules if CA > CB .

1Short sequences (∼ 20 bases or less), which perfectly fold to themselves at the midpoint. For
example, the DNA oligonucleotide CGATAATCG is self-complementary since the first base can pair
with the last base, the second base can pair with the base before the last base etc.
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Melting temperature

From equations 3.1 and 3.2, we can determine the melting temperature Tm of different types

of molecules: (1) The melting temperature of double-stranded DNA or an RNA molecule

bound to a complementary molecule is defined as the temperature at which 50% of the

strands are in the double-helical state and 50% are in the unfolded state [45]; (2) The melting

temperature of a long RNA or single-stranded DNA molecule is the temperature at which

50% of the base pairs have been denatured, leading to molecules containing alternating

stems and denatured regions (loops) [64].

Tm =
∆H◦

∆S◦ −R · ln(k)
− 273.15 (3.3)

This formula gives the melting temperature in degrees Celsius and assumes an ionic

concentration [Na+] of 1M. Hence, it does not show the dependence of the melting temper-

ature on the ionic concentration. The following formula takes it into consideration [64]:

Tm =
∆H◦

∆S◦ −R · ln(k)
+ 16.6 · log10

[Na+]

1.0 + 0.7[Na+]
− 269.3 (3.4)

The standard free energy changes at 37◦C (∆G◦
37) and the standard enthalpy changes

∆H◦ were experimentally determined by Turner’s Lab for RNA [49], and by SantaLucia

Lab for DNA [45]. Parameters for RNA have been refined by Mathews et al. [33] mainly by

knowledge based methods. Using equation 3.1, one can determine the standard free energy

change at any temperature between 0◦C and 100◦C. Also, using equations 3.3 and 3.4 input

concentrations, and reactants type, one can determine the melting temperature of the given

molecule(s). Note that in the following sections, when we refer to free energy or energy, we

mean standard free energy change (∆G◦). Similarly, when we refer to enthalpy or entropy,

we mean standard enthalpy change ∆H◦ and standard entropy change ∆S◦.

3.2 Thermodynamic parameters

Thermodynamic parameters for RNA and DNA folding have been determined by differ-

ent methods such as optical melting methods [46, 67], absorbance melting curves, mi-

crocalorimetry [46] and knowledge-based methods using databases of known structures [33].

All parameters for RNA that we use have been published [16, 33, 49, 57, 58, 59, 65]. For

DNA, only parameters for stacked loops [45], single mismathes [1, 2, 3, 4, 37] and dangling

ends [7] have been published. However, for DNA we use the same model as for RNA, our

base of parameters containing unpublished results obtained by communication with John

SantaLucia Jr. [44]. In this section, we present all types of RNA parameters that we use

and their format. Other parameters exist, such as coaxial stacking2 [62, 63, 71], but are not

included in our model yet.

2Stacking interactions between adjacent helices.
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Figure 3.1: Secondary structure of 5S Ribosomal RNA of Staphylococcus aureus [21]. This
secondary structure, determined by comparative sequence analysis, contains “odd-pairs”,
marked by boxes: (C.U), (A.G), (G.G) and (C.C).

Watson-Crick base pairs, i.e. (C.G) and (A.U), are very important in RNA sec-

ondary structures, and thus, they have been studied extensively. The next most common

base pairs are wobble pairs, i.e. (G.U). This section presents the thermodynamic param-

eters determined by Turner’s Laboratory [57] and refined by Mathews et al. [33], which

considers Watson-Crick pairs and wobble pairs. NNTM assigns free energy changes to

loops rather than to base pairs [71]. The orientation of the base pairs matters, (C.G) be-

ing different from (G.C). Thus, six different base pairs are possible: (C.G), (G.C), (A.U),

(U.A), (G.U) and (U.G). So-called “odd pairs”3, between (A.A), (C.C), (G.G), (U.U),

(A.C), (A.G) and (U.C), exist (see Figure 3.2). A database of such pairs in known RNA

structures is available [36]; however, currently no or very few parameters are available to

predict them [18].

The free energy of a specific secondary structure is based on the NNTM, which simply

sums up the contributions of elementary motifs of the structure. Figure 3.2 shows a sequence

S and its predicted minimum free energy secondary structure R. Several elementary motifs

3Sometimes, these base pairs are called “non-canonical pairs”. But wobble pairs are also con-
sidered non-canonical pairs. Thus, to not create confusion, we call all possible pairs which are not
Watson-Crick, nor wobble, “odd pairs”.
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Figure 3.2: Secondary structure of an arbitrarily chosen RNA sequence. It contains all the elemen-

tary structures, marked by different labels.

are marked by different labels and will be used as examples, for each particular type of free

energy. In the following, we present the thermodynamic parameters for RNA, as determined

by Turner’s Laboratory [49, 57] and refined by Mathews et al. [33].

The thermodynamic parameters discussed in this section also contain the standard

enthalpy changes for all the situations which will be described in this section. Having the

standard enthalpy change and the standard free energy change at 37◦C for a particular

secondary structure, it is straightforward that, using Equation 3.1, we can calculate the

standard entropy change, the standard free energy change at any given temperature between

0◦C and 100◦C and the melting temperature.

Free energies for stacked loops

The table in Figure 3.3 shows the free energies of stacked loops whose closing pair is

(G.C). ∆G-Stack(a, b, x, y) denotes the general value for a stacked loop, where a, b, x, y ∈

{A,C,G,U}, and (a.b), (x.y) form pairs. The table shows ∆G-Stack(G,C,x,y), and the en-

ergies for stacked loops are always favourable (negative energies). Note that the values are

24



duplicated in these tables, since ∆G-Stack(a, b, x, y) = ∆G-Stack(y, x, b, a). Because there

are six possible base pairs for each pair, there are 6 × 6 = 36 possible stacked loops (with

duplicated values). “Odd pairs” energies are denoted by dashes, meaning that no pairing

between the corresponding bases is possible, hence the free energy of binding is considered

infinite. An example, showing an elementary structure of Figure 3.2, is given in (c).

y A C G U
x
A - - - -2.40
C - - -3.40 -
G - -3.30 - -1.50
U -2.20 - -2.50 -

(a)

(b)

(c)

Figure 3.3: (a) Example of a free energy table for stacked loops of the type shown in (b). (c) One

particular value from the table, where x = G and y = C.

Destabilizing energies by loop size

A free energy penalty (i.e. a positive free energy change) is associated with each hairpin

loop, internal loop or bulge, depending on the length of the loop (i.e. the number of free

bases between the closing pairs). The table in Figure 3.4 partially shows these parameters.

The functions are called ∆G-Length-Internal(l), where l is the length (or size) of the loop,

∆G-Length-Bulge(l) and ∆G-Length-Hairpin(l). Tabulated values exist for l ≤ 30. For

longer loops, a function described in section 3.3 is used. The dashes signify that no loop

formation of the corresponding type is possible, and thus, we consider their free energy to

be infinite.

Size Internal Bulge Hairpin
1 - 3.80 -
2 - 2.80 -
3 - 3.20 5.70
4 1.70 3.60 5.60
5 1.80 4.00 5.60
...

...
...

...
30 3.70 6.10 7.70

(a)

(b)

Figure 3.4: (a) Partial snapshot of the table showing the free energy penalties up to the size of the

hairpin loop or internal loop. (b) An example of an internal loop of length 4.
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Free energies for general hairpin loops

y A C G U
x
A -1.50 -1.50 -1.40 -1.80
C -1.00 -0.90 -2.90 -0.80
G -2.20 -2.00 -1.60 -1.10
U -1.70 -1.40 -1.80 -2.00

(a)

(b)

(c)

Figure 3.5: (a) A free energy table for hairpin loops of the type shown in (b). An example, where

x = G and y = A, is shown in (c).

The free energy of a hairpin loop depends on the closing pair and the neighbouring

free bases. They are sometimes called terminal mismatch free energies for hairpin loops.

We call this function ∆G-Hairpin-n(a, b, x, y), with (a.b). The table in Figure 3.5 shows

such energies for hairpins whose closing pair is (C.G), that is, the function is ∆G-Hairpin-

n(C,G, x, y). Note that they are negative energies, regardless of the free bases. There are

6× 16 = 96 different hairpins in this case.

Free energies for hairpin loops of length 4

It is believed that hairpins of size 4 are particularly stable. For this reason, bonus values

have been determined for such hairpins, as a function of the base pair and all the free bases

between them. These bonus values will be added to other thermodynamic parameters for

hairpins (see section 3.3). The function is called ∆G-Hairpin-4 (a, b, c, d, e, f), with (a.f),

and a few examples are illustrated in Figure 3.6. Similar bonus values for hairpin loops

of size 3 have been determined for DNA [45] (∆G-Hairpin-3 (a, b, c, d, e), with (a.e)). For

hairpins of size 4, 6× 44 = 1536 values are possible, but only 30 are included in the current

version of the parameters. For the hairpins not included in the table, no bonus is added.

Free energies for general internal loops

For internal loops, terminal mismatch free energies have been determined. They are a

function of a closing base pair and the neighbouring free bases: ∆G-Internal-n(a, b, x, y),

with (a.b). The function is applied to both exterior and interior base pairs. Note that for

the interior base pair, the order of the variables is reversed. Figure 3.7 shows the table for

∆G-Internal-n(C,G, x, y), a general internal loop of this type and an example. There are
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Sequence Energy
GGGGAC -3.00
GGUGAC -3.00

...
...

CGAAGG -2.50
CUACGG -2.50

...
...

CGAGAG -2.00
...

...
GUGAAC -1.50

UGGAAA -1.50
(a)

(b)

Figure 3.6: (a) Examples of bonus values for hairpin loops of size 4. (b) An example of such hairpin,

along with its associated bonus.

6 × 16 = 96 values in these tables. Particular tabulated values exist for internal loops of

size 2, 3 and 4, and will be detailed below.

y A C G U
x
A -0.00 -0.00 -1.10 -0.00
C -0.00 -0.00 -0.00 -0.00
G -1.10 -0.00 -0.00 -0.00
U -0.00 -0.00 -0.00 -0.70

(a)

(b)

(c)

Figure 3.7: (a) Table for internal loop terminal mismatches whose closing pair is (C,G). This type of

internal loop is shown in (b). (c) An example of an internal loop, where the two terminal mismatches

use values from the table in (a): x = G, y = A and x = A, y = G.

Free energies for symmetric internal loops of size 2

Symmetric internal loops of size 2 (one free base on each side) have been particularly studied,

and parameters have been determined for them. The function giving these values is ∆G-

Internal-2 (a, b,m, n, x, y), which depends on the two base pairs (a.b), (m.n) and the two

free bases x and y. The table in Figure 3.8 shows the parameters for internal loops whose

closing pairs are (C,G) and (C,G), i.e. ∆G-Internal-2 (C,G,C,G, x, y). This type and an
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y A C G U
x
A 0.40 0.30 -0.10 0.40
C -0.40 0.50 0.40 0.00
G 0.40 0.40 -1.70 0.40
U 0.40 0.50 0.40 -0.30

(a)

(b)

(c)

Figure 3.8: (a) Free energies for symmetric internal loops of size 2, of the type shown in (b). (c)

shows an example of such an internal loop, where x = G and y = A.

example are also shown. There are 6×6×16 = 576 parameters for this case. Note that these

values are duplicated, since ∆G-Internal-2 (a, b,m, n, x, y) = ∆G-Internal-2 (n,m, b, a, y, x).

Free energies for asymmetric internal loops of size 3

Asymmetric internal loops of size 3 are internal loops which have one free base on one side

and two free bases on the other side. The two tables in Figure 3.9 (a) and (d) show these

values for internal loops of types illustrated in part (b) and (e), respectively. The general

function is called ∆G-Internal-3 (a, b,m, n, x, y, z), with (a.b) and (m.n). Note that these

values are also applicable for the reverse situation, in which the two free bases appear closer

to the 5′ end. The figure shows two particular cases, with example for normal case and

the reverse case: (1) ∆G-Internal-3 (A,U,A,U, x, y, C). The example (c) uses x = C and

y = A. (2) ∆G-Internal-3 (C,G,G,C, x, y,G). The example (c) uses x = A and y = C.

There are 6× 6× 43 = 2304 parameters for this case.

Free energies for symmetric internal loops of size 4

Another special case of internal loops for which the thermodynamic parameters were tabu-

lated are symmetric internal loops of size 4, having two free bases on each side. Figure 3.10

shows the function which gives these values, ∆G-Internal-4 (a, b,m, n, v, w, x, y), with (a.b)

and (m.n). The table shows a partial snapshot of ∆G-Internal-4 (C,G,G,C, v, w, x, y). Part

(c) shows an example, where v = A, w = A, x = G and y = G. Note that the values in the

table are duplicated, and for the given example, both ∆G-Internal-4 (C,G,G,C,A,A,G,G)

and ∆G-Internal-4 (C,G,G,C,G,G,A,A) are valid. There are 6×6×44 = 9216 parameters

for symmetric internal loops of size 4.
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y A C G U
x
A 3.60 3.20 3.10 5.50
C 3.70 4.00 5.50 3.70
G 5.50 5.50 5.50 5.50
U 5.50 3.70 5.50 2.80

(a)

(b)

(c)

y A C G U
x
A 1.00 0.60 0.40 4.00
C 4.00 4.00 4.00 4.00
G 0.80 4.00 2.20 4.00
U 4.00 4.00 4.00 4.00

(d)

(e)

(f)

Figure 3.9: (a) Table with free energy parameters for asymmetric internal loops of size 3, for the

type shown in (b). (c) shows an example of such an internal loop, where x = C and y = A, along

with its free energy. (d) Table with free energy parameters for asymmetric internal loops of size 3,

for the type shown in (e). (f) shows an example of such an internal loop, where x = A and y = C.

Free energies for dangling ends

Dangling bases are free bases located in the immediate vicinity of a stem. They may have

a contribution to the stability of the structure. Figure 3.12 shows tables for ∆G-Dangle-

3’ (a, b, x), with (a.b), (the free dangling base is close to the 3′ end), where a = G and b = C

(part (a)), and ∆G-Dangle-5’ (a, b, x), with (a.b) (the dangling base is close to the 5 ′ end),

where a = C and b = G (part (b)). The figure contains two examples, one for the 3’ end:

x = U , and one for the 5’ end: x = C. There are 6 × 4 × 2 = 48 parameters for dangling

ends.

Miscellaneous free energy rules

Miscellaneous other parameters are used for multiloops, asymmetric internal loops, special

cases of hairpin loops, etc. Table 3.1 gives these parameters, together with their role and a
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xy AA AC AG AU CA . . . GG GU UA UC UG UU
vw
AA 1.30 1.20 0.30 2.00 1.60 . . . 1.00 -0.40 2.00 1.90 1.10 1.40
AC 1.60 1.50 0.60 2.00 2.00 . . . 1.40 -1.10 2.00 1.70 0.40 1.80
AG 0.30 0.20 -0.70 2.00 0.60 . . . 0.00 -0.60 2.00 1.30 0.90 1.30
AU 2.00 2.00 2.00 2.00 2.00 . . . 2.00 2.00 2.00 2.00 2.00 2.00
CA 1.20 1.10 0.20 2.00 1.50 . . . 0.90 -1.50 2.00 1.20 0.00 0.30

...
...

...
...

...
...

. . .
...

...
...

...
...

...
GG 1.00 0.90 0.00 2.00 1.40 . . . 0.80 -0.70 2.00 1.70 0.90 1.20
GU 1.10 0.00 0.90 2.00 0.40 . . . 0.90 -2.60 2.00 1.10 -1.10 1.10
UA 2.00 2.00 2.00 2.00 2.00 . . . 2.00 2.00 2.00 2.00 2.00 2.00
UC 1.90 1.20 1.30 2.00 1.70 . . . 1.70 -0.40 2.00 1.40 1.10 0.50
UG -0.40 -1.50 -0.60 2.00 -1.10 . . . -0.70 -4.20 2.00 -0.40 -2.60 -0.50
UU 1.40 0.30 1.30 2.00 0.80 . . . 1.20 -0.50 2.00 0.50 1.10 -0.40

(a)

(b)

(c)

Figure 3.10: (a) Partial snapshot of the table showing the free energy for symmetric internal loops

of size 4, of type shown in (b). (c) shows an example, where v = A, w = A, x = G and y = G.

conventional name. Two special types of hairpin loops need to be described here:

1. A GGG hairpin loop is a hairpin loop closed by si and sj (i < j) with si−2 = si−1 =

si = G and sj = U ;

2. A Poly-C hairpin loop is a hairpin loop where all the free bases are C: si+1 = . . . =

sj−1 = C.

Briefly, the parameters in Table 3.1 are used in the following situations: (1) is used for long

hairpins, internal loops or bulges; (2,3) are used for asymmetric internal loops; (4,5,6) are

used for multibranched loops; (7) is a penalty for stems which end in a base pair different

from (C.G); (8) is used for GGG hairpin loops; (9,10,11) give a bonus for Poly-C hairpins;

(12) is a penalty added to the secondary structure prediction of a pair of molecules, rather

than of one single molecule (see Section 3.5) and (13) decides on the calculation of grossly

asymmetric internal loops, with one side of length 1. More details about the cases in which

each of these parameters is used are given in Sections 3.3 and 3.5.
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x A C G U
-1.10 -0.40 -1.30 -0.60

(a)
(b)

(c)

x A C G U
-0.20 -0.30 -0.00 -0.00

(d)
(e)

(f)

Figure 3.11: (a) Free energies for 3’ dangling ends, of the type shown in (b). (c) shows an example

of a 5’ dangling end, where x = U . (d) Free energies for 5’ dangling ends, of type shown in (e). (f)

shows an example of a 5’ dangling end, where x = C.

No Role Name Value

1 Extrapolation for large loops for internal
loops, bulges or hairpin loops greater than 30

Len-Par 1.079

2 Asymmetric internal loops: the maximum cor-
rection

Asym-Max 3.00

3 Asymmetric internal loops: the Ninio array Asym-Par .50 .50 .50 .50
4 Multibranched loops - offset Multi-a 3.40
5 Multibranched loops - helix penalty Multi-b 0.40
6 Multibranched loops - free base penalty Multi-c 0.00
7 Penalty for non-GC terminal non-GC-terminal 0.50
8 Bonus for GGG hairpin bonusGGG -2.20
9 Poly-C hairpin slope C-Hairpin-1 0.30

10 Poly-C hairpin intercept C-Hairpin-2 1.60
11 Poly-C hairpin of 3 C-Hairpin-3 1.40
12 Intermolecular initiation free energy Intermol 4.10
13 GAIL Rule (Grossly Asymmetric Interior

Loop Rule) (on=1, off=0)
Gail-Rule 1

Table 3.1: Miscellaneous free energy rules.

3.3 Free energy calculation of a secondary structure

This section describes how to calculate the free energy of a secondary structure, using the

parameters described in the previous section. We must recall the reader the equations
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presented here are not our work, but are a detailed revision from the literature on free

energy calculation.

General functions

In the following, some general functions, used by calculations for different types of struc-

tures, are described.

Studies have shown the helices whose exterior pairs are not (C.G) are less stable.

The value Non-GC-terminal is meant to add a penalty to capture this destabilization. In

some references, the nomenclature of AU terminal penalty is used. Note that this penalty is

also added for wobble pairs. Thus, to avoid confusion, we call it Non-GC terminal penalty.

The function Non-GC-Penalty(a, b) is used, and it is calculated as follows:

Non-GC-Penalty(a, b) =

{

0 , if (a.b) is (C.G) or (G.C)

Non-GC-Terminal, otherwise

Penalties corresponding to the size of hairpin loops and internal loops (including

bulges), are considered. They are calculated as follows:

∆G-Length-H(l) =

{

∆G-Length-Hairpin(l) , l ≤ 30

∆G-Length-Hairpin(30) + Len-Par× log(l/30), l > 30

l denotes the length of the hairpin, i.e. the number of free bases. The length penalties

for bulges and internal loops can be calculated similarly:

∆G-Length-B(l) =

{

∆G-Length-Bulge(l) , l ≤ 30

∆G-Length-Bulge(30) + Len-Par× log(l/30), l > 30

∆G-Length-I(l) =

{

∆G-Length-Internal(l) , l ≤ 30

∆G-Length-Internal(30) + Len-Par× log(l/30), l > 30

Dangling bases can add some stabilization, up to the neighbours involved. A function

which we call ∆G-Dangle (S, i1, j1, i2, j2) is used mainly in multi-loops and in multi-domain

structures and is calculated as follows (see Figure 3.12):

Figure 3.12: Dangling bases between two branches of a multi-loop or multi-domain structure.

∆G-Dangle(S, i1, j1, i2, j2) =










∆G-Dangle-3’(sj1 , si1 , sj1+1) + ∆G-Dangle-5’(sj2 , si2 , si2−1) , i1 + 1 < i2 − 1

min(∆G-Dangle-3’(sj1 , si1 , sj1+1),∆G-Dangle-5’(sj2 , si2 , si2−1)), i1 + 1 = i2 − 1

0 , i1 + 1 > i2 − 1
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Free energy calculation for stacked loops

Given the sequence S, the free energy of a stacked loop 5′ − sisi+1 . . . sj−1sj − 3′, with

(si.sj), (si+1, sj−1) (Figure 3.13), is given by ∆G-S (S, i, j) = ∆G-Stack(si, sj , si+1, sj−1).

Figure 3.13: A general stacked loop structure.

Free energy calculation for hairpin loops

Procedure 1 describes the calculation of the hairpin loop free energy for sequence S, where

the hairpin closing pair is (si,sj). (Figure 3.14).

Figure 3.14: A general hairpin loop.

The function is called ∆G-H (S, i, j). Hairpins having length shorter than three are

not accepted by this model. The free energy of the hairpins of size greater than or equal to

three are made of four quantities: ∆G1, ∆G2, ∆G3 and ∆G4:

• ∆G1 corresponds to the penalty associated to the hairpin length.

• For hairpins of size 3, ∆G2 contains the value of the non-GC penalty function. For

hairpins of size greater than 3, ∆G2 is the terminal mismatch value, which includes

the non-GC penalty (and thus, it does not have to be added separately).

• If the hairpin is of size 3 or 4, and a bonus for it was tabulated (∆G-Hairpin-3 or

∆G-Hairpin-4 ), ∆G3 contains this bonus.

• If the hairpin is a special case, such as GGG hairpin or Poly-C hairpin, then ∆G4

contains this value. For Poly-C hairpins, this is a function of the hairpin length.

Free energy calculation for internal loops

As mentioned before, we consider that bulge loops are a special case of internal loops. The

length of an internal loop is given by the number of free bases between the two closing base

pairs, which we denote with (i.j) and (i′.j′). Let us call l1 the length of one side of the

33



Hairpin-Loop-Free-Energy Procedure

input: sequence S, i, j;
output: free energy ∆G;

procedure Compute ∆G-H
∆G1 := 0; ∆G2 := 0; ∆G3 := 0; ∆G4 := 0;
l := j − i− 1;
if (l < 3)

∆G := infinity;
else

∆G1 := ∆G-Length-H (l);
if (l = 3)

∆G2 := Non-GC-penalty(si, sj);
∆G3 := ∆G-Hairpin-3 (si , si+1, si+2, sj−1, sj);

else

∆G2 := ∆G-Hairpin-n(si, sj , si+1, sj−1);
if (l = 4)

∆G3 := ∆G-Hairpin-4 (si, si+1, si+2, sj−2, sj−1, sj);
endif;

endif;
if (si−2 = si−1 = si =′ G′ and sj =′ U ′)

∆G4 := bonusGGG ;
else if (si+1 = . . . = sj−1 =′ C ′)

if (l = 3)
∆G4 := C-Hairpin-3 ;

else

∆G4 := C-Hairpin-2 + C-Hairpin-1×l;
endif;

endif;
∆G := ∆G1 + ∆G2 + ∆G3 + ∆G4;

endif;
return ∆G;

end procedure ∆G-H.

Procedure 1: Outline of the calculation for hairpin loop free energy.
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loop, i.e. l1 = i′ − i− 1. Then, l2 will be the length of the other side: l2 = j − j′ − 1. The

length of the loop will be l = l1 + l2.

If l1 6= l2, then we say the internal loop is asymmetric. Studies have shown that asym-

metric internal loops are less stable than symmetric loops. The function ∆G-Asymmetry(l1, l2)

gives this penalty:

∆G-Asymmetry(l1, l2) = min

{

Asym-Max

|l1 − l2| ×Asym-Par[min(2,min(l1, l2))− 1]

Procedure 2 shows the calculation of the function ∆G-I (S, i, j, i′ , j′), which gives the

free energy of an internal loop or bulge closed by (si, sj) and (si′ , sj′) (see Figure 3.15).

Figure 3.15: Example of a general internal-loop structure.

If it is a bulge of size 1, it is considered as a stacked loop. If the size is greater than

1, than only the non-GC penalties for both pairs are added. The function of the length of

the bulge is added, and this concludes the bulge case. If it is an internal loop of special

case (i.e. of size 2,3 or 4), for which there are tabulated values, then its free energy is given

by the corresponding function alone. For any other type of internal loop, four quantities:

∆G1, ∆G2, ∆G3 and ∆G4 are added:

• ∆G1 is the penalty dependant of length.

• ∆G2 and ∆G3 are the terminal mismatches corresponding to each of the two closing

pairs.

• ∆G4 is the assymetry penalty, calculated as described above.

Free energy calculation for multibranched loops

Consider a multibranched loop with k + 1 branches, and whose closing pairs are (si, sj),

(si1 , sj1), . . . (sik , sjk
) (see figure 3.16).

The multiloops are calculated using the following formula:

∆G-M(S, i, j, i1, j1, . . . , ik, jk) =

Multi-a +

Multi-b× (k + 1) +
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Internal-Loop-Free-Energy Procedure

input: sequence S, i, j, i′, j′;
output: free energy ∆G;

procedure Compute ∆G-I
∆G1 := 0; ∆G2 := 0; ∆G3 := 0; ∆G4 := 0;
l1 := i′ − i− 1; l2 := j − j′ − 1; l = l1 + l2
if (l1 = 0 or l2 = 0)

∆G := ∆G-Length-B(l);
if (l1 + l2 = 1)

∆G := ∆G + ∆G-Stack(si, sj , si′ , sj′)
else

∆G := ∆G + Non-GC-Penalty(si, sj) + Non-GC-Penalty(si′ , sj′);
endif;

else if (l1 = 1 and l2 = 1)
∆G := ∆G-Internal-2 (si, sj , si′ , sj′ , si+1, sj−1);

else if (l1 = 1 and l2 = 2)
∆G := ∆G-Internal-3 (si, sj , si′ , sj′ , si+1, sj−1, sj′+1);

else if (l1 = 2 and l2 = 1)
∆G := ∆G-Internal-3 (sj′ , si′ , sj , si, sj−1, si′−1, si+1);

else if (l1 = 2 and l2 = 2)
∆G := ∆G-Internal-4 (si, sj , si′ , sj′ , si+1, sj−1, si′−1, sj′+1);

else

∆G1 := ∆G-Length-I (l);
if ((l1 = 1 or l2 = 1) and Gail-Rule = 1)

∆G2 := ∆G-Internal-n(si, sj ,
′ A′,′ A′);

∆G3 := ∆G-Internal-n(si′ , sj′ ,
′ A′,′ A′);

else

∆G2 := ∆G-Internal-n(si, sj , si+1, sj−1);
∆G3 := ∆G-Internal-n(sj′ , si′ , sj′+1, si′−1);

endif;
∆G4 := ∆G-Asymmetry (l1, l2);
∆G := ∆G1 + ∆G2 + ∆G3 + ∆G4;

endif;
return ∆G;

end procedure ∆G-I.

Procedure 2: Outline of the calculation for internal loop free energy.
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Figure 3.16: Example of a general multi-loop structure, with k + 1 branches.

Multi-c× ((i1 − i− 1) +
k−1
∑

h=1

(ih+1 − jh − 1) + (j − jk − 1)) +

Non-GC-penalty(si, sj) +
k

∑

h=1

Non-GC-penalty(sih , sjh
) +

∆G-Dangle(S, j, i, i1, j1) +
k−1
∑

h=1

∆G-Dangle(S, ih, jh, ih+1, jh+1) +

∆G-Dangle(S, ik, jk, j, i);

First, a penalty for starting a new multiloop is added (Multi-a). For each branch of

the multiloop, including the exterior pair, the value Multi-b is added. Also, for each free

base, the value Multi-c is added. For each closing pair, the non-GC penalty is considered,

as well as the dangling base contribution, given by the function ∆G-Dangle defined above.

Free energy calculation for multi-domain structures

For multi-domain structures, the dangling base energies are considered. The following

formula shows the contribution of dangling bases for k domains, where (si1 .sj1), ... , (sik .sjk
)

are the closing pairs of each domain. The dangling bases located between the domains are

calculated in a similar way with the multiloops. If the domain closest to the 5’ end has a

dangling base, than its contribution is added. Similar addition is performed if the domain

closest to the 3’ end has a dangling base.

Figure 3.17: Example of a general multidomain structure, with k domains.

∆G-D(S, i1, j1, . . . , ik, jk) =
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k
∑

h=1

Non-GC-penalty(sih , sjh
) +

∆G-Dangle-5’(sj1 , si1 , si1−1) +
k−1
∑

h=1

∆G-Dangle(S, ih, jh, ih+1, jh+1) +

∆G-Dangle-3’(sjk
, sik , sjk+1);

Note that if si1 is the first base of the sequence, then the dangling energy term

∆G-Dangle-5’(sj1 , si1 , si1−1) is replaced by 0. Similarly, if sjk
is the last base of the sequence,

the term ∆G-Dangle-3’(sjk
, sik , sjk+1) is replaced by 0.

Once the free energy of the elementary structures are calculated, the free energy of

a sequence S with a given secondary structure R, ∆G(S,R), is calculated by the simple

addition of the free energies of all elementary structures. The following section gives an

example of such calculation.

3.4 Example of free energy calculation

Figure 3.18 contains the same sequence S and secondary structure R as in Figure 3.2.

The figure contains the base positions (starting from 1), and 6 different substructures are

delimited.

The free energy calculation for each section marked in the figure is calculated as

follows:

∆G(S, R) =

(1) ∆G-D(S, 3, 97, 102, 122) +

(2) ∆G-S(S, 3, 97) + ∆G-S(S, 4, 96) +

(3) ∆G-M(S, 5, 95, 7, 56, 60, 92)+

(4) ∆G-S(S, 7, 56) + ∆G-S(S, 8, 55) + ∆G-S(S, 9, 54) +

∆G-I(S, 10, 53, 14, 48) + . . . + ∆G-H(S, 29, 34) +

(5) ∆G-S(S, 60, 92) + ∆G-I(S, 61, 91, 62, 89) + ∆G-S(S, 62, 89) +

∆G-I(S, 63, 88, 66, 86) + ∆G-S(S, 66, 86) + ∆G-S(S, 67, 85) +

∆G-I(S, 68, 84, 71, 81) + ∆G-S(S, 71, 81) + ∆G-S(S, 72, 80) +

∆G-H(S, 73, 79) +

(6) ∆G-S(S, 102, 122) + . . . + ∆G-H(S, 109, 114) =

(1) [Non-GC-Penalty(G, C) + Non-GC-Penalty(C, G) +

∆G-Dangle-5’(C, G, C) + ∆G-Dangle-3’(C, G, A) +

∆G-Dangle-5’(G, C, C) + ∆G-Dangle-3’(G, C, U)] +

(2) [∆G-Stack(G, C, G, C)] + [∆G-Stack(G, C, G, C)] +
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Figure 3.18: Sequence and secondary structure, which will be used to show step by step how the

free energy change is calculated.

(3) [Multi-a + 3 ·Multi-b + 6 ·Multi-c +

Non-GC-Penalty(G, C) + Non-GC-Penalty(G, C) + Non-GC-Penalty(C, G) +

min(∆G-Dangle-3’(G,C,G),∆G-Dangle-5’(C,G,G)) +

∆G-Dangle-3’(C,G,A) + ∆G-Dangle-5’(G,C,A) +

∆G-Dangle-3’(G,C,G) + ∆G-Dangle-5’(G,C,A)] +

(4) [∆G-Stack(G, C, G, C)] + [∆G-Stack(G, C, G, C)] + [∆G-Stack(G, C, C, G)] +

[∆G-Length-Internal(7) + ∆G-Internal-n(C, G, G, A) +

∆G-Internal-n(C, G, A, G) +

min(Asym-Max, |3− 4|× Asym-Par[min(2, min(3, 4))− 1])] + . . . +

[∆G-Length-Hairpin(4) + ∆G-Hairpin-n(G, C, U, A) +

∆G-Hairpin-4(G, U, G, A, A, C)] +

(5) [∆G-Stack(C, G, U, A)] + [∆G-Length-Bulge(1) + ∆G-Stack(U, A, C, G)] +

[∆G-Stack(C, G, C, G)] + [∆G-Internal-3(C, G, G, C, A, C, G)] +

[∆G-Stack(G, C, G, C)] + [∆G-Stack(G, C, C, G)] +
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[∆G-Internal-4(C, G, G, C, A, A, G, G)] +

[∆G-Stack(G, C, G, C)] + [∆G-Stack(G, C, C, G)] +

[∆G-Length-Hairpin(5) + ∆G-Hairpin-n(C, G, G, A)] +

(6) [∆G-Stack(C, G, G, C)] + . . . + [∆G-Length-Hairpin(4) +

∆G-Hairpin-n(A, U, C, U) + ∆G-Hairpin-4(A, C, A, C, U, U)] =

(1) [0 + 0− 0.30− 1.70− 0.30− 0.60] +

(2) [−3.30] + [−3.30] +

(3) [3.4 + 3 · 0.40 + 6 · 0.00 + 0 + 0 + 0− 1.30− 0.00− 1.70− 0.50− 1.30− 0.50] +

(4) [−3.30] + [−3.30] + [−3.40] + [2.20− 1.10− 1.10 + 0.50] + . . . +

[5.60− 1.90− 1.50] +

(5) [−2.10] + [3.80− 2.40] + [−3.30] + [0.60] + [−3.30] + [−3.40] +

[1.00] + [−3.30] + [−3.40] + [5.60− 2.20] +

(6) [−2.40] + . . . + [5.60− 0.20− 0.00] =

(1) −2.90 +

(2) −3.30− 3.30 +

(3) −0.70 +

(4) −3.30− 3.30− 3.40 + 0.50 + . . . + 2.20 +

(5) −2.10 + 1.40− 3.30 + 0.60− 3.30− 3.40 + 1.00− 3.30− 3.40 + 3.40 +

(6) −2.40 + . . . + 5.40 =

−45.50 kcal/mol

The online version of the mfold program [35], which calculates the minimum free

energy secondary structure of an RNA sequence, can be used to verify that the free energy

values for each elementary structures in this example are consistent with mfold.

3.5 Free energy calculation for pairs of molecules

The binding free energy calculation for a pair of RNA or DNA molecules is very similar to

the free energy calculation for one single molecule. A penalty for Intermolecular initiation

is added, i.e. the value Intermol from Table 3.1. Figure 3.19 shows a simple example of

two short RNA molecules which bind together.

Note that when talking about pairs of RNA or DNA molecules, three situations are

possible: (1) both sequences are RNA molecules; (2) both sequences are DNA molecules

and (3) one sequence is RNA and one is DNA. Currently, in our algorithms we cover only

the first two cases that we use for folding of single molecules, with the same parameters for
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Figure 3.19: Simple example of a pair of RNA molecules and the secondary structure of folding.

RNA and DNA, respectively, Parameters for case 3 exist [52] and they can be incorporated

in the same model.

The elementary structures that can be formed are the same as for single molecules,

with the difference that stacked loops, hairpin loops, internal loops and multi-loops may

have some special cases. Let S1 and S2 denote the two input RNA or DNA sequences,

and let R denote the secondary structure of their binding. Let P = p1p2 . . . pn denote the

sequence obtained by concatenating S1 and S2, where n = length(S1)+ length(S2). Let b be

the index of the last nucleotide in sequence S1. b equals length(S1) (if we start from index

1), and we say that b is the boundary between S1 and S2.

Figure 3.20 shows the equivalent of Figure 3.12 for a pair of sequences, where the

boundary falls between the two pairs.

Figure 3.20: The boundary between molecules creates special types of structures.

The dangling energy formula for pairs becomes:

∆G-Danglep(P, i1, j1, i2, j2, b) =

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∆G-Dangle-3’(pj1 , pi1 , pj1+1)+

∆G-Dangle-5’(pj2 , pi2 , pi2−1) , if (b > i1 and b + 1 < i2)

min(∆G-Dangle-3’(pj1 , pi1 , pj1+1),

∆G-Dangle-5’(pj2 , pi2 , pi2−1)) , if (i1 + 1 = i2 − 1 and b > i2)

∆G-Dangle-3’(pj1 , pi1 , pj1+1) , if (b + 1 = i2)

∆G-Dangle-5’(pj2 , pi2 , pi2−1) , if (b = i1)

0 , if (i1 + 1 > i2 − 1)

Note that if pj1+1 does not exist or is not a free base, the third term will be replaced

by 0. The same about the fourth term, if pi2−1 does not exist or is not a free base.

∆G-Danglep will be used for the special types of structures, i.e. when the boundary b

breaks the elementary structure and basically transforms it into a multi-domain.
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Figure 3.21 shows the special type of stacked loop, the equivalent of Figure 3.13 for

pairs, where the boundary breaks the loop.

Figure 3.21: Example of a special stacked loop structure in a duplex of molecules.

Thus, the general formula for calculating the stacked loop free energy becomes:

∆G-Sp(P, i, j, b) =

{

Intermol , if b = i or b + 1 = j

∆G-S(P, i, j), otherwise

Similarly, Figure 3.22 shows a special type of hairpin loop, broken by the boundary

between the two molecules.

Figure 3.22: Example of a special hairpin loop structure in a duplex of molecules.

If the break between the two molecules is between i and j, then we consider this is

a special type of hairpin loop. Thus, the free energy of the hairpin loops for duplexes is

calculated as follows:

∆G-Hp(P, i, j, b) =










∆G-Danglep(P, i, j, i, j, l) + Intermol+

Non-GC-Penalty(pi, pj) , if i ≤ b < j

∆G-H(P, i, j) , otherwise

The special type of internal loop is shown in Figure 3.23, the equivalent of Fig-

ure 3.15.

The general formula for internal loops for duplexes becomes:

∆G-Ip(P, i, j, i′, j′, b) =











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







∆G-Danglep(P, i, j, i′, j′, b)+

∆G-Danglep(P, j′, i′, j, i, b) + Intermol+ , if (i ≤ b < i′)

Non-GC-Penalty(pi, pj) + Non-GC-Penalty(pi′ , pj′) or (j ≤ b < j ′)

∆G-I(P, i, j, i′, j′) , otherwise
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Figure 3.23: Example of a special internal loop structure in a duplex of molecules.

Finally, multi-loops can also be broken by the boundary. Figure 3.24 shows this

special type, and the formula to calculate multi-loops for duplexes follows.

Figure 3.24: Example of a special multi-loop structure in a duplex of molecules.

∆G-Mp(P, i, j, i1, j1, . . . , ik, jk, b) =

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∆G-Danglep(P, j, i, i1, j1, b)+ , if (i ≤ b < i1)
∑

1≤h<k−1 ∆G-Danglep(P, ih, jh, ih+1, jh+1, b)+ or (j1 ≤< i2) . . .

∆G-Danglep(P, ik, jk, j, i, b) + Intermol+ or (jk−1 ≤ b < ik)

Non-GC-Penalty(pi, pj)+ or (jk ≤ b < j)
∑

1≤h≤k Non-GC-Penalty(pih , pjh
)

∆G-M(P, i, j, i′, j′) , otherwise

In addition, for self-complementary oligonucleotides, a symmetry correction is added.

This is fixed at 0.43 kcal/mol for the standard free energy change at 37◦C, and at -1.4 eu

for the standard entropy, for both RNA [67] and DNA [37, 45].

3.6 Discussion and limitations of the current model

In section 3.2, we showed there are 36 (stacked loops) + (27+30+28) (size of loop) +

96 (general hairpin loops) + 30 (hairpin loops of size 4) + 96 (general internal loops) +

576 (internal loops of size 2) + 2304 (internal loops of size 3) + 9216 (internal loops of

size 4) + 48 (dangling ends) + 16 (miscellaneous energies) = 12,503 parameters, including
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duplicates. If we exclude duplicates, there are 7589 unique parameters. This seems to be a

very big number, and the implementation of any algorithm using the NNTM is complicated.

However, many situations are highly approximated, especially the calculation of multi-loop

structures. No tertiary interactions are included in the model, no “odd pair” binding, no

pseudoknotted structures and no interactions with ions are considered.

The accuracy of secondary structure prediction for biological RNA molecules will

be discussed in section 4.4.3. While for some short molecules, the accuracy is up to 100%,

for some other, more complicated molecules, the accuracy is as low as 10%. This poor

prediction is partly due to the simplified or inexact model, partly to the algorithm, which

is simplified for time complexity reasons.

However, researchers have worked for years to create the NNTM model and to

determine all the current parameters. Whether a better set or model can be determined to

better approximate secondary structure formation of natural RNA or single-stranded DNA

is an open problem.
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Chapter 4

SimFold

This chapter describes the dynamic programming algorithm for secondary structure pre-

diction of an RNA molecule. A thorough understanding of this algorithm is necessary in

order to be able to extend it for more complicated tasks, which are the target of this the-

sis: secondary structure prediction of a pair of molecules, and of a combinatorial set of

molecules.

We define the minimum free energy (MFE) problem of secondary structure prediction

of an RNA molecule as follows: given an RNA sequence S and a thermodynamic model M ,

find the pseudoknot-free secondary structure R with the minimum free energy change under

the model M , in which S can fold. A dynamic programming algorithm for this problem,

based on a thermodynamic model M , as described in Chapter 3, has been created by Zuker

and Steigler [72], and has been implemented within a number of software packages such as

mfold [35] and RNAfold from the Vienna RNA package [61]. We implemented it as well,

under the name of SimFold, using the model described in Chapter 3. This implementation,

although not new, was necessary for us to fully understand all the different cases of the

algorithm and of the model. Moreover, we needed to implement it in such a way, that it

can be easily extended to PairFold and CombFold.

In nature, RNA folding is not simple. Many RNA sequences fold to structures

which contain pseudoknots, interactions with ions, other tertiary interactions etc. Moreover,

there is no guarantee they will fold into the minimum free energy secondary structure.

Approaches to extensions of the MFE problem, for pseudoknot prediction and for prediction

of suboptimal structures (i.e. which have a free energy greater than the MFE) exist. In

this chapter and throughout this thesis, only the MFE problem will be considered.

A detailed description of the Zuker and Stiegler’s [72] algorithm underlying SimFold

is given in the first section of this chapter. A theoretical analysis of the time and space

complexity is discussed in Section 2 and some implementation details are given in Section

3. An empirical evaluation of SimFold performance is detailed in Section 4. This shows

that SimFold is reliable, and correctly implements Zuker and Stiegler’s algorithm, being

comparable with mfold and RNAfold.

45



4.1 Dynamic programming algorithm

The core of the dynamic programming algorithm for RNA secondary structure predic-

tion [72], lies in several recurrence relations, described below. We want to recall the reader

that this is not our work, but is the description of Zuker and Stiegler’s [72] algorithm1

Arrays

The following arrays will be used to calculate the minimum free energy of a sequence and

its associated secondary structure:

• W (j) denotes the free energy change of the first j nucleotides of the sequence S:

s1s2 . . . sj. Consequently, W (n) contains the minimum free energy change of the

entire sequence S. This array is used to determine multi-domain loops;

• V (i, j) is the minimum free energy of the sequence si . . . sj , assuming that (si.sj) is a

base pair;

• H(i, j) is the free energy of the sequence si . . . sj, assuming that (si.sj) closes a hairpin

loop;

• S(i, j) is the free energy of the sequence si . . . sj, assuming that (si.sj) closes a stacked

loop;

• V BI(i, j) is the free energy of the sequence si . . . sj, assuming that (si.sj) closes an

internal loop;

• V M(i, j) is the free energy of the sequence si . . . sj, assuming that (si.sj) closes a

multibranched loop;

• WM(i, j) is used to compute the array V M and will be described in detail later in

this chapter.

Recurrence relations

The values of the seven aforementioned arrays are computed by recurrence relations, which

are interdependent.

The recurrence relation for W (j), as given in [71], is:

W (j) =

{

0 , for j = 0

min1≤i≤j(V (i, j) + W (i− 1)), for j > 0

If the chosen most favourable i is less than j, then we have a multi-domain structure.

Otherwise, if i equals j, we have one domain. Recall that for multi-domain structures, the

1The notation is partially modified comparing to the original paper, in order to keep this thesis
consistent.
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dangling energies and the non-GC-penalties are added. Thus, a complete version of the

recurrence relation for W (j), case j > 0 is:

W (j) = min
1≤i<j


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


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W (j − 1)

V (i, j) + Non-GC-penalty(si, sj) + W (i− 1),

V (i + 1, j) + Non-GC-penalty(si+1, sj) + ∆G-Dangle-3’(sj , si+1, si) + W (i− 1),

V (i, j − 1) + Non-GC-penalty(si, sj−1) + ∆G-Dangle-5’(sj−1, si, sj) + W (i− 1),

V (i + 1, j − 1) + Non-GC-penalty(si+1, sj−1) + ∆G-Dangle-3’(sj−1, si+1, si)+

∆G-Dangle-5’(sj−1, si+1, sj) + W (i− 1)

The optimal free energy for si . . . sj, V (i, j), is given by the most favourable struc-

ture amongst hairpin loop, stacked loop, internal loop and multi-loop. The calculation is

performed using the following formula:

V (i, j) =

{

+∞ , for i ≥ j

min(H(i, j), S(i, j), V BI(i, j), V M(i, j)), for i < j

To make connection to the equations described in Chapter 3, first note that the

following two equations are true:

H(i, j) = ∆G-H(S, i, j)

S(i, j) = ∆G-S(S, i, j) + V (i + 1, j − 1)

The equation for calculating the free energy of an internal loop closed by the external

pair (si.sj) must find the optimal internal pair (si′ .sj′), by searching all possible internal

pairs:

V BI(i, j) = min
i<i′<j′<j

(∆G-I(S, i, j, i′, j′) + V (i′, j′))

The computation of multi-loops requires the computation of another array: WM .

WM(i, j) gives the optimal free energy of the sequence si . . . sj, assuming that si and sj

belong to a multibranched loop (i.e. free bases or a closing pair). WM is calculated as

follows:

WM(i, i) = Multi-c

WM(i, j) = min

{

V (i, j) + Multi-b

mini≤h<j(WM(i, h) + WM(h + 1, j))
, for i < j
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WM(i, i) corresponds to the situation when si is a free base. The first term of

WM(i, j) denotes the situation when (si.sj) forms an internal base pair, thus defining one

of the k branches. The second term appears when si and sj are not paired to each other

and the minimum free energy is given by the minimum partition of the sequence into two

contiguous subsequences.

Using the WM array, the minimum free energy of a multi-loop is calculated as

follows:

V M(i, j) = min
i<h<j−1

(WM(i + 1, h) + WM(h + 1, j − 1) + Multi-a)

The same as for multi-domains, the equations above for calculating WM and V M

are not complete, since they do not capture the dangling energy contributions, nor the

non-GC-penalties. The following is a complete version of calculating WM(i, j), for i < j:

WM(i, j) = min

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V (i, j) + Non-GC-penalty(si, sj) + Multi-b;

V (i + 1, j) + Non-GC-penalty(si+1, sj) + ∆G-Dangle-3’(sj , si+1, si)+

Multi-b + Multi-c;

V (i, j − 1) + Non-GC-penalty(si, sj−1) + ∆G-Dangle-5’(sj−1, si, sj)+

Multi-b + Multi-c;

V (i + 1, j − 1) + Non-GC-penalty(si+1, sj−1) + ∆G-Dangle-3’(sj−1, si+1, si)+

∆G-Dangle-5’(sj−1, si+1, sj) + Multi-b + 2×Multi-c;

WM(i + 1, j) + Multi-c;

WM(i, j − 1) + Multi-c;

mini≤h<j(WM(i, h) + WM(h + 1, j)).

The seven branches correspond to the following situations, respectively:

1. WM(i, j) contains one branch, whose closing pair is (si.sj);

2. One branch, whose closing pair is (si+1.sj), and si is a free base;

3. One branch, whose closing pair is (si.sj−1), and sj is a free base;

4. One branch, whose closing pair is (si+1.sj−1), and si, sj are free bases;

5. WM(i, j) has the same branch(es) as WM(i + 1, j) and si is a free base;

6. WM(i, j) has the same branch(es) as WM(i, j − 1) and sj is a free base;

7. The best h is chosen, and WM(i, j) has at least two branches: the branch(es) of

WM(i, h) and the branch(es) of WM(h + 1, j).
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The contributions of the dangling bases near the external closing pair of the multi-

loop must be captured in the calculation of V M(i, j). At the end, the offset, helix penalty

and non-GC-penalty are added:

V M(i, j) = min

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WM(i + 1, j − 1),

WM(i + 2, j − 1) + ∆G-Dangle-3’(si, sj , si+1) + Multi-c,

WM(i + 1, j − 2) + ∆G-Dangle-5’(si, sj , sj−1) + Multi-c,

WM(i + 2, j − 2) + ∆G-Dangle-3’(si, sj , si+1)+

∆G-Dangle-5’(si, sj , sj−1) + 2×Multi-c

V M(i, j) = V M(i, j) + Multi-a + Multi-b + Non-GC-penalty(si, sj).

Note that, since the sequence partitioning into two contiguous subsequences is done

in the calculation of WM , there is no need to do it again here. The first branch captures

the situation when there is no free base near the (si.sj) pair, the second branch - when si+1

is a free base, the third branch - when sj−1 is a free base, and the fourth branch - when

both of them are free bases.

4.2 Implementation

To be able to backtrack and extract the minimum free energy secondary structure, the

arrays W , V and WM will store not only the free energy values, but also some other

information. Let Wds, Vds and WMds denote the data structures associated with each of

the arrays W , V and WM . Wds(j) contains the minimum free energy for the sequence

s0 . . . sj , the number of branches (num branches) of this multi-domain, the closing pair of

the last domain (last domain), i.e. with the greatest base indexes and the righmost index

of the next domain (next domain i). Vds(i, j) contains the free energy, the optimal type

(HAIRPIN LOOP, STACKED LOOP, INTERNAL LOOP or MULTI LOOP) for the pair

(si.sj) and details about where the internal branches for internal loops and multi-loops are

located, in case (si.sj) closes such an elementary structure. Finally, WMds contains free

energy of the multi-loop fragment and information which help to reconstitute the multi-loop

branches completely.

Procedure 3 shows a pseudocode of the dynamic programming algorithm, as imple-

mented in SimFold. The procedure Compute-WM calculates the WMds array, according to

the complete equation of WM above. Compute-V calculates the optimal structure, using

the equation for V , and stores it in the array Vds. After this array is filled in for all i’s and

j’s, the procedure Compute-W calculates the multi-domain structures using the complete

equation for W , and fills the array Wds. The energy stored in W (n) will be the minimum

free energy of folding for sequence S. Using the information stored in the Wds and Vds data
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SimFold Procedure

input: RNA or DNA sequence S of length n;
output: minimum free energy ∆G, secondary structure R;

procedure SimFold
for (j := 1 to n)

for (i := j − 1 down to 1)
WMds(i, j) := Compute-WM(i,j);

end for;
for (i := 1 to j − 1)

Vds(i, j) := Compute-V(i,j);
end for;

end for;
for (j := 2 to n)

Wds(j) := Compute-W(j);
end for;
∆G := Wds(n).free energy;
i := n;
while (i > 0 and Wds(i).num branches > 0)

(id, jd) := Wds(i).last domain;
R := SimFold-Backtrack (id, jd, Vds, Wds);
i := Wds(i).next domain i;

end while;
return (∆G, R);

end procedure SimFold.

Procedure 3: Pseudocode for the SimFold algorithm.

structures, now we can backtrack and build the minimum free energy secondary structure

R. This is done in the procedure Backtrack, which is detailed in Procedure 4.

Procedure SimFold-Backtrack is a recursive function which advances one elementary

structure in each step, using the information stored in Vds and Wds data structures. It starts

from the closing pair of a domain, e.g. (si.sj), and stops when j > i. It checks which type

of elementary structure the pair (si.sj) is closing, it saves the partial secondary structure

in R, and then, it recursively calls itself on the internal branches of the structure. If it was

a hairpin loop, than there is no internal branch, and the function returns.

The SimFold program is implemented in C++ and a library that contains the func-

tion SimFold is provided. The input is the given nucleic acid sequence and the MFE sec-

ondary structure, in dot-parenthesis format, is returned, together with the minimum free

energy in kcal/mol. We have also implemented a function which calculates the free energy

of a given sequence S, folded in a specific secondary structure R. This function, called

FreeEnergy(S,R,M), where M is the model under consideration, is important for evaluat-

ing the stability of a sequence under some conformation or compare the stability of different

conformations. Also, functions to calculate enthalpy, entropy and melting temperature are
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SimFold-Backtrack Procedure

input: Indexes i, j, data structures Vds, Wds;
output: Partially filled secondary structure R;

procedure SimFold-Backtrack
if (i > j)

return (∅);
else if (Vds(i, j).type = HAIRPIN LOOP)

Save-Structure (R);
return (R);

else if (Vds(i, j).type = STACKED LOOP)
Save-Structure (R);
return SimFold-Backtrack (i + 1, j − 1, Vds, Wds);

else if (Vds(i, j).type = INTERNAL LOOP)
Save-Structure (R);
return SimFold-Backtrack (Vds(i, j).i

′, Vds(i, j).j
′, Vds, Wds);

else if (Vds(i, j).type = MULTI LOOP)
Save-Structure (R);
for each branch B

return SimFold-Backtrack (B.i, B.j, Vds, Wds);
end for;

end if;
end procedure SimFold-Backtrack.

Procedure 4: Pseudocode for the SimFold backtracking algorithm.

provided.

4.3 Time and space complexity - theoretical analysis

Time complexity

The running time to calculate the values in each array can be determined as follows:

• W : O(n2), because for each j, we minimize over i;

• V : O(n2), since for each i and j, we minimize over 4 terms;

• H and S: O(n2);

• V BI: O(n4), because for each i and j, we have to find the best i′ and j′;

• WM : O(n3), since for each i and j, we look for the best h;

• V M : O(n2): we do a constant number of comparisons for each i and j .
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The most expensive task is to calculate the free energy of internal loops. Two

solutions have been adopted to reduce time complexity of internal loops from O(n4) to

O(n3):

1. Hofacker et al. [24] adopted an easy to implement solution: they look at the i ′-s and

j′-s which are at most c bases distance away from i and j, respectively. Thus, the

time complexity becomes proportional to c2 × n2, which is considered to be O(n3).

This solution will miss the internal loops having at least one side longer than c, but

it seems this case is very unlikely. The number 30 is considered an appropriate value

for c.

2. Lyngsø et al. [31] gave a more accurate solution, which would find internal loops of

any size in time O(n3), but is harder to implement, and requires more space. Briefly,

instead of using a two-dimensional array V BI(i, j), they use a three-dimensional array

V BI(i, j, l), where l denotes the size of the loop, and ranges from 1 to j−i−1. Besides

the free energy, the entry V BI(i, j, l) will store the best interior pair (si′ .sj′). They

prove that, under some thermodynamic assumptions, if for the exterior pair (si.sj),

the interior pair (si′ .sj′) is better than (si′′ .sj′′), than the interior pair (si′ .sj′), it is

also better for the exterior pair (si−1.sj+1). Thus, the interior pair (si′ .sj′) stored in

V BI(i, j, l), is also the best interior pair for V BI(i − 1, j + 1, l + 2), with only two

possible exceptions, which we will not detail further here.

In our implementation of SimFold, we used the first method, which has a lower space

complexity and is easier to implement.

Space complexity

Note that out of the seven aforementioned arrays, only three of them need to be stored: W ,

V and WM . H, S, V BI and V M need to be calculated only once. The minimum value,

for each i and j, will be stored in the V array. Hence, the space complexity for each of the

three arrays W , V and WM is O(n2), since we store a value (or a data structure of values)

for each i and j.

4.4 Performance evaluation

We implemented the algorithm described in this chapter under the name SimFold, an im-

plementation of Zuker and Stiegler algorithm, very similar to mfold [71] and RNAfold [24]

from Vienna RNA package.

In this section, first we compare SimFold against RNAfold and mfold and then we

run SimFold and RNAfold on biological RNA structures. We refer to our current best

version of SimFold as 1.1. For RNAfold, we used the latest version, 1.4, which is free

software, downloadable from the Vienna RNA package web page [61]. For mfold, we also
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used the latest version, which is 1.3. A web page interface running mfold is available [35],

but we could not obtain a working version of mfold for local runs. Thus, we were able

to perform many comparisons between SimFold and RNAfold, while comparisons between

SimFold and mfold were time-consuming, and hence sparse. SimFold and mfold can take

as input either RNA or DNA, whereas RNAfold can only fold RNA. Here, all the tests have

been performed on RNA.

We compare the three programs in Subsection 1, then an analysis of SimFold and

RNAfold computation time is performed in Subsection 2. Finally, a study of the SimFold

accuracy on six sets of biological RNAs is discussed in Subsection 3.

4.4.1 Comparison of secondary structure predictions

For RNA, RNAfold uses the set of thermodynamic parameters from SantaLucia Labora-

tory [44], as opposed to SimFold and mfold, which use the parameters from Turner Labo-

ratory [57], refined by Mathews et al. [33]. Some of these parameters differ, and we believe

this constitutes one main reason for which the results are sometimes different. Another

reason is that RNAfold does not consider some special types of structures, such as poly-C

hairpins or GGG hairpins. It is unclear whether any of the two sets is better, and a com-

parison between them is beyond the scope of this thesis. Given that SimFold uses the same

parameters and exactly the same model as mfold 2, the predictions made by SimFold are

expected to be the same as the predictions made by mfold with respect to the minimum free

energy secondary structure (mfold also predicts suboptimal structures). Still, occasionally,

the prediction made by mfold has a higher free energy than the prediction made by SimFold,

because mfold does not allow for isolated base pairs. SimFold does not incorporate this

restriction, allowing everything that the model permits.

To have a good comparison of the three implementations, first we created a set of

100 randomly generated RNA sequences S of length 100 nucleotides. Let ∆GS and RS

denote the MFE and MFE structure returned by SimFold, ∆GV and RV denote the MFE

and MFE structure returned by RNAfold from Vienna package, and ∆GM and RM be the

MFE and MFE structure returned by mfold. The model used by SimFold will be referred

to as MS , the model used by mfold will be called MM
3, and the model used by RNAfold

will be denoted by MV .

• In 82 cases, the structure prediction of SimFold was identical to the structure predic-

tion of RNAfold, i.e. RS = RV ;

2We believe the model we are using in SimFold, which was described in great detail in Chapter 3,
is identical to the model used in mfold. All our comparisons (counting tens of instances) with the
online version of mfold confirmed this. However, since we could only access the web version of
mfold, and since full details about the model used in mfold are not publically available, we cannot
guarantee that this is true.

3We believe MS = MM .
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No Str. diff. ∆GS ∆GM FreeEnergy(S,RS ,MM )

1 substantial -21.80 -21.70 -21.80

2 slight -24.50 -23.90 -24.50

3 substantial -32.60 -31.80 -32.60

4 substantial -17.50 -16.80 -17.50

5 slight -21.40 -20.60 -21.40

6 substantial -28.00 -27.90 -28.00

7 substantial -18.80 -17.90 -18.80

Table 4.1: Differences between SimFold and mfold on a set of 7 RNA sequences of length 100

nucleotides. The model used in mfold on the MFE structure returned by SimFold gives the same

free energy as SimFold, which is lower than the MFE returned by mfold. This happens because

mfold does not allow isolated base pairs in teh minimization algorithm.

• In 7 cases, the structures RS and RV were slightly different, but the free energy

of RV , when using model MS , was equal to the minimum free energy returned by

SimFold : FreeEnergy(S,RV ,MS) = ∆GS . This shows that more than one structure

gave the same minimum free energy, and SimFold chose another one than RNAfold.

The distances between the two structures range between 2 and 38, where by distance

between structure R1 and structure R2 we mean the number of bases that have a

different bonding status in R1 when compared to R2. This observation clearly shows

that predicting suboptimal structures is very important, since another structure (even

with the same MFE) might be much closer to the real one, and the distance between

the two predicted structures might be high;

• For all the remaining 11 cases, the free energy FreeEnergy(S,RV ,MS) was greater than

∆GS , hence SimFold considered the structure RV as being a suboptimal structure.

The distance between RS and RV in these cases ranged between 2 and 75. At this

point, a comparison with the prediction made by mfold was performed.

– In 4 cases, the prediction made by SimFold was exactly the same as the prediction

made by mfold : RS = RM and ∆GS = ∆GM . This means that RNAfold made

the prediction of a suboptimal structure, according to the model MS or MM ;

– In the 7 other cases, ∆GM > ∆GS , and the structures RM and RS were slightly

different in 2 cases and substantially different in 5 cases. Mfold web server [35]

contains a program called “Free Energy Determination”, which we will refer

to as FreeEnergy(S∗, R∗,MM ), where S∗ and R∗ are any RNA sequence and

structure. Running this program with the structure RS predicted by SimFold,

the free energy obtained equals the MFE returned by SimFold and is lower than

the MFE returned by mfold : FreeEnergy(S,RS ,MM ) = ∆GS < ∆GM . The

equality confirms our supposition that MS = MM . The inequality happens
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Length % Identical % Equal FE % Lower FE

100-500 0.52 0.10 (2-31) 0.38 (2-227)

600-1000 0.18 0.06 (23-319) 0.76 (2-538)

1100-1500 0.12 0.04 (2-3) 0.84 (2-766)

1600-2000 0.00 0.00 (-) 1.00 (2-1021)

Table 4.2: Comparison of structure prediction between SimFold and RNAfold as a function of

sequence length.

because, as we mentioned before, mfold does not allow for isolated base pairs. In

all these cases, SimFold predictions include isolated base pairs. Table 4.1 shows

the free energies ∆GS (column 3), ∆GM (column 4) and FreeEnergy(S,RS ,MM )

(column 5). Table A.1 in Appendix A gives the 7 sequences and the structures

predicted by SimFold, in dot-parenthesis format.

The second set we created to compare predictions of SimFold and RNAfold contains

10 sequences of length 200, 10 sequences of length 300, . . ., 10 sequences of length 2000. As

sequences grow longer, the percentage of identical structures RS and RV gets lower. Ta-

ble 4.4 shows the percentage of the cases where RS and RV are identical (second column), the

percentage of the cases where FreeEnergy(S,RS ,MS) = FreeEnergy(S,RV ,MS) (third col-

umn) and the percentage of the cases where FreeEnergy(S,RS ,MS) < FreeEnergy(S,RV ,MS)

(fourth column). Thus, the third column corresponds to alternative structures with the same

free energy, and the fourth column corresponds to MFE structure versus suboptimal struc-

ture, as predicted by SimFold and model MS . The numbers in the parenthesis represent

the minimum and the maximum distance between the two structures.

4.4.2 CPU times

The RNAfold program has a very efficient implementation, and is used by other programs,

such as RNA Designer from RNAsoft suite [5]. SimFold was implemented such that the

code could be easily extended to accommodate the necessary differences for PairFold and

CombFold. However, SimFold is comparable with RNAfold in terms of speed, being only

between approximately 10% to 120% slower on sequences shorter than 2000 nucleotides.

The computational experiments have been performed on PCs with dual 2GHz Pentium III

processors, 512 KB cache and 2GB RAM using Linux 2.4.20.

On the set of length 100 nucleotides, the speed of SimFold relative to RNAfold is

1.28 on average: it took 0.08 CPU seconds for RNAfold and 0.06 CPU seconds for SimFold

for each sequence. As the length of the sequences increases, the speed of SimFold relative to

RNAfold increases as well. Table 4.3 shows the average CPU time in seconds performed by

SimFold (second column) and RNAfold (third column), as well as the relative time: (Time

SimFold) / (TimeRNAfold).
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Length Time SimFold Time RNAfold Relative time

100-500 0.71 0.46 1.48

600-1000 6.14 3.63 1.67

1100-1500 20.71 10.67 1.92

1600-2000 50.07 22.44 2.22

Table 4.3: Comparison of CPU time between SimFold and RNAfold as a function of sequence

length.

Since the mfold program predicts suboptimal structures in addition to MFE struc-

tures, and since its public availability is restricted, we did not compare it against SimFold

in terms of speed.

4.4.3 SimFold accuracy on biological structures

In order to evaluate the accuracy of SimFold prediction, we assembled six sets of RNA

sequences with known secondary structures. The first set contains tRNA genes, whose

structures where experimentally determined [51] and the other sets contain 5S rRNA, 16S

rRNA, 23S rRNA, Group I Intron and Group II Intron sequences determined by comparative

sequence analysis [11, 21].

Mathews et al. [33] performed a thorough analysis of mfold program (MFE foldings

and suboptimal foldings) on biological RNA sequences with known secondary structure.

Their sets overlap our sets, still it is unclear whether perfect matches between their sets

and ours exist. Konings and Gutell [28] and Fields and Gutell [15] have also analyzed mfold

program on 16S and 23S rRNA sequences, respectively, which are known to be long and

hard to predict.

To measure the accuracy level of SimFold prediction, we evaluated four parameters:

1. Q1 is the level of accuracy (0 for completely wrong prediction and 1 for perfect pre-

diction) calculated by dividing the number of correctly predicted base pairs to the

number of base pairs in the real structure. We think the same parameter is used in

Mathews et al. [33] measurements of accuracy. Note that with Q1, the free bases are

not taken into consideration at all. Thus, a perfect prediction of the correct base

pairs, which also predicts base pairs where the bases are actually free bases, would

yield a value of 1;

2. Q2 also measures the level of accuracy, but by taking the base pairs as well as the

free bases into consideration. Q2 is calculated as follows: first, the distance d between

the predicted structure RS and the real structure RR is calculated, by counting the

number of bases whose pairing status is different between RS and RR. A similar

distance function is used in RNA Designer from the RNAsoft suite of programs [5].

Then Q2 = 1− d/l, where l is the length of the given sequence S;
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Figure 4.1: Evaluation of SimFold on tRNA genes: Distribution of the predicted structures after

the level of accuracy, on intervals of 0.1.

3. The percentage of “odd pairs” (or non-canonical pairs) in the real structure RR is

calculated. This parameter is important because, as our model does not consider odd

pairs, we do not expect to have a perfect prediction for structures with odd pairs;

4. The percentage of pseudoknots in RR is even more important, since Zuker and Stiegler

algorithm, which is the basis of SimFold, can only predict pseudoknot-free secondary

structures. The pseudoknot percentage was determined by dividing the number of

pairs which are within a pseudoknot by the total number of pairs in RR. A pair (i.j)

is considered to be within a pseudoknot if a pair (i′.j′) exists such that i < i′ < j < j′

or i′ < i < j′ < j.

The tRNA genes set contains a very small fraction of odd pairs and no pseudoknots,

and the sequences are shorter than 100 nucleotides. However, other structures that are not

considered by our model exist: 7 sequences have hairpins of size 0: (), 16 sequences have

hairpins of size 1: (.) and 38 sequences have hairpins of size 2: (..); also, tertiary inter-

actions known to exist in tRNA are not reflected in our analysis. We performed a thorough

analysis on 3514 sequences and calculated Q1, Q2, the free energy returned by SimFold and

the free energy of the real structure RR calculated with our model: FreeEnergy(S,RR,MS).

While some structures have been predicted with more than 0.90 accuracy, others had

only 0.20-0.50 accuracy. Figure 4.1 shows the distribution of the predictions on intervals of

level of accuracy. The left image shows the distribution when measuring the accuracy with

Q1, and the right image corresponds to Q2. The vertical dashed line in each image shows

the average accuracy of the corresponding parameter.
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Figure 4.2: Evaluation of SimFold on tRNA genes: Correlation between the level of accuracy and

the difference between the predicted minimum free energy and the free energy of the real structure,

considering our model.

For all the predictions whose accuracy was lower than 1.00, the free energy calculated

for the real structure ∆Gp
R was higher than the predicted minimum free energy ∆GS .

Obviously, this is another convincing hint that the calculation of suboptimal structures

is important. It is interesting to look at the difference ∆Gp
R − ∆GS and at the level of

accuracy. Figure 4.2 shows the correlation between these two values for Q1 (left) and Q2

(right). The general trend is that the greater the difference in free energy, the lower the

level of accuracy. Still, in many cases, e.g. for accuracy 0.35, the free energy difference is

close to 0. Note that for the Q1 parameter, there are quite a few cases where the level of

accuracy is 0.00, and the free energy difference ranges in (0, 16].

Table 4.4 shows the summary of the results predicted by SimFold and RNAfold

on the six data sets. Column 1 shows the data set type and column 2 gives the number

of instances for each type that was considered in this study. Column 3 shows the range

length for each type and columns 4 and 5 give the average percentage of odd pairs and

pseudoknots. Column 6 presents the average accuracy of SimFold, measured with Q1 and

Q2, respectively, and the last column shows the average performance of RNAfold.

The table shows that the prediction of SimFold is better on short sequences, without

or with a very small fraction of odd pairs and pseudoknots. As the percentage of odd pairs or

pseudoknots increases, the accuracy goes down. Although for some sequences, the prediction

of SimFold differs from the prediction of RNAfold, note that on the average, their prediction

is very close. For the tRNA genes set, RNAfold gives better accuracy than SimFold in 118

cases, and SimFold gives better accuracy in 150 cases. Table A.2 in the Appendix A shows a
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RNA type No. Len % Odd % Pk SimFold RNAfold
inst. Q1 (Q2) Q1 (Q2)

tRNA genes 3514 51-93 0.00 0.00 0.63 (0.67) 0.63 (0.66)

Group I Intron 8 394-1031 0.04 0.10 0.48 (0.52) 0.48 (0.52)

Group II Intron 2 905-2520 0.00 0.45 0.40 (0.43) 0.50 (0.47)

5S rRNA 9 117-124 0.11 0.00 0.57 (0.62) 0.50 (0.56)

16S rRNA 91 697-2147 0.06 0.06 0.42 (0.50) 0.42 (0.49)

23S rRNA 59 953-4381 0.06 0.16 0.41 (0.50) 0.40 (0.49)

Table 4.4: Summary of SimFold accuracy on different types of RNA sequences.

set of 30 examples of tRNA gene sequences, together with the parameters discussed above.

Complete tables of the measurement of accuracy for the remaining five sets of introns and

rRNAs are given in Appendix A.

Comparing Table 4.4 with Table 1 in [33], where Mathews et al. report a thorough

analysis of mfold, we notice the accuracy measured with Q1 is from 8% for 16S rRNA to

20% for tRNA lower than reported there. We consider that the reasons for these differences

include:

• In the study performed by Mathews et al. [33], they use the known real structures

to refine the thermodynamic parameters used. Then, the accuracy evaluation is per-

formed on the same set. It is not clear whether further tests on a different set would

give the same level of accuracy;

• The sets that we used seem to overlap with the sets that Mathews et al. used, but

not to coincide. Also, we are not sure whether the method of measuring the level of

accuracy is identical;

• Finally, our supposition that the model we use is identical with the model mfold uses,

might not be completely true. However, in the future, SimFold and its extensions,

PairFold and CombFold, can incorporate more parameters.

Although it is hard to make a very correct estimate, we believe that SimFold is as

good as RNAfold and mfold regarding the prediction of minimum free energy and structure.

The purpose of implementing SimFold was not to create a better prediction program, but to

be able to extend Zuker and Stiegler’s [72] basic algorithm of secondary structure prediction

towards prediction of pairs and combinatorial sets of molecules, which will be presented in

great detail in the next two chapters.
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Chapter 5

PairFold

The algorithm for predicting the secondary structure of a pair of RNA or DNA molecules,

which we call PairFold, is described in this chapter. We define the minimum free energy

(MFE) problem of secondary structure prediction of a pair of RNA molecules as follows:

given two RNA sequences S1 and S2 and a thermodynamic model M , find the pseudoknot-

free secondary structure R with the smallest free energy change under the model M , in

which S1 and S2 can fold. Note that this problem includes interactions between the two

molecules, as well as interactions within each molecule.

The same as in case of secondary structure prediction of single molecules, for pair

of molecules, the problems of predicting pseudoknotted secondary structures, other inter-

actions or suboptimal structures (i.e. which have a free energy greater than the MFE) are

important and challenging. In this chapter, only the MFE problem will be considered.

PairFold algorithm is a simple extension of Zuker and Steigler [72] algorithm, de-

scribed in Chapter 4. As discussed in Section 3.5, consider that we concatenate the two

input sequences, S1 and S2, into sequence P and that we denote the linkage location with b

(b equals the last position in S1). With some modifications, which will be described in this

chapter, we can apply the SimFold algorithm on S1S2. Briefly, the elementary structures

are the same as for a single molecule, with the exception that they can be ”broken” by

the molecular link b between them. In these situations, the free energy is calculated in a

way similar to the calculation of multi-domain structures, and an Intermolecular initiation

penalty, i.e. Intermol from Table 3.1 is added.

5.1 Dynamic programming algorithm

The arrays to calculate minimum free energies for different secondary structures are called

W p(j), V p(i, j), Hp(i, j), Sp(i, j), V BIp(i, j), V Mp(i, j), V M ′(i, j), WMp(i, j) and WM ′(i, j).

They correspond to the arrays with the same names, but without the subscript p from Sec-

tion 4.1. Note the new arrays V M ′(i, j) and WM ′(i, j). The same as for SimFold, the

computation of multi-loops is done by the computation of the partial multi-loop structures

WMp(i, j). If b is inside a multi-loop structure (i.e. b the intermolecular linkage is between
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two branches, yielding a special multi-loop), then the multi-loop will be calculated as a

multi-domain structure. Otherwise, it will be a regular multi-loop. However, at the mo-

ment of the calculation of WM p(i, j), since we are calculating partial structures, we do not

know whether the remaining part of the multi-loop contains the b. Thus, the calculation of

the two arrays: WM p(i, j) and WM ′(i, j) for the regular and special partial multi-loops,

respectively, is needed. Consequently, there will be two arrays for calculating complete

multi-loops too, one for regular multi-loops, one for special multi-loops.

The complete recurrence relation for W p(j) when j > 0 follows. This is an extension

of the equation for W (j) from Section 4.1. Depending on the position of b, dangling ends

are added or not. This will be shown in the terms T1, T2 and T3, described below:

W p(j) = min
1≤i≤j























V p(i, j) + Non-GC-penalty(pi, pj) + W p(i− 1),

V p(i + 1, j) + Non-GC-penalty(pi+1, pj) + W p(i− 1) + T1,

V p(i, j − 1) + Non-GC-penalty(pi, pj−1) + W p(i− 1) + T2,

V p(i + 1, j − 1) + Non-GC-penalty(pi+1, pj−1) + W p(i− 1) + T3

T1 =

{

0 , if b = i

∆G-Dangle-3’(pj , pi+1, pi), otherwise

T2 =

{

0 , if b = j − 1

∆G-Dangle-5’(pj−1, pi, pj), otherwise

T3 =











∆G-Dangle-5’(pj−1, pi+1, pj) , if b = i

∆G-Dangle-3’(pj−1, pi+1, pi) , if b = j − 1

∆G-Dangle-3’(pj−1, pi+1, pi) + ∆G-Dangle-5’(pj−1, pi+1, pj), otherwise

The optimal free energy for pi . . . pj, V p(i, j), is given by the most favourable struc-

ture amongst the regular or special types of hairpin loop, stacked loop, internal loop and

multi-loop. The calculation is performed using the following formula:

V p(i, j) =

{

+∞ , for i ≥ j

min(Hp(i, j), Sp(i, j), V BIp(i, j), V Mp(i, j)), for i < j

Integrating the model for duplexes, described in Section 3.5, each individual type of

elementary structure will be calculated as follows:

Hp(i, j) = ∆G-Hp(P, i, j, b)

Sp(i, j) = ∆G-Sp(P, i, j, b) + V p(i + 1, j − 1)
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V BIp(i, j) = min
i<i′<j′<j

(∆G-Ip(P, i, j, i′, j′, b) + V p(i′, j′))

WM ′(i, j) is calculated similarly to WM(i, j), for all situations when the boundary

is not inside the multi-loop:

WM ′(i, i) = Multi-c

WM ′(i, j) = min






































































































V p(i, j) + Non-GC-penalty(pi, pj) + Multi-b

V p(i + 1, j) + Non-GC-penalty(pi+1, pj)+

∆G-Dangle-3’(pj , pi+1, pi) + Multi-b + Multi-c, if b 6= i

V p(i, j − 1) + Non-GC-penalty(pi, pj−1)+

∆G-Dangle-5’(pj−1, pi, pj) + Multi-b + Multi-c, if b 6= j − 1

V p(i + 1, j − 1) + Non-GC-penalty(pi+1, pj−1)+

∆G-Dangle-3’(pj−1, pi+1, pi)+

∆G-Dangle-5’(pj−1,i+1 , pj)+

Multi-b + 2×Multi-c , if b 6= i and b 6= j − 1

WM ′(i + 1, j) + Multi-c , if b 6= i

WM ′(i, j − 1) + Multi-c , if b 6= j − 1

mini≤h<j(WM ′(i, h) + WM ′(h + 1, j)) , if b is not within the multi-loop

The condition of the last case, ”if b is not within the multi-loop”, means that b is

not separating any two branches of the multi-loop, hence this is a regular multi-loop. If

the branches are closed by (i1, j1), (i2, j2) . . . (ik, jk), then b is within the multi-loop if and

only if (i ≤ b < i1) or j1 ≤ b < i2 or . . . jk−1 ≤ b < ik or jk ≤ b < j. Note that we are not

interested whether b is situated somewhere on a branch of the multi-loop. This situation

will be handled by that specific elementary structure.

If the boundary b is inside the multi-loop structure, then the array WM p(i, j) will

contain the information and free energy needed. The following formula shows the same

seven branches, but the multi-loop penalties Multi-a, Multi-b and Multi-c are not needed

any more, being replaced by the intermolecular initiation. The terms T1 - T7 represent

additional terms, which depend on the position of b and are detailed below.

WMp(i, j) = min
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

















































V p(i, j) + Non-GC-penalty(pi, pj),

V p(i + 1, j) + Non-GC-penalty(pi+1, pj) + T1,

V p(i, j − 1) + Non-GC-penalty(pi, pj−1) + T2,

V p(i + 1, j − 1) + Non-GC-penalty(pi+1, pj−1) + T3 + T4,

WMp(i + 1, j) + T5,

WMp(i, j − 1) + T6,

mini≤h<j(WMp(i, h) + WMp(h + 1, j) + T7)

T1 =

{

Intermol , if b = i

∆G-Dangle-3’(pj, pi+1, pi), if b 6= i

T2 =

{

Intermol , if b = j − 1

∆G-Dangle-5’(pj−1, pi, pj), if b 6= j − 1

T3 =

{

Intermol , if b = i

∆G-Dangle-3’(pj−1, pi+1, pi), if b 6= i

T4 =

{

Intermol , if b = j − 1

∆G-Dangle-5’(pj−1, pi+1, pj), if b 6= j − 1

T5 =

{

Intermol, if i + 1 < b ≤ i∗ or j∗ < b ≤ j

0 , otherwise

where i∗ is the downstream base of the first branch of WM p(i+1, j), and j∗ is the upstream

base of the last branch of WM p(i + 1, j).

T6 =

{

Intermol, if i < b ≤ i∗ or j∗ < b ≤ j − 1

0 , otherwise

where i∗ is the downstream base of the first branch of WM p(i+1, j), and j∗ is the upstream

base of the last branch of WM p(i + 1, j).

T7 =

{

Intermol, if b = h

0 , otherwise

WM ′ will help creating the array V M ′, while WMp will create the array V M p.

For each i and j, the minimum of V M ′(i, j) and V M p(i, j) will become V M p(i, j). The

calculation of V M ′ and V Mp follows:
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V M ′(i, j) = min


















































WM ′(i + 1, j − 1) , if b 6∈ {i, j − 1}

WM ′(i + 2, j − 1) + ∆G-Dangle-3’(pi, pj, pi+1)+

Multi-c , if b 6∈ {i, i + 1, j − 1}

WM ′(i + 1, j − 2) + ∆G-Dangle-5’(pi, pj, pj−1)+

Multi-c , if b 6∈ {i, j − 1, j − 2}

WM ′(i + 2, j − 2) + ∆G-Dangle-3’(pi, pj, pi+1)+

∆G-Dangle-5’(pi, pj , pj−1) + 2×Multi-c , if b 6∈ {i, i + 1, j − 1, j − 2}

The multi-loop specific penalties are finally added:

V M ′(i, j) = V M ′(i, j) + Multi-a + Multi-b + Non-GC-penalty(pi, pj).

V Mp(i, j) = min






















WMp(i + 1, j − 1) + Non-GC-Penalty(pi, pj) + T1,

WMp(i + 2, j − 1) + Non-GC-Penalty(pi, pj) + T2,

WMp(i + 1, j − 2) + Non-GC-Penalty(pi, pj) + T3,

WMp(i + 2, j − 2) + Non-GC-Penalty(pi, pj) + T4

T1 =

{

Intermol, if b ∈ {i, j − 1}

0 , otherwise

T2 =











Intermol , if b = i

∆G-Dangle-3’(pi, pj , pi+1) + Intermol, if b ∈ {i + 1, j − 1}

∆G-Dangle-3’(pi, pj , pi+1) , otherwise

T3 =











Intermol , if b = j − 1

∆G-Dangle-5’(pi, pj , pj−1) + Intermol, if b ∈ {i, j − 2}

∆G-Dangle-5’(pi, pj , pj−1) , otherwise

T4 =































∆G-Dangle-5’(pi, pj , pj−1) + Intermol , if b = i

∆G-Dangle-3’(pi, pj , pi+1) + Intermol , if b = j − 1

∆G-Dangle-3’(pi, pj , pi+1) + ∆G-Dangle-5’(pi, pj, pj−1)+,

Intermol , if b ∈ {i + 1, j − 2}

∆G-Dangle-3’(pi, pj , pi+1) + ∆G-Dangle-5’(pi, pj, pj−1) , otherwise

Note that no other additions to V M p are necessary at this point.
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PairFold Procedure

input: RNA or DNA sequences S1 and S2 of length n1 and n2;
output: minimum free energy ∆G, secondary structure R;

procedure PairFold
S = S1S2;
n = n1 + n2;
for (j = 1 to n)

for (i = j − 1 down to 1)
WM ′

ds(i,j) = Compute-WM’(i,j);
WMp

ds(i,j) = Compute-WMp(i,j);
end for;
for (i := 1 to j − 1)

V p
ds(i, j) := Compute-Vp(i,j);

end for;
end for;
for (j := 2 to n)

W p
ds(j) := Compute-Wp(j);

end for;
∆G := W p

ds(n).free energy;
i := n;
while (i > 0 and W p

ds(i).num branches > 0)
(id, jd) := W p

ds(i).last domain;
R := PairFold-Backtrack (id, jd, V p

ds, W p
ds);

i := W p
ds(i).next domain i;

end while;
return (∆G, R);

end procedure PairFold.

Procedure 5: Pseudocode for the PairFold algorithm.

5.2 Implementation

The implementation of PairFold is very similar to SimFold implementation. The main

differences are: (1) the calculation of two arrays for WM p and WM ′, (2) the checks for b

in each particular situation. Procedure 5 shows a pseudocode of the implementation, which

highlights point (1). Point (2) was described in detail in the previous section.

The same as in SimFold implementation, we implemented a function that calculates

the free energy of a duplex, when the structure is known: FreeEnergy(S1, S2, R). In the

same way, once the MFE secondary structure is found, we can compute the enthalpy of the

folded molecule, using the enthalpy thermodynamic parameters. Then, the calculation of

the entropy and the melting temperature, when the reactants concentrations are given, is

straightforward using the equations explained in Section 3.1.

The MFE secondary structure, MFE, enthalpy and entropy changes, and the melt-

ing temperature, for the sequences (S1, S2), (S1, S1) and (S2, S2) are provided in the online
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Figure 5.1: Comparison between PairFold and SimFold speed (left); PairFold speed on a sequence

with different splitting points.

version of PairFold [5, 41]. The secondary structure of (S2, S1) does not have to be calcu-

lated separately, because the answer will be the same as for (S1, S2). Section 5.4 gives an

informal proof that, given the thermodynamic model we are using, PairFold is symmetric.

5.3 Time and space complexity

Being a very simple extension of the SimFold algorithm, the time and space complexity are

of the same theoretical order as for SimFold : O(n3) for time and O(n2) for space, where n

is the sum of the two input sequences lengths.

In practice, the time will be longer, due to the additional checking for the location

of b and due to supplementary calculations for multi-loops. The space required to store the

necessary arrays will be larger too, since instead of storing three arrays, as in the case of

SimFold : W , V and WM , we now store four arrays: W p, V p, WMp and WM ′.

The left graph in Figure 5.1 shows the speed of PairFold compared to the speed

of SimFold. 296 sequences have been randomly generated, of length 50, 60, 70, . . . 3000

nucleotides and SimFold has been run on them. Then, each sequence has been split in half

(yielding b = n/2) and PairFold has been run on each such pair. The dashed line shows the

CPU time in seconds, that SimFold needed to predict the MFE secondary structures. The

solid line shows the speed of PairFold. The dotted and dash-dot lines have been manually

fit to match the SimFold and PairFold lines, respectively. The dotted line is the function

(n/370)3, where n is the sequence length (or the sum of the two sequences lengths, in case

of PairFold), and the dash-dot line is the function 1.3(n/370)3 . These manual fits show

that both SimFold and PairFold run in time proportional to O(n3), and PairFold is about

1.3 times slower than SimFold.

The right graph in Figure 5.1 shows the speed of PairFold on a sequence of length
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1000 nucleotides, which has been split at different points: b = {10, 20, . . . , 990}. The plot

shows that PairFold is slightly slower when the two sequences are roughly equal to each

other, and slightly faster when one sequence is short and the other is long. Note that

the difference is not big, and this can be explained by the fact that the two arrays that

help multi-loop calculations: WM p and WM ′, are fully computed, no matter where the

boundary b is.

5.4 PairFold symmetry

In this section we show that the minimum free energy ∆G12 for the pair of molecules (S1, S2)

under the symmetric model M equals the minimum free energy ∆G21 of the pair (S2, S1)

under the same model.

First, we show that given S1, S2 and a secondary structure R12 with free energy

∆G12, in which the pair (S1, Ss) could fold, the secondary structure R21 which contains the

same base pairing as R12, but for the pair (S2, S1), has the same free energy: ∆G21 = ∆G12.

In Section 3.3 we showed that ∆G12 =
∑

e ∆Ge, where e is an elementary structure,

and the sum goes over all elementary structures in the structure R12. Then, R21 will

contain the “mirrored” elementary structures. For example, a multi-domain structure in

R12 will be a special multi-loop structure in R21, but their free energies will be the same.

Given that the Nearest Neighbour Thermodynamic Model is symmetric, all the “mirrored”

elementary structures will have the same free energy as the original elementary structures.

Thus, ∆G21 =
∑

e ∆Ge, hence ∆G12 = ∆G21.

Now suppose that ∆G12 and ∆G21 differ and ∆G12 < ∆G21. If the MFE structures

R12 and R21 are “mirrored”, then from the proof above, ∆G12 = ∆G21. Suppose R12

and R21 are different. Let Rm
12 denote the “mirrored” structure of R12, i.e. the structure

containing the same base pairs as R12, but for (S2, S1), Then, from the proof above, ∆G12 =

∆Gm
12. But ∆G12 < ∆G21, so ∆Gm

12 < ∆G21. This means that there exists a secondary

structure, namely Rm
12, for (S2, S1), whose corresponding free energy ∆Gm

12 is lower than

the minimum free energy ∆G21. This is a contradiction, which proves that the hypothesis

we made is false.

We showed that if R12 and R21 are identical, then ∆G12 = ∆G21. The reverse

implication is not always true, because it is possible for two different secondary structures

to have the same free energy.

When several MFE secondary structures exist, our algorithms will select the first

one (hence always the same one), out of the set of possible secondary structures. For this

reason, we think it might be possible for PairFold to select different secondary structures

for (S1, S1) and (S2, S1) if they exist. Further analysis is needed to support this supposition.
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5.5 Applications and performance evaluation

This section presents several applications of PairFold and gives a thorough analysis of its

performance on different biological sets. First, we show its performance on short DNA

and RNA duplexes, giving also other parameters, such as enthalpy, entropy and melting

temperature. Then, we show a very important and promising application of PairFold, on

ribozyme-target hybridization and on a ribozyme combinatorial library. PairFold can also

be used for primer/probe design and testing. Finally, we show that it can be useful for

including thermodynamic models into DNA word design.

5.5.1 Prediction of DNA or RNA duplex formation

Free energy, enthalpy, entropy and melting temperature of DNA or RNA duplexes which

are complementary or have few mismatches have been experimentally determined. The

information obtained was mainly used for finding thermodynamic parameters for stacking

energies and simple mismatches, and for testing of prediction programs. Knowing these

parameters is useful for any secondary structure prediction and for primer design [37].

Peyret et al. [37] have used a set of 51 DNA duplexes which contain A·A, C·C,

G·G and T·T mismatches, to find thermodynamic parameters for these mismatches, by

linear regression. Then, they compared the predicted free energy, enthalpy, entropy and

melting temperature with the ones determined experimentally. In a similar way, Xia et

al. [67] have used a set of 119 perfectly complementary RNA duplexes, to determine or test

stacking parameters. In this subsection we run PairFold on these duplexes and compare

our predictions with the experimental measurements and predictions reported in [37] and

[67].

NA Prediction ∆H◦ (avg) ∆S◦ (avg) ∆G◦ (avg) Tm (avg)
(kcal/mol) (eu) (kcal/mol) (◦C)

PairFold prediction -59.06 -168.62 -6.76 41.76
DNA Experimental values [37] -59.79 -170.94 -6.78 41.75

Peyret et al. prediction [37] -59.57 -170.32 -6.74 41.50

PairFold prediction -58.13 -161.27 -8.12 48.59
RNA Experimental values [67] -58.80 -163.32 -8.15 48.31

Xia et al. prediction [67] -57.78 -160.08 -8.13 48.49

Table 5.1: Comparison between PairFold predictions, experimental data and other predictions [37,

67], on short DNA and RNA duplexes. The values represent average enthalpies, entropies, free

energies and melting temperatures.

Table 5.1 shows average enthalpies, entropies, free energies and melting temperatures

of PairFold prediction (first line), the experimental values reported in [37] (second line),

and the predictions reported in [37] (third line), on DNA duplexes. The same type of

measurements have been performed for the RNA duplexes reported by Xia et al. [67], and
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their experimental and predicted values.

The results show that our predictions are nearly as good as the predictions reported

in [37] and [67], both of them being close to the experimental values. Tables with all

values for each duplex are provided in Tables B.1 and B.2 from Appendix B. The small

differences in predictions are explained by the following reasons:

• The predictions performed by Peyret et al. and Xia et al. assume that the secondary

structures are known (mismatches for the underlined nucleotides in Table B.1 and

perfect matches for the remaining DNA bases, and perfect matches for RNA), and

the free energy and enthalpy are calculated for these specific structures. On the

contrary, PairFold runs the free-energy minimization algorithm. For one duplex out

of the 51 DNA duplexes, the predicted structure is substantially different than the

expected structure. Also, for 15 out of the 109 RNA duplexes, some of the ends are

predicted to be dangling ends rather than base pairs. Details are given in Appendix B.

• For the DNA duplexes, the thermodynamic parameters used by Peyret et al. and

PairFold are from SantaLucia [45], but some of them might be different versions;

• For the RNA duplexes, we use Turner parameters [58, 59], which we think are some-

what different from the parameters used by Xia et al. [67]. However, the overall

prediction accuracy is fairly close.

5.5.2 Predicting ribozyme-mRNA target hybridization

Many experiments on ribozyme-target duplexes have been performed in the last years.

PairFold can be used to predict secondary structure of a ribozyme-target duplex. Although

currently not 100% accurate, it can give some useful information about potential interactions

in the duplex. It can also help in ribozyme design, where a pool of many closely related

ribozymes are tried until good ones are found. PairFold can help eliminate some of these

ribozymes, which are unlikely to perform well.

Table 5.2 shows the performance of PairFold on 11 ribozyme - mRNA target du-

plexes drawn from the literature. The secondary structures of their binding are found

experimentally and are reported in the referenced papers. Column 2 indicates the reference

and the figure showing the sequences and the secondary structures. Columns 3, 4 and 5 give

the length of the two sequences and the percentage of odd pairs existing in the structure.

Column 6 shows the number of correctly predicted base pairs out of the total number of

base pairs in the real structure. Column 7 gives two accuracy parameters: Q1 and Q2, cal-

culated as described in Section 4.4.3. Column 8 gives the minimum free energy, as predicted

by PairFold, and column 9 shows the free energy of the real structure, calculated with our

model. Because our model does not consider odd pairs, their contribution to the total free

energy was ignored (they were considered 0). The structures do not have pseudoknots.

For 5 duplexes, both parameters Q1 and Q2 gave accuracy greater than 0.90, and for

all cases, the accuracy was greater than 0.70. Table B.3 in Appendix B shows the sequences,
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No. Reference l1 l2 %Odd #bp Q1 (Q2) ∆GP ∆Gp
R

1 [27] Fig.1A 11 32 0.00 14/14 1.00 (1.00) -26.90 -26.90
2 [60] Fig. 2 16 36 0.00 18/19 0.95 (0.88) -22.60 -21.10
3 [60] Fig. 3 17 38 0.06 17/18 0.94 (0.96) -20.00 -19.00
4 [43] Fig. 1b 21 92 0.22 33/46 0.72 (0.74) -58.70 -42.50
5 [53] Fig. 1a 14 59 0.00 23/23 1.00 (0.97) -34.20 -33.70
6 [53] Fig. 4a 14 59 0.00 19/23 0.83 (0.79) -35.90 -34.70
7 [47] Fig. 1c 14 65 0.00 19/19 1.00 (0.85) -21.10 -18.80
8 [47] Fig. 1d 14 55 0.00 15/18 0.83 (0.83) -16.30 -13.50
9 [47] Fig. 1e 34 120 0.00 40/43 0.93 (0.84) -58.20 -53.10
10 [25] Fig. 1 left 25 46 0.06 28/31 0.90 (0.92) -45.80 -43.40
11 [25] Fig. 1 right 70 100 0.03 63/69 0.91 (0.85) -142.10 -135.90

Table 5.2: Measurement of PairFold accuracy on a set of mRNA target - ribozyme pairs.

the predicted and the real secondary structures, and highlights the wrong predictions and

the odd pairs.

5.5.3 Analysis of a combinatorial library of hairpin ribozymes

Some ribozymes, such as hammerhead ribozymes and hairpin ribozymes, are short RNA

sequences with catalytic abilities, and they have a specific shape: a part folds to itself and

another part binds to an RNA target and it cleaves it at the middle. Figure 5.2 (the same

structure has been shown earlier in Figure 1.3) shows the typical structure of a hairpin

ribozyme [68]. The top sequence represents the RNA target, also called substrate, which

is cleaved at the site indicated by the arrow. The bottom sequence is a hairpin ribozyme,

which performs the cleavage. The part of the ribozyme which folds to itself is typically a

fixed sequence (this core sequence can be found in [68]), but the other part of the ribozyme,

also called substrate binding domain, varies. Yu et al. [68] created a combinatorial library

of ribozymes and tested their cleavage ability on a “highly structured viral mRNA, the 26

S subgenomic RNA of Sindbis virus” [68], GenBank accession number: U38305.

The target RNA was originally of length 4.2 kilo-bases (kb). It has been cut in 4

sequences, of length roughly 1.1kb, and the library of ribozymes has been tested on these

fragments. In the presence of ions of Magnesium, 15 sites that were cleaved with high

efficiency, called “activity-selected sites”, have been identified. Other 23 sites have been

predicted to be cleaved, but the cleavage efficiency was low. These are called “sequence-

selected sites”. Yu et al. have also performed experiments on oligonucleotide substrates,

as opposed to targeting the long sequences. The reported results show that the cleavage

efficiencies are much higher on the short substrates, even for those which were not cleaved

while being part of the long sequences.

We used PairFold to predict the binding interactions between the hairpin ribozymes

which cleaved RNA and their target. Table 5.3 shows our predictions, in the cases when
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Figure 5.2: Typical structure of a hairpin ribozyme bound to an mRNA target.

the target is an oligo or a long sequence. The first column represents an identification

number that we assigned to each case. ‘A’ stands for “activity-selected site” and ‘S’ stands

for “sequence-selected site”. They are followed by a number. The experiments performed

by Yu et al. [68] show which was the substrate, but in some cases, one nucleotide of the

corresponding ribozyme is unknown, three different bases being possible. In these cases, we

performed tests for all three different alternatives, and we chose the best one. The letter at

the end of some identification numbers shows which base was chosen in these cases. It is

also underlined in the ribozyme substrate binding domain (column 4). Column 2 shows the

cleavage site, which is the number of the base in the GenBank nomenclature. Column 3 gives

the experimental cleavage efficiencies for the long RNA targets. 3 means strong cleavage

efficiency, 2 means moderate, 1 is poor and 0 is undetectable. Columns 5 to 8 give PairFold

prediction on oligos as target. Column 5 gives the number of correctly predicted base pairs

out of the total number of base pairs existing in the real structure. Column 6 gives the

two accuracy parameters that we used before: Q1 and Q2. Column 7 shows the minimum

free energy obtained by PairFold, and column 8 gives the standard free energy change of

the real structure, using the model underlying PairFold. The last column shows the results

obtained when running PairFold on the ribozymes and the long 1.1kb sequences. If the

binding of the ribozyme to the right site was predicted with an accuracy higher than 0.60,

then a “+” is indicated. If the secondary structure obtained was very different from the

typical ribozyme-substrate duplex secondary structure, then a “-” is indicated. If binding

to a site different than the right site has been predicted (i.e. a false positive), the predicted

target site is given.

While the predictions between the ribozymes and the oligos show over 0.85 accuracy

for most cases and at least 0.70 for all cases, only 4 out of 15 bindings similar to the typical

structure are predicted for long sequences. This shows that PairFold performs well on

short sequences, but as the sequences length increases, the accuracy goes down. For the
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Id Cleav. Cl. Ribozyme #bp Oligo ∆GP ∆Gp
R Long

site eff. fragment Q1(Q2)

A1U 8242 2 UGUCUCUGAAGCCU 22/23 0.96 (0.86) -32.90 -29.30 +

A2 8581 3 UUUUACCGAAGCCG 22/23 0.96 (0.89) -25.90 -25.10 -
A3 8658 2 GCACGGCGAAGUAU 23/23 1.00 (0.89) -31.30 -27.80 -
A4A 8663 3 CUAAAGAGAAGUUC 23/23 1.00 (0.93) -24.90 -24.20 -
A5 9333 2 CGUGUGAGAAGCGU 23/23 1.00 (0.93) -29.50 -28.80 9152
A6 9413 2 ACUACGCGAAGCGC 23/23 1.00 (0.93) -29.90 -29.20 +

A7 9516 2 GAUCCACGAAGUGG 23/23 1.00 (0.89) -32.00 -28.50 -
A8A 9841 3 ACCUAAAGAAGCAC 23/23 1.00 (0.89) -31.20 -27.70 -
A9 9861 2 GAAUGUCGAAGCAU 23/23 1.00 (0.89) -27.90 -24.40 -
A10A 9926 2 GGUAUAAGAAGCUG 23/23 1.00 (0.89) -31.00 -27.50 -
A11C 10115 2 ACAGUACGAAGCAA 19/23 0.83 (0.79) -23.20 -21.50 -
A12 10122 2 GGACAUAGAAGUAA 22/23 0.96 (0.79) -28.30 -24.60 -
A13A 10603 3 UCAUCGAGAAGUAU 23/23 1.00 (0.93) -27.20 -26.50 +

A14 11160 3 UUUGCACGAAGCAU 22/23 0.96 (0.89) -25.40 -24.60 -
A15U 11178 3 GAUAUGUGAAGCUG 23/23 1.00 (0.89) -30.10 -26.60 +

S1 7552 0 AUUUAGAGAAGCCG 23/23 1.00 (0.86) -27.30 -24.70 -
S2 7562 0 UAUGCUAGAAGUUU 19/23 0.83 (0.70) -24.80 -21.10 -
S3 7752 1 GGCACUAGAAGCUG 23/23 1.00 (0.86) -32.30 -30.30 -
S4 8084 0 UAUGCUAGAAGCUU 23/23 1.00 (0.86) -25.40 -23.40 -
S5 8254 0 UCGGACAGAAGCUG 23/23 1.00 (0.86) -31.30 -29.60 -
S6 8257 0 UAAUCGAGAAGCCA 22/23 0.96 (0.82) -27.20 -24.60 -
S7 8286 0 UAUCGCAGAAGCCC 23/23 1.00 (0.89) -31.50 -28.80 -
S8 8295 0 UCCGAGAGAAGUCG 23/23 1.00 (0.86) -30.40 -27.90 -
S9 8340 0 CCAGGUAGAAGCCG 23/23 1.00 (0.86) -32.10 -30.10 -
S10 8399 0 GCAGCAAGAAGCUC 23/23 1.00 (0.86) -32.20 -30.10 -
S11 8647 0 UAUGGUAGAAGUAC 23/23 1.00 (0.82) -28.40 -24.80 -
S12 8814 0 UUCUUUAGAAGUAU 22/23 0.96 (0.79) -24.10 -20.40 -
S13 9061 0 CUUUCAAGAAGUCG 23/23 1.00 (0.86) -27.00 -25.00 -
S14 9393 0 AACAGGAGAAGUGC 23/23 1.00 (0.86) -30.30 -27.70 -
S15 9552 0 UCGGUCAGAAGUGA 23/23 1.00 (0.86) -30.30 -28.70 -
S16 9702 0 UGAUGCAGAAGCUA 22/23 0.96 (0.82) -28.90 -27.20 -
S17 9893 0 CUGUUCAGAAGUAA 22/23 0.96 (0.82) -25.30 -23.50 -
S18 9945 0 AACGACAGAAGCGG 23/23 1.00 (0.89) -32.50 -29.00 -
S19 9948 0 UAGAACAGAAGCAG 23/23 1.00 (0.86) -26.30 -24.70 -
S20 10188 0 GGAGGGAGAAGCAG 23/23 1.00 (0.86) -34.40 -31.80 -
S21 10355 0 UCUACUAGAAGUUC 23/23 1.00 (0.82) -26.00 -23.20 -
S22 10812 0 CGGAUUAGAAGCAA 22/23 0.96 (0.82) -27.70 -25.60 -
S23 10920 0 ACAUUUAGAAGUUG 23/23 1.00 (0.86) -23.50 -21.50 -

Table 5.3: Measurement of PairFold accuracy on a library of hairpin ribozymes.
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“sequence-selected sites”, we note that the accuracy parameter Q2 is consistently lower than

the same parameter for the “activity-selected sites”. The predictions with the long targets

did not find any false positives.

Note that in Yu et al.’s experiments, cleavage on the long targets was detected only

in the presence of Magnesium ions. These might have an important role in stabilizing

the hairpin structure and in facilitating the binding to the substrates. Our model does

not consider the influence of ions on the structure. Including this in secondary structure

prediction models is an open question.

5.5.4 Prediction of primer-target binding

Primers are designed to bind to specific targets such that they will perform some function.

They are perfect complements of fragments of a longer RNA sequence. Most probably these

fragments form some structure with the rest of the sequence. Thus, primers are designed

to bind to the target fragment, so that the target can be amplified using the polymerase

enzyme. PairFold can be used at predicting the minimum free energy site binding between

the primer and the target fragment.

Yu et al. [68] designed 24 primers in order to identify the cleavage sites of the

ribozymes used in their experiments, and in order to read the nucleotides which compose

the four 1.1 kb sequences they used. Table 5.4 shows the results we obtained when running

PairFold on the designed primers and the long target sequences. Columns 1 and 2 show

the identification number used in Yu et al. [68] and the primer length. Column 3 shows

the target site for which the primers were designed, and which, according to Yu et al., the

primers bind perfectly. Column 4 shows the binding site predicted by PairFold.

In 22 out of the 24 cases, PairFold predicts the sites exactly. For 2 duplexes, shown

in bold, the prediction made by PairFold is that the primers form an internal loop with

two different locations.

5.5.5 PairFold in DNA word design

DNA codes are designed for information storage in DNA computation or for molecular

bar-codes in chemical libraries [50, 55, 56]. Designing good words is important for mini-

mizing errors due to unwanted hybridization between non-complementary words. Different

restrictions between words in the set, such as: hamming distance, GC content and reverse

complement hamming distance, have been used for DNA word design [17, 55, 56]. Includ-

ing thermodynamic constraints in addition to other constraints has been proposed as future

work by Tulpan et al. [56]. Currently, they use PairFold in their stochastic search meth-

ods for designing DNA codes. Whether or not using such constraints proves to be a good

solution is an open problem.

Also, PairFold has been recently used by Shortreed et al. [50] for generating a

combinatorial library of oligonucleotides for large scale DNA computing projects. The final
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Id Len. Binding site [68] Predicted site

PA0 21 7483 - 7503 7484 - 7503
PA1 17 7672 - 7688 7518 - 7520

8227 - 8239

PA2 121 7852 - 7972 7852 - 7972
PA3 19 8106 - 8124 8106 - 8124
PA4 21 8358 - 8378 8358 - 8378
PA5 18 8532 - 8549 8532 - 8549

PB0 20 8503 - 8522 8503 - 8522
PB1 19 8734 - 8752 8734 - 8752
PB2 20 8963 - 8982 8963 - 8982
PB3 19 9184 - 9202 9184 - 9202
PB4 20 9405 - 9424 9405 - 9424
PB5 20 9590 - 9609 9590 - 9609

PC0 20 9514 - 9533 9514 - 9533
PC1 20 9719 - 9738 9719 - 9738
PC2 20 9941 - 9960 9941 - 9960
PC3 21 10163 - 10183 9514 - 9516

10613 - 10616

PC4 18 10394 - 10411 10394 - 10411
PC5 21 10629 - 10649 10629 - 10649

PD0 19 10576 - 10594 10577 - 10594
PD1 18 10770 - 10787 10770 - 10787
PD2 20 10975 - 10994 10975 - 10994
PD3 20 11210 - 11229 11210 - 11229
PD4 17 11433 - 11449 11433 - 11449
PD5 26 11638 - 11663 11638 - 11663

Table 5.4: PairFold predictions on a set of designed primers.

purpose of their work is to solve a large-scale satisfiability problem using DNA computing.
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Chapter 6

CombFold

This chapter discusses our second extension of the dynamic programming algorithm for

nucleic acids secondary structure prediction. This extension is applied to a set of RNA or

DNA sequences rather than to a single molecule or a pair of molecules.

Consider the following definitions and notation:

• Let word denote an RNA or DNA sequence w = v1v2 . . . vl, where vi ∈ {A,C,G,U}

for RNA and vi ∈ {A,C,G, T} for DNA. The orientation of the strand is from 5’ to

3’, unless otherwise stated. For example, ACGCUAGGCA is an RNA word of length 10.

• Let set denote a set of g words of the same length l, formally S = {w1, w2, . . . ,

wg | length(wi) = length(wj),∀i, j ∈ {1, . . . , g}, i 6= j}. The following set is formed

of 4 words of length 5:

AUACG

UAGCG

GCCGA

CUGCG

The words order in a set does not matter, but for convenience later, we assume that

the words in S are ranked by their index.

• Let Input-Set denote a sequence of s sets, IS = S1, S2, . . . , Ss, e.g. the following is an

Input-Set of 5 sets:

UAGCGA CAGCGUAAUAU AUGCG AUAGCGGUA AUCG

AUAGAU AGAUGCGCGGU GAGCGCAAG CUGC

UAGGCUAGCGU GCGA

Note that the number of words in each set can differ, the same for the length of the

words across sets.
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w11 w21 . . . ws1

w12 w22 . . . ws2
...

...
...

...
w1g1 w2g2 . . . wsgs

An Input-Set can also be written in terms of words rather than sets: IS = {wij , 1 ≤

i ≤ s, 1 ≤ j ≤ gi}, where gi is the number of words in the set i.

Thus, an Input-Set IS is characterized by s sets, where each set Si has gi words, of

length li. In what follows, when IS is fixed, we consider all its characteristics: s, wij ,

gi, li, ∀i, j, 1 ≤ i ≤ s, 1 ≤ j ≤ gi, to be known.

• Let Combination denote an RNA/DNA sequence, formed by concatenating one word

wij of each set Si from IS, starting at S1 and finishing at Ss. For example C =

w11w21 . . . ws1 is a combination formed by concatenating the first word of each set

together. Generally, a combination is of the form C = w1b1w2b2 . . . wsbs
, where 1 ≤

bi ≤ gi. Here, bi denotes the word rank within the set Si. A combination has the

length n =
∑s

i=1 li. If we think of a combination as a sequence of nucleotides rather

than a concatenation of words, we can denote it as C = c1c2 . . . cn.

• Given an Input-Set IS, the set of all possible combinations forms the Combina-torial-

Set : CS = {w1b1w2b2 . . . wsbs
| 1 ≤ bi ≤ gi}. Note that all combinations have the

same length: n =
∑

i=1,s li and that CS has g1 × g2 × . . .× gs elements. If gi > 1,∀i,

then the number of elements in CS is exponential in s.

Considering the aforementioned notations, we define the optimal MFE combina-

tion problem of secondary structure prediction of a combinatorial set of RNA molecules

as follows: given an RNA Input-Set IS and a thermodynamic model M , predict which

combination, out of all elements of the Combinatorial-Set CS formed from IS, folds to a

pseudoknot-free secondary structure with the lowest minimum free energy.

An extension of the optimal MFE combination problem is to find the k best MFE

combinations, rather than the optimal one only. We define the k-suboptimal MFE combi-

nations problem of secondary structure prediction of a combinatorial set of RNA molecules

as follows: given an RNA Input-Set IS and a thermodynamic model M , predict which k

different combinations, out of all elements of the Combinatorial-Set CS formed from IS,

fold to pseudoknot-free secondary structures with the lowest minimum free energies.

The optimal and k-suboptimal MFE combination problem are discussed in this chap-

ter. Note that in our algorithms, given a combination C, we look at the minimum free energy

MFE only. Extensions of these problems would be to find suboptimal structures (i.e. whose

free energy is greater than the MFE), or to consider pseudoknots, interactions with ions or

other tertiary interactions.

76



123... ....i...... ..... ......j.. ...n

bj 1 UAGCGA CAGCGUAAUAU AUGCG AUAGCGGUA AUCG

bi 2 AUAGAU AGAUGCGCGGU GAGCGCAAG CUGC

3 UAGGCUAGCGU GCGA

Table 6.1: Example of a combinatorial set of short RNA sequences.

The remainder of this chapter will first give a dynamic programming algorithm which

runs in polynomial time, for solving the optimal MFE combination problem. Then, in Sec-

tion 2, an algorithm for the k-suboptimal MFE combinations problem will be presented.

Implementation details of these two algorithms into the program CombFold will be given in

Section 3. A thorough theoretical and empirical analysis of the optimal and k-suboptimal

MFE combinations problem in Section 4 show that, although they are complex algorithms,

they run in polynomial time. We conclude this chapter by presenting applications to bio-

chemical experiments and DNA computing in Section 5.

6.1 A dynamic programming algorithm for the optimal MFE

combination problem

The main idea of the CombFold algorithm is based on similar arrays and recurrence relations

as SimFold, discussed in Section 4.1.

One method to solve this problem is to create all possible combinations and then

to run SimFold or an equivalent program on each of them. However, depending on the

characteristics of the Input-Set, the number of combinations may be very big. If gi =

g > 1,∀i, then there are gs combinations, and SimFold complexity is O(n3), as we show

in Section 4.3. This leads to a complexity of O(gs · n3), where n is the length of the

combinations. More generally, the number of combinations is exponential in the number of

sets which have at least two words. We have implemented this exhaustive search approach

under the name of ExhaustS, which will be discussed in Section 6.4 later in this chapter.

This section describes a dynamic programming algorithm to solve the basic problem

of secondary structure prediction of a combinatorial set of RNA molecules in polynomial

time. The main idea of the algorithm is to extend the Zuker and Stiegler [71] algorithm, in

which at each position i, there might be several possible nucleotides, since there might be

several words in the set of i. In the description that follows, we will use indices i and j for

the nucleotide position, i.e. columns in Table 6.1. s(i) and s(j) will be the set in which i

and j are positioned, respectively. bi and bj will be the index of the word within the set s(i)

and s(j), i.e. the rows in Table 6.1. Given a set S, g(S) will return the number of words in

S. Hence, bi can take g(s(i)) values. In order to get the base at the column i and row bi of

the Input-Set IS, we will use the function: ci = Nucleotide(IS, bi, i). Table 6.1 shows the

nucleotides ci and cj .
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Arrays

Instead of two-dimensional arrays, as we showed that SimFold needed (Section 4.1), now we

deal with four-dimensional arrays, since for the nucleotide at the position i, there might be

several possible words, and similarly for the nucleotide at the position j. The names of the

arrays for CombFold correspond to the same names for SimFold, and a c (from CombFold)

is added as subscript. Note that, having i and fixing the value of bi, the word index within

the set of i, we can easily determine the nucleotide. In what follows, we assume we use the

function Nucleotide to find the base ci whenever IS, bi and i are known, without explicitly

stating so. In the following arrays, the values for each bi, bj , i and j, will be calculated:

• W ′(j) denotes the free energy change of the first j nucleotides of a combination

c1c2 . . . cj , where the word index within the set of j, bj , was chosen such that the

free energy is minimized. Consequently, W ′(n) contains the minimum free energy

change over the entire Combinatorial-Set corresponding to the Input-Set IS;

• W c(bj , j) denotes the free energy change of the combination in which the index of the

set of j is bj , therefore it is fixed;

• V c(bi, bj , i, j) is the minimum free energy of the combination in which bi and bj are

fixed, assuming that (ci.cj) is a base pair;

• Hc(bi, bj , i, j) is the free energy of the combination in which bi and bj are fixed,

assuming that (ci.cj) closes a hairpin loop;

• Sc(bi, bj, i, j) is the free energy of the combination in which bi and bj are fixed, as-

suming that (ci.cj) closes a stacked loop;

• V BIc(bi, bj , i, j) is the free energy of the combination in which bi and bj are fixed,

assuming that (ci.cj) closes an internal loop;

• V M c(bi, bj , i, j) is the free energy of the combination in which bi and bj are fixed,

assuming that (ci.cj) closes a multi-branched loop;

• WM c(bi, bj , i, j) is used to compute the array V M .

Recurrence relations

The same as for SimFold (Section 4.1) and PairFold (Section 5.1), the aforementioned

arrays are constructed by recurrence relations.

W ′(j) is calculated by minimizing the values W c(bj , j) over all possible bj:

W ′(j) = minbj
W c(bj , j)

The equation for W c(bj , j) is an extension of the relation for W (j) from Section 4.1:
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W c(bj , j) = min
1≤i<j


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minbj−1∈X({bj ,j},{j−1}) W c(bj−1, j − 1),

minbi−1,bi∈X({bj ,j},{i−1,i})(V
c(bi, bj , i, j) + Non-GC-penalty(ci, cj)+

W c(bi−1, i− 1)),

minbi−1,bi,bi+1∈X({bj ,j},{i−1,i,i+1})(V
c(bi+1, bj , i + 1, j)+

Non-GC-penalty(ci+1, cj) + ∆G-Dangle-3’(cj , ci+1, ci) + W c(bi−1, i− 1)),

minbi,bj−1∈X({bj ,j},{i,j−1})(V
c(bi, bj−1, i, j − 1) + Non-GC-penalty(ci, cj−1)+

∆G-Dangle-5’(cj−1, ci, cj) + W c(bi−1, i− 1)),

minbi−1,bi,bi+1,bj−1∈X({bj ,j},{i−1,i,i+1,j−1})(V
c(bi+1, bj−1, i + 1, j − 1)+

Non-GC-penalty(ci+1, cj−1) + ∆G-Dangle-3’(cj−1, ci+1, ci)+

∆G-Dangle-5’(cj−1, ci+1, sj) + W c(bi−1, i− 1))

where X is a function which returns the range of words for all the needed indexes.

For example, in the first line, in SimFold, we had to calculate W (j − 1). In CombFold, the

word corresponding to j − 1 depends on the sets to which j and j − 1 belong, and on bj :

X({bj , j}, {j − 1}) =

{

{bj} , if (s(j − 1) = s(j))

{1, . . . , g(s(j − 1))}, if (s(j − 1) 6= s(j))

For the second line, there are two word indices, bi−1 and bi, that we have to find the

ranges for:

X({bj , j}, {i − 1, i}) =






















bj, bj , if (s(i− 1) = s(i) = s(j))

{1, . . . , g(s(i − 1))}, bj , if (s(i− 1) 6= s(i) = s(j))

{1, . . . , g(s(i − 1))}, bi−1 , if (s(i− 1) = s(i) 6= s(j))

{1, . . . , g(s(i − 1))}, {1, . . . , g(s(i))}, if (s(i− 1) 6= s(i) 6= s(j))

In the first two if lines of the equation for W c above, the values of bj−1 (first line),

and bi−1, bi (second line), depend on one other index: i, and its corresponding b. However,

in a more general case, there are p indexes with known b’s, and q indexes with unknown

b’s, for which we want to find the ranges. Note that the number of if lines will be 2p+q−1.

Given the thermodynamic model described in Chapter 3, the highest values for p and q are

4 and 4, i.e. in the case of internal loops.

The function X calculates the ranges for the unknown b’s, for any number of known

and unknown indexes. Procedure 6 gives the pseudocode for X procedure. The input

is comprised of two sets: the first set contains the known b’s and the known indexes:

{bi1 . . . bip , i1 . . . ip}. They will help to decide the ranges of the unknown b’s. The second
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Compute X Procedure

input: set of p indexes with known b’s {bi1 . . . bip , i1 . . . ip},
set of q indexes with unknown b’s {j1 . . . jq};
output: q sets Bj1 . . . Bjq corresponding to {j1 . . . jq};

procedure Compute X
order the indexes i’s and j’s;
identify the sets S1 . . . Sm to which i’s and j’s belong;
for (S = S1 to Sm)

if (there exists ik in set S)
foreach (ju in set S)

Bju
= {bik

};
end foreach;

else

jv ← the smallest j in S;
Bjv

= {1, . . . , g(S)};
foreach (ju in set S, with ju 6= jv)

Bju
= Bjv

;
end foreach;

end if;
end for;
return Bj1 , . . . , Bjq

;
end procedure X.

Procedure 6: Pseudocode for the X procedure. Details are described in the text.

set contains the indexes of the unknown b’s, {j1 . . . jq}. First, we need to order all the

values i1 . . . ip, j1 . . . jq. This is necessary for the second step, which identifies the sets

corresponding to each index. The two extreme situations are: (1) all indexes are in the

same set, and thus there will be only one possible configuration for the unknown b’s; (2) all

indexes are in different sets, hence there will be g(s(j1))× . . .× g(s(jq)) possible values for

the unknown b’s.

Once we identified the sets, for each set S, first we check whether there exists the

index of a known b in this set. If this is the case, then all the j’s in S will have the

corresponding b’s equal to the known b. No other option is available for these unknown b’s,

since the value for the known b is fixed. If no known b exists in S, then all the unknown

b’s in S will be in the range {1, . . . , g(S)}, with the constraint that they will have the same

value at a given time, being in the same set. In other words, we can give a value to the b of

the smallest index in S, and all the other b’s in S will have the same value. The function

X will return a set of values for the needed unknown b’s.

An example of a particular situation, with the sets {bi, bj , i, j} and {i + 1, i + 2, j −

2, j − 1} as input, is presented in Table 6.2, where s(i) 6= s(i + 1) = s(i + 2) 6= s(j − 2) 6=

s(j − 1) = s(j). In this case, bi+1 will take values in the range {1, . . . , g(s(i + 1))}, bi+2

will take the value that bi+1 takes, bj−2 will be in the range {1, . . . , g(s(j − 2))}, and bj−1
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equals bj . Hence, for this particular situation, there will be g(s(i + 1)) × g(s(j − 2)) terms

to minimize over.

i i + 1 i + 2 j − 2 j − 1 j

bi 1 bi+1 1 bj bj
...

...
g(s(i + 1)) g(s(j − 2))

Table 6.2: Example of choices for b values for a particular situation.

Using function X to decide which the possible values for each word, the remaining

recurrence relations for CombFold are a logical extension of the corresponding recurrence

relations for SimFold, described in Section 4.1: the equation for V c is an extension of the

relation for V , Hc corresponds to H, Sc with S, V BIc with V BI, V M c with V M and

WM c with WM . The relations for V c and Hc are straightforward:

V c(bi, bj , i, j) =











+∞ , for i ≥ j

min(Hc(bi, bj , i, j), S
c(bi, bj , i, j), V BIc(bi, bj , i, j)

V M c(bi, bj , i, j)) , for i < j

Hc(bi, bj , i, j) = ∆G-Hc(IS, bi, bj , i, j)

Note that, although here we use the same thermodynamic model as for SimFold, the

procedure for hairpin calculation for CombFold needs to be rewritten. Procedure 7 shows

that, in the situations where we need to access the nucleotides at other locations than the

input (i.e. i and j), a minimization over the possible b’s is necessary. Also, note that the

special cases of GGG hairpin and poly-C hairpin are omitted at this version of CombFold,

since the algorithm gets too complicated. At the end of the procedure, the values that

turned out to be the best for the b’s tried inside the procedure are saved for later reference.

For the calculation of stacked loops, finding bi+1 and bj−1 is imposed again by the

nearest neighbour model itself.

Sc(bi, bj , i, j) = min
bi+1,bj−1∈X({bi,bj ,i,j},{i+1,j−1})

(∆G-Sc(IS, bi, bj , bi+1, bj−1, i, j) + V (bi+1, bj−1, i + 1, j − 1))

where

∆G-Sc(IS, bi, bj , bi+1, bj−1, i, j) = ∆-Stack(ci, cj , ci+1, cj−1)

The internal loop free energy calculation is a minimization over i′ and j′, i.e. the

closing pair of the internal loop. Once i′ and j′ fixed, we calculate the free energy value for
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CombFold Hairpin-Loop-Free-Energy Procedure

input: IS,bi,bj ,i,j;
output: free energy ∆G;

procedure Compute ∆G-Hc

∆G1 := 0; ∆G2 := 0; ∆G3 := 0;
l := j − i− 1;
if (l < 3)

∆G := infinity;
else

∆G1 := ∆G-Length-H (l);
if (l = 3)

∆G2 := Non-GC-penalty(ci, cj);
∆G3 := minbi+1,bi+2,bj−1∈X({bi,bj ,i,j},{i+1,i+2,j−1})

∆G-Hairpin-3 (ci, ci+1, ci+2, cj−1, cj);
else

∆G2 := minbi+1,bj−1∈X({bi,bj ,i,j},{i+1,j−1})∆G-Hairpin-n(ci, cj , ci+1, cj−1);
if (l = 4)

∆G3 := minbi+1,bi+2,bj−2,bj−1∈X({bi,bj ,i,j},{i+1,i+2,j−2,j−1})

∆G-Hairpin-4 (ci , ci+1, ci+2, cj−2, cj−1, cj);
endif;

endif;
∆G := ∆G1 + ∆G2 + ∆G3;

endif;
save best b’s;
return ∆G;

end procedure ∆G-Hc.

Procedure 7: Outline of the calculation for hairpin loop free energy for CombFold.

each possible bi′ and bj′ . The procedure for ∆G-Ic calculation needs some changes too, i.e.

minimization over different b for the special cases, and is given in Procedure 8.

V BIc(bi, bj , i, j) = min
i<i′<j′<j

( min
bi′ ,bj′∈X({bi ,bj ,i,j},{i′,j′})

(∆G-Ic(IS, bi, bj , bi′ , bj′ , i, j, i
′, j′) + V (bi′ , bj′ , i

′, j′)))

The free energy for multi-loops adds the minimization over the necessary b’s as well.

The equations for WM c and V M c follow:

WM c(bi, bj , i, j) = min
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CombFold Internal-Loop-Free-Energy Procedure

input: IS,bi,bj ,bi′ ,bj′ ,i,j,i
′,j′;

output: free energy ∆G;

procedure Compute ∆G-Ic

∆G1 := 0; ∆G2 := 0; ∆G3 := 0;
l1 := i′ − i− 1; l2 := j − j′ − 1; l = l1 + l2
if (l1 = 0 or l2 = 0)

∆G := ∆G-Length-B(l);
if (l1 + l2 = 1)

∆G := ∆G + ∆G-Stack(ci, cj , ci′ , cj′)
else

∆G := ∆G + Non-GC-Penalty(ci, cj) + Non-GC-Penalty(ci′ , cj′);
endif;

else if (l1 = 1 and l2 = 1)
∆G := minbi+1,bj−1∈X({bi,bj ,i,j},{i+1,j−1})

∆G-Internal-2 (ci, cj , ci′ , cj′ , ci+1, cj−1);
else if (l1 = 1 and l2 = 2)

∆G := minbi+1,bj−1,bj′+1∈X({bi,bj ,i,j},{i+1,j−1,j′+1})

∆G-Internal-3 (ci, cj , ci′ , cj′ , ci+1, cj−1, cj′+1);
else if (l1 = 2 and l2 = 1)

∆G := minbj−1 ,bi′−1,bi+1∈X({bi,bj ,i,j},{j−1,i′−1,i+1})

∆G-Internal-3 (cj′ , ci′ , cj , ci, cj−1, ci′−1, ci+1);
else if (l1 = 2 and l2 = 2)

∆G := minbi+1,bj−1,bi′−1,bj′+1∈X({bi,bj ,i,j},{i+1,j−1,i′−1,j′+1})

∆G-Internal-4 (ci, cj , ci′ , cj′ , ci+1, cj−1, ci′−1, cj′+1);
else

∆G1 := ∆G-Length-I (l);
if ((l1 = 1 or l2 = 1) and Gail-Rule = 1)

∆G2 := ∆G-Internal-n(ci, cj ,
′ A′,′ A′) + ∆G-Internal-n(ci′ , cj′ ,

′ A′,′ A′);
else

∆G2 := minbi+1,bj−1,bi′−1,bj′+1∈X({bi,bj ,i,j},{i+1,j−1,i′−1,j′+1})

∆G-Internal-n(ci, cj , ci+1, cj−1) + ∆G-Internal-n(cj′ , ci′ , cj′+1, ci′−1);
endif;
∆G3 := ∆G-Asymmetry (l1, l2);
∆G := ∆G1 + ∆G2 + ∆G3;

endif;
save best b’s;
return ∆G;

end procedure ∆G-Ic.

Procedure 8: Outline of the calculation for internal loop free energy for CombFold.
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V c(bi, bj , i, j) + Non-GC-penalty(ci, cj) + Multi-b,

minbi+1∈X({bi ,bj ,i,j},{i+1})(V
c(bi+1, bj , i + 1, j) + Non-GC-penalty(ci+1, cj)+

∆G-Dangle-3’(cj , ci+1, ci) + Multi-b + Multi-c),

minbj−1∈X({bi,bj ,i,j},{j−1})(V
c(bi, bj−1, i, j − 1) + Non-GC-penalty(ci, cj−1)+

∆G-Dangle-5’(cj−1, ci, cj) + Multi-b + Multi-c),

minbi+1,bj−1∈X({bi ,bj ,i,j},{i+1,j−1})(V
c(bi+1, bj−1, i + 1, j − 1)+

Non-GC-penalty(ci+1, cj−1) + ∆G-Dangle-3’(cj−1, ci+1, ci)+

∆G-Dangle-5’(cj−1, ci+1, cj) + Multi-b + 2×Multi-c),

minbi+1∈X({bi ,bj ,i,j},{i+1})(WM c(bi+1, bj , i + 1, j) + Multi-c),

minbj−1∈X({bi,bj ,i,j},{j−1})(WM c(bi, bj−1, i, j − 1) + Multi-c),

mini≤h<j,bh,bh+1∈X({bi,bj ,i,j},{h,h+1})(WM c(bi, bh, i, h) + WM c(bh+1, bj , h + 1, j))

V M c(bi, bj , i, j) = min


















































minbi+1,bj−1∈X({bi,bj ,i,j},{i+1,j−1}) WM c(bi+1, bj−1, i + 1, j − 1),

minbi+1,bi+2,bj−1∈X({bi,bj ,i,j},{i+1,i+2,j−1})(WM c(bi+2, bj−1, i + 2, j − 1)+

∆G-Dangle-3’(ci, cj , ci+1) + Multi-c),

minbi+1,bj−2,bj−1∈X({bi,bj ,i,j},{i+1,j−2,j−1})(WM c(bi+1, bj−2, i + 1, j − 2)+

∆G-Dangle-5’(ci, cj , cj−1) + Multi-c),

minbi+1,bi+2,bj−2,bj−1∈X({bi,bj ,i,j},{i+1,i+2,j−2,j−1})(WM c(bi+2, bj−2, i + 2, j − 2)+

∆G-Dangle-3’(ci, cj , ci+1) + ∆G-Dangle-5’(ci, cj , cj−1) + 2×Multi-c)

In this section we described the arrays and recurrence equations for predicting the

optimal MFE combination of an Input-Set. The algorithm, as presented here, will find only

the best combination only, but it can be used to find the next k best combinations. An

algorithm for finding the k best combinations is described in the following section.

6.2 An algorithm for the k-suboptimal MFE combinations

problem

The algorithm for the optimal MFE combination problem, just described in the previous

section, returns only the combination which has the smallest MFE. The algorithm can be

extended to return the k combinations that have the lowest MFE.

Consider the Input-Set IS contains s sets Si, each having gi words. We will add

the superscript “(1)” to the notation of our sets to denote that first we are looking for the

optimal combinations. The superscripts for the next combinations will be “(2)” and so on.

Thus, IS(1) = {S
(1)
1 , S

(1)
2 , . . . , S

(1)
s } will have the Combinatorial-Set CS(1) associated and

will contain the following words:

First, we find the optimal MFE combination using the method described in the

previous section. Let the combination C (1) = {w
(1)
1C1

w
(1)
2C2

. . . w
(1)
sCs
} denote the optimal MFE
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S
(1)
1 S

(1)
2 . . . S

(1)
s

w11 w21 . . . ws1

w12 w22 . . . ws2
...

...
...

...
w1g1 w2g2 . . . wsgs

combination, where Ci denotes the index of the word in the set S
(1)
i , which belongs to the

optimum combination. The Input-Set IS(1) contains all the possible combinations of the

original set IS. To find the next best combinations, first we partition the set IS (1) into s

sets which do not contain C (1):

IS(2)1 = { S
(1)
1 − {w

(1)
1C1
}, S

(1)
2 , . . . , S

(1)
s }

IS(2)2 = { {w
(1)
1C1
}, S

(1)
2 − {w

(1)
2C2
}, . . . , S

(1)
s }

...

IS(2)s = { {w
(1)
1C1
}, {w

(1)
2C2
}, . . . , S

(1)
s − {w

(1)
sCs
} }

For convenience later, we denote the newly created sets with S
(2)j
i , where 1 ≤ i, j ≤ s,

i denotes the set index within the Input-Set, as in the previous notations, and j denotes the

index of the newly created Input-Set :

IS(2)1 = {S
(2)1
1 , S

(2)1
2 , . . . , S

(2)1
s }

IS(2)2 = {S
(2)2
1 , S

(2)2
2 , . . . , S

(2)2
s }

...

IS(2)s = {S
(2)s
1 , S

(2)s
2 , . . . , S

(2)s
s }

The Input-Sets IS(2)1, IS(2)2, . . . , IS(2)s have the following properties:

• C(1) /∈ CS(2)m,∀m, 1 ≤ m ≤ s;

• CS(2)m ∩CS(2)m′

= ∅,∀m,m′, 1 ≤ m,m′ ≤ s,m 6= m′;

• {C(1)} ∪ CS(2)m ∪ CS(2)m′

= CS(1),∀m,m′, 1 ≤ m,m′ ≤ s,m 6= m′,

where CS(i)j denotes the Combinatorial-Set associated to the Input-Set IS (i)j . In other

words, (1) the combination C (1) is not included in any of the new Input-Sets created by par-

titioning, (2) the new input sets do not have any combinations in common and (3) the whole

space of combinations in CS(1) is covered by the new input sets plus the optimal combination

found. This leads to finding the optimal combinations for each of IS (2)1, IS(2)2, . . . , IS(2)s,

followed by choosing the one with the smallest MFE. Thus, the standard free energy change
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Figure 6.1: The algorithm for finding the k-suboptimal MFE combinations of a combinatorial set.

of the second combination will be ∆G(2) = min(∆G(2)1,∆G(2)2, . . . ∆G(2)s), where ∆G(2)i

is the MFE of the IS(2)i. Let i be such that ∆G(2) = ∆G(2)i is the smallest MFE and

let C(2) = {w
(2)i
1C1

w
(2)i
2C2

. . . w
(2)i
sCs
} denote the second best combination. The next step is to

partition IS(2)i, in the same way we partitioned IS(1). We will obtain the Input-Sets

IS(3)1, IS(3)2, . . . IS(3)s. Now, note that the following are true:

• C(1) and C(2) /∈ CS(2)m and CS(3)n,∀m,n, i ≤ m,n ≤ s,m 6= i;

• CS(2)m ∩CS(2)m′

∩ CS(3)n ∩ CS(3)n′

= ∅,∀m,n, i ≤ m,n ≤ s,m 6= i,m 6= m′, n 6= n′;

• {C(1), C(2)} ∪CS(2)m ∪CS(2)m′

∪CS(3)n ∪CS(3)n′

= CS(1),∀m,n, i ≤ m,n ≤ s,m 6=

i,m 6= m′, n 6= n′.

Thus, the MFE of the third combination will be:

∆G(3) = min(∆G(2)1, . . . ,∆G(2)i−1,∆G(2)i+1, . . . ,∆G(2)s,∆G(3)1, . . . ,∆G(3)s).

Procedure 6.1 shows the steps just described. Recursively continuing in the same

way, we can find the best k combinations. However, note that the tree of partitioned Input-

Sets will grow proportionally with k, more exactly, it will grow by at most k · s, which

implies increase in run time and space. Section 6.3 will discuss how to implement this

extension in an efficient way.
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It is important to note that when creating the new Input-Set, the ones with a

lower index will typically have a bigger solution space (i.e. number of possible combi-

nations) than the ones with a higher index. Thus, if after we found the second combi-

nation, ∆G(2) = ∆G(2)s, the third combination will be found much more quickly than if

∆G(2) = ∆G(2)1. Also, it is possible that the Input-Set which has the next best combi-

nations will be partitioned in less than s partitions (or even no partitions at all), since

the other partitions are empty. In this case, only the optimal MFE combinations of the

non-empty partitions will be considered. Examples of the running time on some problem

instances are discussed in Section 6.4.

6.3 Implementation

In this section we describe implementation details of CombFold, as a logical extension of

the implementation details described for SimFold, in Section 4.2.

Implementation for the optimal MFE combination problem

First, the pseudocode of the algorithm for the optimal MFE combination problem is de-

scribed. The arrays W ′, W c, V c and WM c will store information necessary to backtrack

and extract the combination with the smallest MFE, and its secondary structure and MFE

value. Let W ′
ds, W c

ds, V c
ds and WM c

ds denote the data structures associated with each of the

arrays W ′, W c, V c and WM c. W ′
ds(j) will contain information about the free energy of the

best combination up to index j, as well as the index bj within the set. W c
ds(bj , j) will contain

the free energy of the best combination up to index (bj, j), the number of branches of the

multi-domain, the indexes of the last domain, and the right index (including its b) of the

next domain. V c
ds(bi, bj , i, j) contains the free energy, the optimal type (HAIRPIN LOOP,

STACKED LOOP, INTERNAL LOOP or MULTI LOOP) for the pair (ci.cj) and details

about where the internal branches for internal loops and multi-loops are located, in case

(ci.cj) closes such an elementary structure. Finally, WM c
ds(bi, bj , i, j) contains the free en-

ergy of the multi-loop fragment and other information needed to reconstitute the multi-loop

branches completely.

Note that the arrays W c
ds and V c

ds, as opposed to the corresponding arrays Wds

and Vds for SimFold, will also contain information about the neighbouring indexes, such

as bi+1, bj−1, i + 1, j − 1, that have been chosen while constructing the path of the best

combination. Using all these dependencies will permit finding the best combination in the

backtracking procedure.

Procedure 9 gives a pseudocode of the CombFold algorithm for determining the

optimal MFE combination. The main idea is the same as in the case of SimFold, but now

we have to traverse all the words in each set, in addition to the combinations indexed from 1

to n. The function Compute-WMc fills the WM c
ds array with information regarding partial

multi-loops, using the equation for WM c given in Section 6.1. The function Compute-
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CombFold-optimal Procedure

input: RNA or DNA Input-Set IS;
output: minimum free energy ∆G, secondary structure R, combination C;

procedure CombFold-optimal
for (j := 1 to n)

for (bj := 1 to g(s(j)))
for (i := j − 1 down to 1)

for (bi ∈ X({bj , j}, {i}))
WM c

ds(bi, bj , i, j) := Compute-WMc(bi, bj , i, j);
end for;

end for;
for (i := 1 to j − 1)

for (bi ∈ X({bj , j}, {i}))
V c

ds(bi, bj , i, j) := Compute-Vc(bi, bj , i, j);
end for;

end for;
end for;

end for;
for (j := 2 to n)

for (bj := 1 to g(s(j)))
W c

ds(bj , j) := Compute-Wc(bj , j);
end for;
W ′

ds(j).free energy := minbj
(W c

ds(bj , j).free energy);
W ′

ds(j).b := bj that minimizes W c
ds(bj , j).free energy;

end for;
∆G := W ′

ds(n).free energy;
i := n;
bi := W ′

ds(i).b;
while (i > 0 and W c

ds(bi, i).num branches > 0)
(bid

, bjd
, id, jd) := W c

ds(bi, i).last domain;
(R, C) := CombFold-Backtrack (bid

, bjd
, id, jd, V

c
ds, W

c
ds);

(bi, i) := W c
ds(bi, i).next domain i;

end while;
return ∆G, R, C;

end procedure CombFold-optimal.

Procedure 9: Pseudocode for the CombFold algorithm, when only the optimal MFE combination

is searched for.

Vc minimises over the four possible elementary structures, and also stores dependency

information in the array V c
ds. Once this array is filled for all bi, bj , i, j, it can be used

to find the multi-domains for each potential combination ending in bj , j. The function

Compute-Wc fills the array W c
ds, which can then be straightforwardly used to create the

array W ′
ds. The value W ′

ds.free energy will be the lowest MFE of the given Input-Set. The

combination C and the MFE structure R can be extracted by backtracking through the V c
ds

array. Procedure 10 gives the resursive backtracking procedure, which is very close to the
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CombFold-Backtrack Procedure

input: Indexes bi, bj , i, j, data structures V c
ds, W c

ds;
output: Partially filled secondary structure R, partial combination C;

procedure CombFold-Backtrack
if (i > j)

return (∅, ∅);
else if (V c

ds(bi, bj , i, j).type = HAIRPIN LOOP)
Save-Structure (R);
Save-Combination (C);
return R, C;

else if (V c
ds(bi, bj , i, j).type = STACKED LOOP)

Save-Structure (R);
Save-Combination (C);
return CombFold-Backtrack (bi+1, bj−1, i + 1, j − 1, V c

ds, W c
ds);

else if (V c
ds(bi, bj , i, j).type = INTERNAL LOOP)

Save-Structure (R);
Save-Combination (C);
return CombFold-Backtrack (V c

ds(i, j).bi′ , V
c
ds(i, j).bj′ , V

c
ds(i, j).i

′, V c
ds(i, j).j

′, V c
ds, W

c
ds);

else if (V c
ds(bi, bj , i, j).type = MULTI LOOP)

Save-Structure (R);
Save-Combination (C);
for each branch B

return CombFold-Backtrack (B.bi, B.bj , B.i, B.j, V c
ds, W c

ds);
end for;

end if;
end procedure CombFold-Backtrack.

Procedure 10: Pseudocode for the backtracking algorithm for CombFold-optimal.

corresponding procedure for SimFold, given in Procedure 4 in Chapter 4.

Implementation of the k-suboptimal MFE combination problem

Procedure 11 shows the pseudocode for the k-suboptimal MFE combination problem which

was described in Section 6.2. The input to the procedure CombFold-k-suboptimal is the

Input-Set and k. The output is comprised of three vectors of size k, for the best k free

energies, along with their associated secondary structures and combinations. To find the

optimal combination, first the Combfold-optimal procedure is called. To find the next k− 1

combinations, three stacks for candidate free energies and their associated structures and

combinations are used. First, they are empty, and a resursive procedure, called Subopt-

recursion, is called. Its pseudocode is described in Procedure 12.

The input to the Subopt-recursion procedure is an Input-Set IS to partition, the

remaining number of combinations k, the parent combination Cp, which will be used for

partitioning of IS, and the three stacks which keep the candidate solutions. The output
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CombFold-k-suboptimal Procedure

input: RNA or DNA Input-Set IS, number of suboptimal combinations k;
output: vectors ∆G1:k, R1:k and C1:k with the k best free energies,
secondary structures and combinations;

procedure CombFold-k-suboptimal
(∆G1, R1, C1) := CombFold-optimal (IS);
∆G-stack := ∅;
R-stack := ∅;
C-stack := ∅;
(∆G2:k, R2:k, C2:k) := Subopt-recursion (IS, k − 1, C1, ∆G-stack, R-stack, C-stack);
return ∆G1:k, R1:k, C1:k;

end procedure CombFold-k-suboptimal.

Procedure 11: Pseudocode for the k-suboptimal MFE combinations problem.

is three vectors containing the best combinations found, and their MFE and structures.

The recursive procedure stops when there are no more suboptimal combinations to look for

(k = 0), in which case it returns empty sets. If k > 0, first we partition the input set IS

using Cp, as described in Section 6.2. A number of s new Input-Sets IS ′
1, . . . , IS′

s will be

created, and the optimal MFE combination will be found. The free energies, structures and

combinations are added to the corresponding stacks.

The smallest MFE out of all MFEs in ∆G-stack will be the the MFE of the next

best combination. The corresponding structure and combination are stored, and then the

procedure is called recursively, continuing from the last best combination found.

Note that, in total, at most s · k calls to CombFold-optimal will be performed, and

at most (s − 1) · k elements will exist on each of the three stacks. However, some of

the already calculated 4-dimensional arrays V c
ds and WM c

ds can be used for the children.

Consider the parent Input-Set IS(1) = {S
(1)
1 . . . S

(1)
s } and consider that V c

ds and WM c
ds are

calculated for this Input-Set. Consider the child partition IS (2)i = {{w
(1)
1C1
}, . . . , S

(1)
i −

{w
(1)
iCi
}, S

(1)
i+1, . . . , S

(1)
s }. The V c

ds and WM c
ds values for S

(1)
i+1, . . . , S

(1)
s will be the same, hence

they can be reused for the children. This is an important save on running time and space,

which is implemented in the current version of CombFold.

In order to reuse parts of the already calculated data structures, the data structures

corresponding to all nodes of the tree must be kept in memory. This implies need for

much space, which increases with k. A trick for saving some of this space, which is not

implemented yet, would be to keep only the k lowest MFE values in the stack ∆G-stack.

There is no need to keep the next values, since they will never become one of the best k

combinations. The nodes in the tree corresponding to the values k + 1 and beyond can be

released from memory.
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Subopt-recursion Procedure

input: RNA or DNA Input-Set IS, number of suboptimal combinations k,
the parent combination Cp, stacks ∆G-stack, R-stack, C-stack;
output: vectors ∆G1:k, R1:k, C1:k with the k best free energies,
secondary structures and combinations;

procedure Subopt-recursion
if (k = 0)

return (∅, ∅, ∅);
end if;
(IS′

1, . . . , IS′
s) = Partition-input-set (IS, Cp);

for (i := 1 to s)
(∆G′

i, R
′
i, C

′
i) := CombFold-optimal (IS ′

i);
end for;
add ∆G′

1:s to ∆G-stack;
add R′

1:s to R-stack;
add C ′

1:s to C-stack;
∆G1 := mini ∆G-stacki;
pos := get position of ∆G1 in ∆G-stack;
R1 := R-stackpos;
C1 := C-stackpos;
remove ∆G1 from ∆G-stack;
remove R1 from R-stack;
remove C1 from C-stack;
(∆G2:k, R2:k, C2:k) := Subopt-recursion (IS ′

pos, k − 1, C1, ∆G-stack, R-stack, C-stack);
return ∆G1:k, R1:k, C1:k;

end procedure Subopt-recursion.

Procedure 12: Pseudocode for the recursive function to find the next best combination in the

k-suboptimal MFE combinations problem.

6.4 Time and space complexity

Theoretical analysis

Extending the O(n3) algorithm for secondary structure prediction of single nucleic acid

molecules, the optimal MFE combination algorithm traverses the Input-Set in the same

way, but for each position i and j, several possibilities might exist. We consider that the

number of words gi in each set Si is limited by a constant bound gmax, and we measure the

complexity in terms of the combinations length: n = l1 + l2 + . . . + ls. Also, we consider

that the ranges returned by the X function is bounded by a constant and will be omitted

from the theoretical analysis. In practice, the number of words in each set, the number of

sets, the length of the words in each set, as well as the nucleotides composing the set, all

have an impact on the run time. First we give an analysis of the theoretical complexity,

and later in this section we will analyse the CombFold implementation on several specific

91



Input-Sets.

The theoretical time complexity of calculating each array described in Section 6.1 in

the worst case follows:

• W’: O(gmax · n), because for each j calculated in W c, we minimize over all possible

words of j: gmax, and j = 1..n;

• W c: O(g4
max · n

2), because for each j, 1 ≤ j ≤ n there are at most gmax possibilities,

and we minimize over i. The maximum number of options for the b’s of i and i, j’s

neighbours is 4 (third line in the equations for W c) but bi−1, bi and bi+1 can only be

in different words if the length of the word if l(s(i)) is 1. If this is true, then g(s(i))

is maximum 4 (because there are 4 different nucleotides), no matter what the values

of gmax is. We consider this case as being constant;

• V c: O(g2
max · n

2), because for each i and j, we minimize over a constant number of

terms, and for each i and j there are at most gmax possibilities;

• Sc: O(g4
max ·n

2), because for each i, j and their corresponding bi and bj, we minimize

over potential different values for bi+1 and bj−1;

• Hc: O(g4
max · n

2), because for each i, j and their corresponding bi and bj , the term

which has the greatest complexity has minimization over 4 terms, but 2 of them

happen only if the word length is 1, so they are reduced to constant times;

• V BIc: O(g8
max · n

4), but the same as for the previous algorithms, we assume the

internal loops do not have more than c bases on each side between the branches (i. e.

c = 30), and thus the complexity for internal loops becomes O(g8
max · n

2). The power

of 8 comes from the most general case of internal loops;

• WM c: O(g4
max ·n

3), because the most costly branch of the WM c calculation for each

i and j is to find the best h for multi-loop partitioning. Each of i, j and h are in at

most gmax words;

• V M c: O(g4
max · n

2), because for each i, j = 1..n, which go over at most gmax possible

words, we do a constant number of comparisons.

Thus, if we consider both gmax and n in our analysis, the worst case time complexity

is O(g4
max · n

3 + g8
max · n

2), because depending on the input, any of the two terms may

be greater. In practice, gmax is often considered a constant, which leads to complexity

proportional to n3. The arrays W ′, W c, V c and WM c need to be stored in memory. The

space complexity is O(g2
max · n

2), or O(n2) if we consider gmax a constant.

The worst theoretical time complexity of the k-suboptimal MFE combinations prob-

lem is O(s ·k ·g4
max ·n

3 +s ·k ·g8
max ·n

2) and the worst space complexity is O(s ·k · b2
max ·n

2).

However, in practice, some of the Input-Sets after partitioning become empty. Also, as

described earlier in Section 6.3, parts of the arrays and space can be reused.
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Empirical analysis

We compared the running time performance of CombFold with that of ExhaustS, a simple

(exponential time) exhaustive search algorithm, which creates all possible combinations and

runs SimFold on each of them. For Input-Sets with a small number of combinations, it is

expected that CombFold takes more time and space than ExhaustS, because of the increased

complexity. However, although the space is not a problem for ExhaustS, the running time

quickly grows and becomes impractical.

Figure 6.2 gives the run time performance of CombFold with k = 1, 2, 3, 10 and

ExhaustS on randomly generated Input-Sets of different characteristics. All the tests have

been performed on machines with CPU Pentium III 733 MHz, memory cache 256 KB and

RAM memory 1GB, running Linux 2.4.20. All graphs show the CPU time in seconds,

presented on a log scale, versus variation of different characteristics of the Input-Sets. To

simplify the analysis, we chose g1 = . . . = gs = g and l1 = . . . = ls = l, and we took

variations of s, g and l. Having all set sizes equal and all set lengths equal, the number of

combinations will be gs, and the length of the combinations will be l · s.

The graph in (a) shows a comparison between the running time of CombFold with

k = 1, 2, 3, 10 and ExhaustS, on a set of 19 instances having g and l fixed at 2 and 10,

respectively. The number of sets s varies from 1 to 19, yielding 21 = 1 combination of

length 10 to 219 ≈ 0.5 ·106 combinations of length 190.CombFold with k = 1 becomes faster

than ExhaustS at s = 8, with k = 2 and 3 becomes faster at s = 10, and CombFold with

k = 10 becomes faster at s = 12. Note that the slope of the curves suggest that CombFold

grows polynomially, while ExhaustS grows exponentially.

The graph in (b) shows a similar situation as in graph (a), but when g is fixed at 3

rather then 2. l = 10 and s takes values in the range 1 to 12, leading to 31 = 3 combinations

of length 10 to 312 ≈ 0.5 · 106 combinations of length 120. The number of combinations

being bigger for the same s, CombFold with k = 1 outperforms ExhaustS when s = 6, with

k = 2 and 3 when s = 7, and with k = 10 when s = 8.

Graph (c) shows a comparison when s and l are fixed to 6 and 10 respectively, but

g varies from 1 to 13. These yield 16 = 1 to 136 ≈ 4.8 · 106 combinations of length 60.

Note that in this case ExhaustS grows polynomially, as opposed to cases (a) and (b). This

happens because g is increasing and g is the base of the formula which gives the number

of combinations: gs. However, ExhaustS grows more quickly than CombFold. Indeed, the

graph shows that CombFold with k = 1 becomes faster than the ExhaustS when g = 3,

with k = 2 and 3 when g = 4 and with k = 10 when g = 5.

Graph (d) gives the comparison when s and g are fixed to 8 and 2, respectively,

leading to a fixed number of 28 = 256 combinations. However, the length of the words vary

from 10 to 100, yielding combinations of length 80 to 800. Again, ExhaustS grows more

quickly, but still polynomially, only the length of the combinations being changed. ExhaustS

is outperformed by CombFold(k = 1) at l = 10 and by CombFold(k = 2) at l = 50. On the

instances we tested, ExhaustS outperforms CombFold with k = 10, and becomes roughly
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Figure 6.2: Performance of CombFold with k = 1, 2, 3, 10 and ExhaustS, on sets with different

characteristics: (a) 19 instances with s ranging from 1 to 19, and the same g = 2 and l = 10; (b)

12 instances with s ranging from 1 to 12, and the same g = 3 and l = 10; (c) 13 instances with g

ranging from 1 to 13, and the same s = 6 and l = 10; (d) 10 instances with l ranging from 10 to 100,

and the same s = 8 and g = 2; (e) 50 instances with the same characteristics: s = 10, g = 3, l = 5;

(f) 48 instances with the same characteristics: s = 8, g = 8, l = 4.
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the same speed as CombFold with k = 3 when l = 100.

On all these four graphs, we note that CombFold with k = 1 and 2, and ExhaustS

are nicely curved, while CombFold with k = 3 and 10 have “hills” and “valleys”. To see how

the curves look like, we created two sets of 50 instances of Input-Sets with exactly the same

characteristics: graph (e) with s = 10, g = 3, l = 5 and graph (f) with s = 8, g = 8, l = 4.

The results comfirm the explanation we gave earlier in Section 6.2: When k = 1, CombFold

fills all the arrays, a small variation happening due to the distribution of the nucleotides in

the words. When k = 2, the arrays for s more sets are always calculated, no matter what

the optimal combination is. However, depending on which the second best combination is,

the size of the next Input-Sets that partition the solutions space can differ substantially.

This influence propagates on to the next best combinations, such that when k = 10, the

differences in time between different instances can vary substantially. Also, note that for

some instances, the time for k = 3, and even for k = 10, is very close or equal to the time

for k = 2. This means that the second best combination was part of a very small Input-Set,

which was partitioned in fewer (or even 0) non-empy Input-Sets. The graphs also show the

run time of the exponential algorithm. For graph (e) there are 310 ≈ 60, 000 combinations

of length 50, and ExhaustS is more than one order of magnitude slower than CombFold with

k = 1, and 5-6 times slower than CombFold with k = 10. For graph (f), where the number

of combinations is 88 ≈ 16.8 · 106 of length 32, the exponential algorithm is substantially

slower, being about two orders of magnitude slower than CombFold(k = 1), and more than

one order of magnitude slower than CombFold(k = 10).

6.5 Applications and experimental results

CombFold can be used for at least two important applications: (1) directed mutagenesis and

SELEX experiments [38] and (2) for testing whether DNA words used in DNA computations

fold without secondary structures [8, 9, 10].

6.5.1 Directed mutagenesis and SELEX experiments

Directed mutagenesis and SELEX experiments are biochemical experiments where varia-
tions of an RNA or DNA sequence are used to perform analysis on a library of sequences
and study whether simple mutations of them have some better properties than others. The
input sequences, which we call IUPAC-Input, are typically regular expressions, composed
of characters (DNA or RNA nucleotides) and wild cards, which can be replaced by several
different characters. A conventional coding for the wild cards is to use “IUPAC” format
(International Union of Pure and Applied Chemistry), which contains the following codes:

R = G A (purine) B = G T C

Y = T C (pyrimidine) D = G A T

K = G T (keto) H = A C T

M = A C (amino) V = G C A

S = G C N = A G C T (any)
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W = A T

Thus, if the input sequence for a SELEX experiment is AURCAAUGCSNAUGCSNAUGCAC,

then we can convert it into an Input-Set in straightforward way: for each different wild

card, we create a different set:

S1 S2 S3 S4 S5 S6 S7 S8 S9

IUPAC-Input AU R CAAUGC S N AUGC S N AUGCAC

Input-Set AU G CAAUGC G A AUGC G A AUGCAC

A C G C G

C C

U U

Thus, we can very easily transform the IUPAC-Input format into an Input-Set and

use CombFold to predict which nucleotides replacing the wild cards would determine the

sequences to fold into the most stable configurations. Collaboration with researchers doing

practical directed mutagenesis or SELEX experiments would be very valuable for testing

and improving our tool.

6.5.2 DNA computing and tag - anti-tag libraries

In search-and-prune DNA or RNA computations [8, 9, 14] or in tag - anti-tag libraries [10],

sets of short DNA or RNA words are used to create many long DNA strands. These sets

are carefully designed using computational or information-theoretic methods [56, 55], such

that the resulting long strands behave well in computation. The main property for “good

behaviour” of these long strands is that they do not form secondary structure (in other

words, they are structure free), thus begin available to hibridyze with probes.

We have collected five Input-Sets from the DNA computing literature and we used

CombFold to test whether they are indeed structure free:

1. Braich et al. [8] used an Input-Set of 6 sets of 2 15-mer DNA words each, to solve

a 6-variable 11-clause 3-SAT problem with a gel-based DNA computer. Note that

there are 26 = 64 combinations of length 15 · 6 = 90. In our tests, we call this set

IS-Braich-2001 ;

2. Braich et al. [9] used an Input-Set of 20 sets of 2 15-mer DNA words each, to solve

a 20 variable 24-clause 3-SAT problem with a DNA computer. There are 220 ≈ 106

combinations, of length 300. In our tests, we call this set IS-Braich-2002.

3. Brenner et al. [10] used an Input-Set of 8 sets of 8 4-mer DNA words each, to clone

DNA molecules onto microbead surfaces. There are 88 ≈ 16.7 · 106 combinations of

length 4 · 8 = 32 generated by this set. We call this set IS-Brenner-2000 ;
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No Input-Set NA optimal MFE CPU time CPU time
(source) (kcal/mol) CombFold (s) ExhaustS (s)

1 IS-Braich-2001 [8] DNA -0.21 3.58 1.13
2 IS-Braich-2002 [9] DNA 0 63.68 ≈ 5 days
3 IS-Brenner-2000 [10] DNA -3.19 187.05 15,520.08
4 IS-Faulhammer-2000 [14] RNA -2.90 18.97 157.03
5 IS-Frutos-1997-r2 [17] DNA -12.26 414.65 16.68

Table 6.3: Output of CombFold on some published combinatorial sets for structure freeness.

No Sequence - structure
1 TATTCTCACCCATAAACACTATCAACATCACCTTTACCTCAATAAATCTTTAAATACCCCTCCATTT

...................................................(((((...........

CTCCATATTTTCTTCCATCACAT

.....))))).............

3 CAAAAATCCTTTTTACCAAAAATCCTTTTTAC

.((((.....))))...((((.....))))..

4 CTCTTACTCAATTCTTCTACCATATCAACATCTTAATAACATCCTCCACTTCACACTTAATTAAAAT

............................................................(((((((

CTTCCCTCTTTACACCTTACTTTCCATATACAAGTACATTCTCCCTACTCCTTCATAATCTTATATT

.................(((((.........)))))........................((((((.

CTCAATATAATCACATACTTCTCCAACATTCCTTATCCCACACACATTTTAAATTTCACAA

....))))))...................................))))))).........

5 AACGTACGTCCTGCAATTCGATGCAGGACGTT

.....((((((((((......)))))))))).

Table 6.4: The optimal MFE combinations (sequences and structures), as predicted by CombFold,

for the Input-Sets in Table 6.5.2.

4. Faulhammer et al. [14] used an Input-Set of 19 sets. 10 of these have 2 15 mer words

and other 9 sets having 1 word each of length 5 are used as spacers between the 10

2-word sets. They used this set for solving a variant of a “Knight problem” which

finds in which configurations of knights placed on a 3×3 chess board no knight attacks

any other knight. We call this set IS-Faulhammer-2000 ;

5. Frutos et al. [17] proposed a set of 108 8-mer DNA words to be used on DNA computing

on surfaces. Several such sets of 108 words can be separated by different 4-mer spacers,

in the configuration ((spacer) (108-word set) (spacer))r , where r denotes the number

of times the three sets are repeated (note that the spacers are different for each repeat,

and the 108-word set is always the same). We tested the set for r = 2 (1082 = 11, 664

16-mer combinations) and we call it IS-Frutos-1997-r2.

Table 6.5.2 shows the results of our tests on the five described sets. Column 3 shows

the nucleic acid type (DNA or RNA) that was used by the authors. Our runs were performed

on the same type. Column 4 shows the optimal MFE obtained for each of the sets. Columns
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4 and 5 show the CPU time in seconds that CombFold with k=1 and ExhaustS, respectively,

spent to solve each problem instance. The parameter used for the temperature was set to

37◦C. The tests were performed on machines with CPU Pentium III 1GHz, 256 KB cache

and 1GB RAM.

Our predictions show that the set IS-Braich-2001 has a slightly negative free energy

and the set IS-Braich-2002 is indeed structure free. Note that, while for the smaller set

ExhaustS is faster, for the larger set, it is substantially slower than CombFold (≈ 5 days

versus ≈ 1 minute).

The remaining three sets are predicted to have structure for the combinations indi-

cated in Table 6.4. For the set from Brenner et al., the CPU time of ExhaustS is substan-

tially slower than the time spent by CombFold. For the last two sequences, the times are

not substantially different.

In conclusion, the predictions obtained with CombFold show that all of the sets

except IS-Frutos-1997-r2 have free energy close to 0, indicating the sets are well designed.
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Chapter 7

Conclusions and Future Work

In this thesis we have introduced algorithms for secondary structure prediction of pairs of

nucleic acid molecules and for finding the best combinations out of a combinatorial set of

strands. First, a thorough description of the model used by these algorithms was provided

in Chapter 3. Second, understanding the free energy minimization algorithm for secondary

structure prediction of single nucleic acid molecules was necessary in order to follow the

extensions that we propose. We gave a detailed description about this algorithm and our

implementation, SimFold, and we analyse it in comparison to other implementations of

the same algorithm and on biological data, in Chapter 4. Then, in Chapters 5 and 6,

we described in detail our algorithms: PairFold and CombFold, and we analysed their

complexity, performance and accuracy on biological data. We showed concrete examples on

which our algorithms can provide useful information.

Our work can be continued in several directions:

• First of all, the free energy minimization algorithm for secondary structure predictions

is based on a simplified model and set of thermodynamic parameters. We have shown

that the prediction accuracy goes down with the sequence length. Improving the free

energy model to give better prediction accuracy would be, in our opinion, the first

and most important step for future work;

• It has been shown that predicting suboptimal structures for single molecules improved

the overall accuracy of the free energy minimization algorithm [33, 66]. Incorporat-

ing suboptimal folding into our algorithms would provide more insight on nucleic

acid folding; Also, partition function calculation for base pairing probabilities [34], as

well as algorithms for pseudoknotted structures [40] could be incorporated into our

algorithms;

• Another important way to extend our work is to combine PairFold and CombFold

in one application, call PairCombFold, to predict the most stable duplexes of two

combinatorial sets of strands. This would be useful for at least three reasons:
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– predicting interactions between a pair of molecules, when at least one molecule

is part of a library obtained by mutagenesis. Examples include libaries of ri-

bozymes, where fragments of the ribozyme sequences (and sometimes the targets

also) are combinatorial sets [68]. Predicting which of the randomized pairs bind

more strongly to each other can provide insight on ribozyme behaviour;

– predicting binding site of a probe with a combinatorial set of molecules used in

DNA computing [8, 9, 10]. We showed that CombFold can be used to test whether

sets of DNA words concatenate without secondary structures. The next step for

problems such as 3-SAT solvers using DNA computing is to make sure that the

probes bind to the right target. A combination of PairFold and CombFold would

predict which is the most stable binding and which are are next k ones;

– better designing probes to bind with targets. The OligoWalk program [32] finds

the best probe to bind with a target, but only considers probes that are comple-

mentary to windows of the target. With PairCombfold, one could consider the

whole combinatorial set of probes.

• We have performed analysis of PairFold on biological pairs of molecules. However,

the literature of the last ten years includes many more such examples, especially on

ribozyme - mRNA target complexes, on which PairFold can be tested. Moreover,

creating a database of RNA pairs of molecules with known structures and using it to

improve the prediction would be a very interesting future step;

• We have shown that our algorithm CombFold has polynomial time and space com-

plexity. However, in practice, it can become impractical for large sets of inputs. Op-

timizing the algorithm and its implementation further would make it more efficient.

A few optimization tricks have been proposed by Cohen and Skiena [12] and have not

been applied here yet. Other optimizations, for more efficient data structures, can be

useful;

• We reported CombFold run times on several types of instances. However, predicting

the CombFold run time on a given Input-Set is not trivial, especially when the number

of words in each set and the length of the words across sets vary. Predicting this time

for CombFold with k = 1 and k = 2 would be valuable.

In conclusion, we contributed with two important algorithms and practical tools to

the scientific community of computational and molecular biology. Further collaboration

with researchers doing work related to what we propose will be crucial in finding benefit in

their applicability and in improving their accuracy.
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Appendix A

SimFold analysis

Table A.1 shows 7 artificially created sequences, on which SimFold and mfold predictions

differ, as well as the MFE structures predicted by SimFold. Details are discussed in Sec-

tion 4.4.1.

No Sequence and MFE structure returned by SimFold

1 CUCGUCUUGAAACGACAGAUCCAUAAGGUCACUCAGUGAUGAACCUGGGGACUACUUGAUGAGCGCUAUACCUAUAAUCAGCGAGCCCUGGAGUCGAUCC

............((((...((((...((((.(((((........))))))))).......(..((((............))))..)..))))))))....

2 UCGGCCGAGUUACUCGAAGGGAUUGUUGGGACCCAUGCCGAACAAUAUAUCGUCGAAAAAAGGGUCUAGUUAGCGCGGAACACUUGCCGGCCCGAUUGUU

(((((((......((((....((((((.((.......)).))))))......))))...(((..(((.(....)..)))...)))..))).)))).....

3 GUGCCUGGCUGGGUCUUCAGCCCUUAGGUAUGAUCUUAGGGAAAAUGGUAAAGGUUCCUCGUCAGUGACAUAUGUCGCUCGACGCCAGCUUCUGGACGGU

((((((((((((....))))))...)))))).......(((((..(.....)..)))))((((((((((....)))))).))))((((...)))).....

4 AUCGACCUGCAAUGCAAUUAAUGCGGAUGGUUUACUACCUGAUCGGUCACGCUCGCUUGGUGAUGACAUGACCCCUAUCCCCCGACUAUAAGGUAUCUAA

....((((.....(((.....)))((((((....(.....)...(((((.((((((...)))).).).))))).))))))..........))))......

5 AUGCCUACAUGUAACCUUGCUAGGUGCCACUUUUUGGUAUAAACAGCUCUUUGACGUACUACAUUACCCCUAGAGAGAGGGACGCGGACAGCUUCGCCGC

........((((......(((..((((((.....))))))....)))......))))..........((((......))))..((((.(......)))))

6 CAGCAGGCAUCGUUUCUGUCGGCGUAUACCUGCGAAAAUUUCACAUGGCGUGGGGCGCAACACCGAGCACGGCUACGAAGCCCAAAGCGGCCCUUGUUCG

..(((((.((((((......)))).)).))))).............((((.(((.(((..(.....)...((((....))))....))).))).))))..

7 GCUAAGUAGAGUUCAGCAGAGGUUAGUUACAGAGCUAAGUGAUGUGGCGUAUGCAGUUAUGGAGCGAUAGUCAAGAACGUGCAGGAUAACGAAUUUAGUU

(((((((...(((..(((..(.((((((....)))))).)..))))))...(((((((...((.(....)))...))).)))).........))))))).

Table A.1: 7 artificially created sequences, on which SimFold and mfold predictions differ.

Table A.2 presents comparative analysis between real structures, SimFold prediction

and RNAfold prediction, on the first 30 RNA sequences in the tRNA genes database [51].

The entries are in the alphabetical order of the identification number used in the database

(second column). Columns 1 and 2 show the organism and identification number and column

3 shows the length of the sequence. Column 4 gives the minimum free energy, measured

in kcal/mol, returned by SimFold. Column 5 gives the free energy of the real structure,

using the model used in SimFold. Columns 6 and 8 report the number of pairs predicted by

SimFold and RNAfold, respectively, out of the total number of pairs in the real structure.

Columns 7 and 9 give the level of accuracy performed by SimFold and RNAfold, measured

with two parameters. More information is given in Section 4.4.3.

Organism Number Len ∆GS ∆G
p

R
SimFold RNAfold

#bp Q1 (Q2) #bp Q1 (Q2)

PHAGE T5 DA0260 75 -25.90 -22.50 17/22 0.77 (0.83) 17/22 0.77 (0.83)

HALORUBRUM DISTRI. DA0310 72 -29.90 -27.80 12/21 0.57 (0.56) 12/21 0.57 (0.56)

HALORUBRUM LACUSP. DA0320 72 -31.60 -28.50 12/21 0.57 (0.53) 12/21 0.57 (0.53)

HALORUBRUM SACCHA. DA0330 72 -28.90 -27.80 20/21 0.95 (0.94) 12/21 0.57 (0.58)

ARCHAEGLOBUS FULG. DA0340 72 -37.80 -34.50 7/21 0.33 (0.33) 7/21 0.33 (0.33)

ARCHAEGLOBUS FULG. DA0341 72 -39.80 -34.50 7/21 0.33 (0.33) 7/21 0.33 (0.33)
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ARCHAEGLOBUS FULG. DA0342 74 -35.60 -33.60 11/21 0.52 (0.59) 15/21 0.71 (0.73)

HALORUBRUM SODOME. DA0350 72 -29.90 -27.80 12/21 0.57 (0.56) 12/21 0.57 (0.56)

HALORUBRUM VACUOL. DA0360 72 -29.90 -27.80 12/21 0.57 (0.56) 12/21 0.57 (0.56)

NATRONOBAC. GREGO. DA0370 72 -32.60 -30.60 15/21 0.71 (0.72) 12/21 0.57 (0.56)

HALOBACTERIUM CUT. DA0380 72 -33.70 -30.60 12/21 0.57 (0.53) 12/21 0.57 (0.53)

NATRONOBAC. PHARA. DA0390 72 -33.70 -30.60 12/21 0.57 (0.53) 12/21 0.57 (0.53)

HALOBACTERIUM HAL. DA0420 72 -35.00 -30.60 12/21 0.57 (0.53) 12/21 0.57 (0.53)

METHANOBAC.FORMI. DA0580 74 -34.60 -33.80 20/21 0.95 (0.97) 20/21 0.95 (0.97)

METHANOBAC.THERM. DA0620 74 -34.60 -33.80 20/21 0.95 (0.97) 20/21 0.95 (0.97)

METHANOCOCCUS JAN. DA0650 73 -37.80 -34.70 7/21 0.33 (0.34) 7/21 0.33 (0.34)

METHANOCOCCUS JAN. DA0651 74 -34.20 -32.30 21/21 1.00 (0.97) 21/21 1.00 (0.97)

METHANOCOC.VANI. DA0660 73 -32.80 -32.80 21/21 1.00 (1.00) 21/21 1.00 (1.00)

METHANOTHRIX SOEH. DA0670 73 -32.60 -31.40 16/21 0.76 (0.74) 16/21 0.76 (0.74)

METHANOTHERM. FER. DA0680 74 -37.30 -31.40 12/21 0.57 (0.57) 12/21 0.57 (0.57)

METHANOSPIR. HUNG. DA0780 73 -33.40 -32.10 16/21 0.76 (0.81) 20/21 0.95 (0.95)

THERMOCOCCUS CELER DA0940 77 -40.40 -34.30 12/21 0.57 (0.53) 12/21 0.57 (0.53)

THERMOPROT. TENAX DA0980 72 -34.30 -33.50 7/21 0.33 (0.43) 12/21 0.57 (0.58)

THERMOPROT. TENAX DA0981 72 -36.20 -33.50 7/21 0.33 (0.40) 7/21 0.33 (0.40)

BARTONELLA ELIZAB. DA1110 76 -37.00 -28.80 7/20 0.35 (0.39) 7/20 0.35 (0.39)

BARTONELLA QUINT. DA1130 76 -37.00 -28.80 7/20 0.35 (0.39) 7/20 0.35 (0.39)

MYCOPLASMA CAPRIC. DA1140 76 -35.40 -29.30 7/21 0.33 (0.33) 7/21 0.33 (0.33)

MYCOPLASMA GEN. DA1150 76 -27.90 -26.60 21/21 1.00 (0.95) 21/21 1.00 (0.95)

ACETOBACTER ACETI DA1160 76 -33.60 -28.00 16/20 0.80 (0.75) 16/20 0.80 (0.75)

ACETOBACTER EUROP. DA1170 76 -37.00 -28.80 7/20 0.35 (0.39) 7/20 0.35 (0.39)

Table A.2: Analysis of SimFold accuracy on a small subset of the tRNA genes database [51].

Tables A.3-A.7, show comparative analysis between real structures, SimFold predic-

tion and RNAfold prediction on five RNA sets from Gutell database [21]: Group I Intron,

Group II Intron, 5S rRNA, 16S rRNA and 23S rRNA. Columns 1 and 2 show the Organ-

ism and Accession Number from the database, and column 3 gives the length of the given

sequence. Columns 4 and 5 show the percentage of odd pairs (non-canonical pairs) and

pseudoknots in the real structures. Columns 6 and 8 report the number of pairs predicted

by SimFold and RNAfold, respectively, out of the total number of pairs in the real structure.

Columns 7 and 9 give the level of accuracy performed by SimFold and RNAfold, measured

with two parameters. More information is given in Section 4.4.3.

Organism Accession Len % % SimFold RNAfold

Number Odd Pk #bp Q1 (Q2) #bp Q1 (Q2)

Acanthamoeba griffini S81337 526 0.02 0.10 74/132 0.56 (0.58) 74/132 0.56 (0.57)

Acanthamoeba griffini U02540 556 0.01 0.09 68/131 0.52 (0.53) 68/131 0.52 (0.53)

Bangia fuscopurpurea AF342745 1031 0.01 0.10 20/133 0.15 (0.32) 20/133 0.15 (0.32)

Hildenbrandia rubra 543 0.01 0.09 48/138 0.35 (0.43) 57/138 0.41 (0.48)

Metarhizium anisopliae var. aniso-

pliae

AF197120 394 0.08 0.11 74/120 0.62 (0.65) 74/120 0.62 (0.64)

Metarhizium anisopliae var. aniso-

pliae

AF197122 456 0.09 0.11 25/115 0.22 (0.36) 25/115 0.22 (0.35)

Porphyra leucosticta AF342746 605 0.02 0.11 73/121 0.60 (0.54) 73/121 0.60 (0.54)

Tetrahymena thermophila V01416

J01235

506 0.06 0.09 107/137 0.78 (0.76) 107/137 0.78 (0.76)

Table A.3: Analysis of SimFold accuracy on Group I Intron sequences from Gutell

database [21].

Organism Accession Len % % SimFold RNAfold

Number Odd Pk #bp Q1 (Q2) #bp Q1 (Q2)

Saccharomyces cerevisiae V00694 905 0.00 0.44 102/264 0.39 (0.46) 130/264 0.49 (0.52)

Saccharomyces cerevisiae (D273-

10B)

AJ011856 2520 0.00 0.46 83/209 0.40 (0.41) 107/209 0.51 (0.42)

Table A.4: Analysis of SimFold accuracy on Group II Intron sequences from Gutell

database [21].
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Organism Accession Len % % SimFold RNAfold

Number Odd Pk #bp Q1 (Q2) #bp Q1 (Q2)

Agrobacterium tumefaciens X02627 120 0.10 0.00 12/39 0.31 (0.37) 12/39 0.31 (0.37)

Deinococcus radiodurans AE002087 124 0.12 0.00 27/40 0.68 (0.74) 27/40 0.68 (0.74)

Escherichia coli V00336 120 0.07 0.00 10/40 0.25 (0.39) 10/40 0.25 (0.39)

Geobacillus stearothermophilus AJ251080 117 0.13 0.00 25/38 0.66 (0.67) 25/38 0.66 (0.67)

Geobacillus stearothermophilus M24839 119 0.24 0.00 8/38 0.21 (0.35) 8/38 0.21 (0.35)

Geobacillus stearothermophilus M25591 117 0.13 0.00 27/38 0.71 (0.71) 27/38 0.71 (0.71)

Haloarcula marismortui AF034620 122 0.11 0.00 29/38 0.76 (0.80) 29/38 0.76 (0.80)

Saccharomyces cerevisiae X67579 118 0.05 0.00 33/37 0.89 (0.85) 28/37 0.76 (0.70)

Thermus aquaticus X01590 123 0.07 0.00 25/40 0.62 (0.66) 8/40 0.20 (0.33)

Table A.5: Analysis of SimFold accuracy on 5S rRNA sequences from Gutell database [21].

Organism Accession Len % % SimFold RNAfold

Number Odd Pk #bp Q1 (Q2) #bp Q1 (Q2)

Agrobacterium tumefaciens M11223 1489 0.05 0.06 239/452 0.53 (0.58) 242/452 0.54 (0.58)

Anabaena sp. X59559 1489 0.05 0.07 208/456 0.46 (0.53) 238/456 0.52 (0.58)

Antilocapra americana M55540 958 0.07 0.10 102/267 0.38 (0.51) 102/267 0.38 (0.51)

Arthrobacter globiformis M23411 1531 0.05 0.06 212/470 0.45 (0.53) 164/470 0.35 (0.45)

Bacillus subtilis K00637 1552 0.06 0.06 246/478 0.51 (0.58) 246/478 0.51 (0.58)

Bacillus subtilis A AL009126 1553 0.05 0.06 245/476 0.51 (0.58) 245/476 0.51 (0.58)

Bordetella bronchiseptica U04948 1532 0.05 0.07 241/473 0.51 (0.57) 283/473 0.60 (0.63)

Borrelia burgdorferi AE001147 1538 0.04 0.07 260/476 0.55 (0.58) 252/476 0.53 (0.57)

Borrelia burgdorferi M88329 1537 0.05 0.06 256/477 0.54 (0.57) 248/477 0.52 (0.56)

Bradyrhizobium japonicum Z35330 1490 0.05 0.07 212/457 0.46 (0.54) 210/457 0.46 (0.53)

Caenorhabditis elegans X54252 697 0.12 0.11 40/189 0.21 (0.34) 40/189 0.21 (0.34)

Candida albicans M60302 1787 0.09 0.06 167/495 0.34 (0.41) 172/495 0.35 (0.41)

Chlamydia trachomatis L2/434/BU U68443 1554 0.05 0.06 233/482 0.48 (0.54) 236/482 0.49 (0.55)

Chlamydomonas eugametos AF008237 1257 0.06 0.02 138/363 0.38 (0.46) 138/363 0.38 (0.46)

Chlamydomonas reinhardtii J01395 1474 0.05 0.06 240/440 0.55 (0.59) 240/440 0.55 (0.59)

Chlamydophila pneumoniae L06108 1554 0.05 0.06 241/483 0.50 (0.55) 244/483 0.51 (0.55)

Chlamydophila psittaci 6BC U68447 1552 0.05 0.06 228/480 0.47 (0.54) 231/480 0.48 (0.54)

Comamonas testosteroni M11224 1536 0.05 0.02 248/465 0.53 (0.59) 220/465 0.47 (0.54)

Cyanophora paradoxa U30821 1495 0.06 0.06 269/458 0.59 (0.63) 272/458 0.59 (0.63)

Deinococcus radiodurans AE001871 1502 0.06 0.07 306/462 0.66 (0.68) 309/462 0.67 (0.68)

Drosophila melanogaster M21017 1995 0.08 0.06 160/498 0.32 (0.41) 166/498 0.33 (0.41)

Drosophila virilis X05914 784 0.05 0.08 36/233 0.15 (0.26) 36/233 0.15 (0.26)

Escherichia coli J01695 1542 0.04 0.06 198/477 0.42 (0.48) 207/477 0.43 (0.50)

Escherichia coli K12 AE000460 1542 0.04 0.06 198/477 0.42 (0.48) 207/477 0.43 (0.50)

Escherichia coli O157:H7 EDL933 AE005628 1542 0.05 0.06 196/477 0.41 (0.48) 205/477 0.43 (0.49)

Euglena gracilis X12890 1491 0.06 0.06 79/453 0.17 (0.31) 169/453 0.37 (0.46)

Fragaria x ananassa X15590 1804 0.10 0.06 126/496 0.25 (0.35) 125/496 0.25 (0.35)

Frankia sp. 1 M55343 1512 0.05 0.07 203/465 0.44 (0.51) 203/465 0.44 (0.51)

Giardia intestinalis X52949 1452 0.11 0.07 60/398 0.15 (0.28) 60/398 0.15 (0.28)

Gracilariopsis sp. (England-1) M33639 1782 0.10 0.06 156/499 0.31 (0.39) 184/499 0.37 (0.42)

Haemophilus influenzae (operons

A-F)

U32741 1539 0.05 0.02 201/470 0.43 (0.50) 204/470 0.43 (0.50)

Halobacterium sp. AE005128 1473 0.05 0.06 283/462 0.61 (0.62) 182/462 0.39 (0.47)

Haloferax volcanii K00421 1474 0.04 0.06 350/458 0.76 (0.74) 350/458 0.76 (0.74)

Homo sapiens J01415 954 0.11 0.10 88/266 0.33 (0.49) 88/266 0.33 (0.49)

Homo sapiens K03432 1870 0.11 0.05 133/524 0.25 (0.34) 133/524 0.25 (0.33)

Lactococcus lactis subsp. lactis AE006456 1551 0.05 0.07 278/476 0.58 (0.62) 277/476 0.58 (0.63)

Leptospira interrogans X17547 1508 0.05 0.06 244/463 0.53 (0.58) 270/463 0.58 (0.62)

Mycobacterium leprae X56657 1548 0.05 0.07 86/476 0.18 (0.32) 83/476 0.17 (0.31)

Mycobacterium tuberculosis Z83862 1537 0.04 0.07 108/469 0.23 (0.36) 108/469 0.23 (0.36)

Mycoplasma gallisepticum M22441 1519 0.07 0.07 179/466 0.38 (0.47) 179/466 0.38 (0.47)

Mycoplasma genitalium U39694 1519 0.06 0.07 216/465 0.46 (0.54) 180/465 0.39 (0.50)

Mycoplasma hyopneumoniae Y00149 1537 0.06 0.07 301/471 0.64 (0.66) 249/471 0.53 (0.57)

Neisseria gonorrhoeae X07714 1544 0.05 0.02 241/468 0.51 (0.58) 217/468 0.46 (0.54)

Neisseria meningitidis AE002364 1544 0.05 0.02 240/468 0.51 (0.56) 240/468 0.51 (0.57)

Pasteurella multocida AE006192 1542 0.05 0.02 232/469 0.49 (0.54) 224/469 0.48 (0.52)

Physarum polycephalum X75592 1861 0.09 0.07 72/436 0.17 (0.32) 69/436 0.16 (0.31)

Pirellula marina X62912 1472 0.08 0.07 136/445 0.31 (0.42) 131/445 0.29 (0.40)

Plasmodium falciparum (A gene) M19172 2090 0.06 0.05 238/537 0.44 (0.48) 236/537 0.44 (0.47)

Plasmodium falciparum (S gene) M19173 2145 0.09 0.01 142/538 0.26 (0.37) 134/538 0.25 (0.36)

Plasmodium falciparum (plastid-

like)

X57167 1426 0.05 0.06 102/432 0.24 (0.35) 120/432 0.28 (0.38)

Plasmodium vivax (A gene) U07367 2063 0.07 0.05 218/524 0.42 (0.46) 218/524 0.42 (0.46)

Plasmodium vivax (S gene) U07368 2147 0.07 0.05 185/547 0.34 (0.40) 185/547 0.34 (0.40)

Proteus vulgaris X07652 1543 0.04 0.06 231/477 0.48 (0.54) 229/477 0.48 (0.54)
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Pseudomonas aeruginosa AE004501 1536 0.05 0.07 229/472 0.49 (0.56) 223/472 0.47 (0.55)

Psychrobacter pacificensis AB016054 1536 0.05 0.07 210/473 0.44 (0.53) 197/473 0.42 (0.49)

Pyrococcus abyssi AJ248283 1512 0.04 0.06 305/474 0.64 (0.65) 300/474 0.63 (0.64)

Pyrococcus horikoshii AP000001 1500 0.04 0.06 305/473 0.64 (0.66) 300/473 0.63 (0.65)

Rhodococcus erythropolis AF001265 1519 0.05 0.07 173/466 0.37 (0.48) 173/466 0.37 (0.48)

Rickettsia prowazekii M21789 1502 0.05 0.07 242/463 0.52 (0.59) 202/463 0.44 (0.51)

Rickettsia prowazekii (str. Madrid

E)

AJ235272 1501 0.05 0.07 240/462 0.52 (0.58) 200/462 0.43 (0.50)

Saccharomyces cerevisiae U53879 1800 0.09 0.06 182/497 0.37 (0.45) 182/497 0.37 (0.44)

Staphylococcus aureus L36472 1555 0.06 0.06 208/475 0.44 (0.51) 208/475 0.44 (0.51)

Staphylococcus aureus N315 AP003130 1555 0.05 0.06 215/475 0.45 (0.52) 215/475 0.45 (0.52)

Streptococcus pyogenes AE006473 1549 0.05 0.06 253/478 0.53 (0.59) 259/478 0.54 (0.60)

Streptomyces acidiscabies D63865 1530 0.05 0.07 260/468 0.56 (0.60) 242/468 0.52 (0.57)

Streptomyces bottropensis D63868 1531 0.05 0.07 192/468 0.41 (0.50) 189/468 0.40 (0.50)

Streptomyces diastatochromogenes D63867 1531 0.05 0.07 186/468 0.40 (0.49) 213/468 0.46 (0.53)

Streptomyces eurythermus D63870 1531 0.05 0.07 184/467 0.39 (0.49) 202/467 0.43 (0.52)

Streptomyces griseus X61478 1528 0.05 0.07 153/468 0.33 (0.43) 153/468 0.33 (0.43)

Streptomyces neyagawaensis D63869 1531 0.05 0.07 170/468 0.36 (0.46) 167/468 0.36 (0.45)

Streptomyces nodosus AF114033 1528 0.05 0.07 199/467 0.43 (0.51) 199/467 0.43 (0.51)

Streptomyces sampsonii D63871 1531 0.05 0.07 169/468 0.36 (0.46) 169/468 0.36 (0.46)

Streptomyces scabiei D63862 1530 0.05 0.07 191/474 0.40 (0.49) 225/474 0.47 (0.54)

Streptomyces setonii D63872 1532 0.05 0.07 176/469 0.38 (0.47) 179/469 0.38 (0.48)

Streptomyces sp. D63866 1530 0.05 0.07 239/468 0.51 (0.56) 236/468 0.50 (0.56)

Streptomyces tendae D63873 1530 0.05 0.07 202/468 0.43 (0.52) 202/468 0.43 (0.52)

Stylonychia mytilus AF164123 1771 0.08 0.06 159/480 0.33 (0.42) 122/480 0.25 (0.36)

Suillus sinuspaulianus UNP00183 1987 0.05 0.01 162/544 0.30 (0.39) 162/544 0.30 (0.39)

Synechococcus sp. PCC 6301 X03538 1488 0.05 0.06 164/453 0.36 (0.45) 176/453 0.39 (0.48)

Synechocystis sp. PCC 6803 D64000 1489 0.05 0.07 178/456 0.39 (0.48) 177/456 0.39 (0.48)

Thermotoga maritima AE001703 1559 0.05 0.06 279/482 0.58 (0.62) 275/482 0.57 (0.61)

Thermotoga maritima M21774 1562 0.05 0.06 280/484 0.58 (0.62) 276/484 0.57 (0.61)

Thermus thermophilus X07998 1518 0.05 0.06 253/468 0.54 (0.59) 263/468 0.56 (0.60)

Thorea violacea AF026042 1916 0.09 0.05 208/547 0.38 (0.43) 182/547 0.33 (0.40)

Treponema pallidum (rRNA A) AE001204 1549 0.05 0.06 214/478 0.45 (0.51) 190/478 0.40 (0.48)

Ureaplasma urealyticum AE002112 1545 0.07 0.07 188/468 0.40 (0.49) 190/468 0.41 (0.50)

Vairimorpha necatrix Y00266 1244 0.09 0.07 71/370 0.19 (0.31) 67/370 0.18 (0.30)

Xenopus laevis M27605 945 0.09 0.07 92/251 0.37 (0.52) 71/251 0.28 (0.46)

Xylella fastidiosa AE003861 1545 0.06 0.07 182/475 0.38 (0.46) 170/475 0.36 (0.44)

Zea mays X00794 1962 0.06 0.06 138/455 0.30 (0.40) 127/455 0.28 (0.39)

Zea mays Z00028 1490 0.06 0.06 212/452 0.47 (0.54) 215/452 0.48 (0.55)

Table A.6: Analysis of SimFold accuracy on 16S rRNA sequences from Gutell database [21].

Organism Accession Len % % SimFold RNAfold

Number Odd Pk #bp Q1 (Q2) #bp Q1 (Q2)

Acinetobacter calcoaceticus X87280 2903 0.06 0.21 358/871 0.41 (0.50) 357/871 0.41 (0.50)

Albinaria caerulea X83390 1035 0.10 0.15 91/268 0.34 (0.42) 82/268 0.31 (0.39)

Albinaria turrita X71393 1077 0.10 0.00 36/265 0.14 (0.28) 63/265 0.24 (0.34)

Arabidopsis thaliana X52320 3539 0.07 0.00 458/998 0.46 (0.51) 417/998 0.42 (0.47)

Bacillus subtilis K00637 2927 0.04 0.21 447/871 0.51 (0.58) 437/871 0.50 (0.56)

Bartonella bacilliformis L39095 2821 0.04 0.22 441/836 0.53 (0.57) 390/836 0.47 (0.53)

Borrelia burgdorferi M88330 2926 0.04 0.21 339/879 0.39 (0.47) 329/879 0.37 (0.47)

Burkholderia cepacia X16368 2878 0.05 0.22 459/858 0.53 (0.58) 428/858 0.50 (0.55)

Burkholderia mallei Y17183 2882 0.05 0.22 413/863 0.48 (0.55) 367/863 0.43 (0.50)

Burkholderia pseudomallei Y17184 2882 0.05 0.22 409/862 0.47 (0.54) 367/862 0.43 (0.50)

Cacozeliana lacertina AF101007 1341 0.07 0.12 102/328 0.31 (0.42) 102/328 0.31 (0.42)

Caenorhabditis elegans X54252 953 0.08 0.00 52/219 0.24 (0.35) 51/219 0.23 (0.32)

Campylobacter jejuni AL139074 2907 0.06 0.21 388/872 0.44 (0.53) 331/872 0.38 (0.48)

Chlamydia trachomatis L2/434/BU U68443 2941 0.06 0.21 348/867 0.40 (0.50) 379/867 0.44 (0.53)

Chlamydomonas eugametos AF008237 1915 0.05 0.00 145/483 0.30 (0.43) 145/483 0.30 (0.43)

Chlamydomonas reinhardtii X15727 2902 0.05 0.22 364/847 0.43 (0.51) 364/847 0.43 (0.51)

Chlamydophila psittaci 6BC U68447 2942 0.06 0.21 349/886 0.39 (0.49) 292/886 0.33 (0.44)

Clostridium botulinum A X65602 2896 0.05 0.21 437/862 0.51 (0.57) 441/862 0.51 (0.57)

Cyanophora paradoxa U30821 2926 0.04 0.21 364/863 0.42 (0.51) 333/863 0.39 (0.49)

Erysipelothrix rhusiopathiae (str.

715)

AB019250 2901 0.05 0.22 320/858 0.37 (0.49) 318/858 0.37 (0.48)

Escherichia coli J01695 2904 0.04 0.21 425/869 0.49 (0.56) 435/869 0.50 (0.56)

Euglena gracilis X12890 2877 0.05 0.18 305/843 0.36 (0.46) 300/843 0.36 (0.46)

Haemophilus influenzae (operons

A-F)

U32742 2897 0.05 0.21 359/866 0.41 (0.50) 323/866 0.37 (0.47)

Haloarcula marismortui X13738 2925 0.04 0.21 378/852 0.44 (0.53) 379/852 0.44 (0.53)

Haloarcula marismortui rrnA AF034619 2930 0.05 0.21 443/855 0.52 (0.58) 432/855 0.51 (0.57)

Haloarcula marismortui rrnB AF034620 2930 0.04 0.21 451/855 0.53 (0.58) 379/855 0.44 (0.52)
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Helicobacter pylori U27270 2968 0.05 0.00 386/822 0.47 (0.55) 374/822 0.45 (0.53)

Katharina tunicata U09810 1275 0.06 0.14 65/300 0.22 (0.37) 63/300 0.21 (0.36)

Klebsiella pneumoniae X87284 2903 0.05 0.21 360/868 0.41 (0.50) 364/868 0.42 (0.50)

Lactococcus lactis X68434 2567 0.34 0.58 178/1009 0.18 (0.39) 178/1009 0.18 (0.39)

Leptospira interrogans X14249 2958 0.06 0.21 384/883 0.43 (0.52) 375/883 0.42 (0.51)

Listeria monocytogenes X64533 2928 0.05 0.21 369/868 0.43 (0.51) 370/868 0.43 (0.51)

Listeria monocytogenes X68420 2932 0.04 0.21 448/872 0.51 (0.59) 465/872 0.53 (0.60)

Micrococcus luteus X06484 3094 0.04 0.00 398/894 0.45 (0.51) 387/894 0.43 (0.50)

Mycobacterium leprae X56657 3122 0.05 0.00 415/906 0.46 (0.53) 425/906 0.47 (0.53)

Mycoplasma genitalium U39694 2917 0.04 0.21 305/867 0.35 (0.46) 345/867 0.40 (0.50)

Mycoplasma pneumoniae X68422

U00089

2905 0.04 0.21 401/866 0.46 (0.54) 399/866 0.46 (0.54)

Neisseria gonorrhoeae X67293 2890 0.05 0.21 320/865 0.37 (0.47) 349/865 0.40 (0.50)

Neisseria meningitidis X67300 2890 0.05 0.21 334/865 0.39 (0.48) 334/865 0.39 (0.48)

Oryza sativa M11585 3541 0.07 0.00 384/1012 0.38 (0.45) 404/1012 0.40 (0.46)

Pecten maximus X92688 1411 0.07 0.12 65/317 0.21 (0.34) 68/317 0.21 (0.34)

Plasmodium falciparum (A gene) U21939 3946 0.06 0.00 495/1059 0.47 (0.53) 484/1059 0.46 (0.53)

Plasmodium falciparum (S gene) U48228 4381 0.07 0.14 442/1147 0.39 (0.45) 416/1147 0.36 (0.42)

Plasmodium falciparum (plastid-

like)

X61660 2700 0.05 0.21 202/782 0.26 (0.34) 202/782 0.26 (0.35)

Pseudomonas aeruginosa Y00432 2893 0.05 0.21 364/867 0.42 (0.50) 378/867 0.44 (0.51)

Rickettsia prowazekii (str. Madrid

E)

AJ235270 2763 0.04 0.23 410/819 0.50 (0.57) 455/819 0.56 (0.61)

Ruminobacter amylophilus X06765 2867 0.06 0.22 330/856 0.39 (0.49) 327/856 0.38 (0.48)

Saccharomyces cerevisiae U53879 3554 0.06 0.15 488/1066 0.46 (0.51) 479/1066 0.45 (0.50)

Staphylococcus aureus X68425 2923 0.04 0.21 435/874 0.50 (0.56) 398/874 0.46 (0.53)

Staphylococcus carnosus X68419 2924 0.04 0.21 463/876 0.53 (0.58) 521/876 0.59 (0.63)

Streptomyces ambofaciens M27245 3120 0.04 0.00 482/906 0.53 (0.57) 401/906 0.44 (0.51)

Suillus sinuspaulianus UNP00109 4216 0.07 0.21 212/739 0.29 (0.38) 218/739 0.29 (0.39)

Thermococcus celer M67497 3029 0.02 0.00 563/879 0.64 (0.64) 562/879 0.64 (0.64)

Thermotoga maritima M67498 3023 0.03 0.21 533/901 0.59 (0.63) 514/901 0.57 (0.61)

Thermus thermophilus X12612 2915 0.03 0.00 486/832 0.58 (0.63) 474/832 0.57 (0.61)

Treponema pallidum (rRNA A) AE001204 2953 0.05 0.21 230/884 0.26 (0.40) 242/884 0.27 (0.41)

Xenopus laevis M10217 1640 0.09 0.00 125/373 0.34 (0.48) 125/373 0.34 (0.48)

Zea mays K01868 3514 0.09 0.20 154/745 0.21 (0.33) 133/745 0.18 (0.33)

Zea mays Z00028 2981 0.07 0.21 302/880 0.34 (0.45) 289/880 0.33 (0.44)

Table A.7: Analysis of SimFold accuracy on 23S rRNA sequences from Gutell database [21].
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Appendix B

PairFold Analysis

Table B.1 gives a comparison between the PairFold prediction and experimental and pre-

dicted values reported by Peyret et al. [37] on a set of DNA duplexes. Column 1 shows

the first sequence. The slash at the end of some sequences indicate non-self-complementary

sequences. The underlined bases show the mismatches with the second sequence. The

second sequence is the perfect complement of the given sequence, with the exception of

the underlined base, which is just copied. For example, the first sequence’s complement is

5’-CTTTATTTG-3’. Columns 2 and 3 give the standard enthalpy change (in kcal/mol): the

experimental results (column 2), the PairFold prediction (column 3), and the prediction

reported in [37] (between parentheses in column 3). The same format is adopted in the next

columns for standard entropy change, standard free energy change and melting temperature.

The line marked with a star shows that the duplex 5’-CAAACAAAG-3’ 5’-CTTTCTTTG-3’,

is not predicted to fold into the expected structure, which is ((((.(((( )))).)))). The

predicted structure is ....((((( ....))))). This table is refered to in Section 5.5.1.

Sequences ∆H◦ (kcal/mol) ∆S◦ (eu) ∆G◦

37
(kcal/mol) Tm (◦C)

exp PairFold (P) exp PairFold (P) exp PairFold (P) exp PairFold (P)

CAAAAAAAG/ -36.9 -41.9 (-41.9) -107.0 -123.9 (-123.8) -3.71 -3.47 (-3.47) 21.3 21.5 (21.5)

CGATAATCG -50.8 -42.4 (-42.4) -148.0 -120.7 (-120.8) -4.86 -4.96 (-4.96) 32.1 31.9 (31.9)

GGAAATTCC -51.5 -45.7 (-45.7) -151.4 -132.2 (-132.2) -4.59 -4.70 (-4.70) 30.6 30.5 (30.5)

GGACAGTCC -53.7 -50.7 (-50.7) -153.2 -144.3 (-144.4) -6.22 -5.94 (-5.94) 40.2 38.6 (38.6)

GGAGACTCC -51.6 -53.5 (-53.5) -145.7 -152.7 (-152.8) -6.38 -6.14 (-6.14) 41.3 39.7 (39.7)

CATGAAGCTAC/ -65.2 -65.1 (-65.1) -185.4 -185.3 (-185.4) -7.70 -7.62 (-7.62) 46.9 46.6 (46.5)

CATGTAACTAC/ -48.0 -54.8 (-54.8) -133.8 -155.3 (-155.5) -6.52 -6.62 (-6.62) 42.5 42.5 (42.4)

GATCTATGTAC/ -59.3 -57.9 (-57.9) -170.6 -166.0 (-165.9) -6.42 -6.41 (-6.41) 40.9 41.0 (41.0)

GGATGAATAGC/ -69.3 -61.9 (-61.9) -198.2 -175.0 (-174.9) -7.81 -7.63 (-7.63) 46.9 47.1 (47.1)

GGATGAGTAGC/ -70.3 -68.6 (-68.6) -198.3 -193.9 (-194.0) -8.79 -8.45 (-8.45) 51.4 50.1 (50.1)

CGCAAGAGACGG/ -66.3 -64.5 (-64.5) -186.6 -179.4 (-179.4) -8.42 -8.86 (-8.86) 50.4 53.1 (53.1)

GGCAGAGAACGC/ -60.6 -65.6 (-65.6) -168.6 -183.2 (-183.3) -8.31 -8.77 (-8.77) 51.1 52.4 (52.3)

GGA(CAG)3AGG/ -74.5 -73.1 (-73.2) -211.6 -206.9 (207.1) -8.87 -8.94 (-8.94) 51.0 51.5 (51.0)

*CAAACAAAG/ -55.3 -42.2 (-41.6) -170.0 -122.2 (-126.4) -2.57 -4.31 (-2.39) 20.5 27.3 (14.3)

CGATCATCG -36.6 -39.5 (-39.5) -104.7 -113.5 (-113.8) -4.14 -4.29 (-4.24) 24.5 26.5 (26.1)

GGAACTTCC -44.5 -48.1 (-48.1) -133.2 -144.6 (-144.4) -3.14 -3.26 (-3.26) 20.3 22.2 (22.2)

GGACCGTCC -53.6 -52.0 (-52.1) -155.4 -150.2 (-150.4) -5.35 -5.40 (-5.40) 35.1 35.4 (35.4)

GGAGCCACG/ -48.9 -44.2 (-44.2) -138.9 -123.4 (-123.3) -5.86 -5.94 (-5.94) 38.2 38.9 (38.9)

GGAGCCTCC -44.1 -40.7 (-40.7) -125.9 -115.4 (-115.4) -5.09 -4.90 (-4.90) 33.0 31.2 (31.2)

CATGTCACTAC/ -54.2 -51.9 (-51.9) -155.7 -148.2 (-148.4) -5.92 -5.95 (-5.90) 38.4 38.7 (38.3)

GATCTCTGTAC/ -55.7 -57.6 (-57.6) -162.1 -168.5 (-168.5) -5.47 -5.33 (-5.33) 35.9 35.2 (35.2)

GGATCCCTAGC/ -54.7 -62.0 (-62.0) -152.2 -176.5 (-176.4) -7.46 -7.25 (-7.25) 47.5 45.1 (45.1)

GGATGCTTAGC/ -55.7 -60.9 (-60.9) -160.0 -175.4 (-175.3) -6.05 -6.49 (-6.49) 39.1 41.2 (41.2)

GGATTCCTAGC/ -46.8 -54.0 (-54.0) -130.1 -152.8 (-152.8) -6.49 -6.60 (-6.60) 42.5 42.4 (42.4)

GGATTCGTAGC/ -62.0 -59.7 (-59.7) -179.1 -170.4 (-170.4) -6.43 -6.85 (-6.85) 40.8 43.2 (43.2)
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GTAGCCTCATG/ -70.2 -67.0 (-67.0) -203.6 -194.6 (-194.5) -7.09 -6.63 (-6.63) 43.4 41.5 (41.5)

CAAAGAAAG/ -53.5 -49.6 (-52.3) -158.0 -145.5 (-154.3) -4.50 -4.46 (-4.46) 30.3 29.6 (30.0)

CGATGATCG -48.4 -48.9 (-54.9) -138.8 -140.1 (-159.4) -5.34 -5.46 (-5.46) 34.9 35.7 (35.8)

GGAAGTTCC -52.2 -54.6 (-54.2) -148.9 -156.1 (-154.7) -6.00 -6.18 (-6.18) 38.9 39.9 (39.9)

GGACGGTCC -56.7 -58.2 (-58.7) -160.8 -165.0 (-166.8) -6.85 -7.02 (-7.02) 43.6 44.4 (44.3)

GGAGGCTCC -56.9 -60.5 (-59.8) -156.1 -167.0 (-164.8) -8.50 -8.70 (-8.70) 53.2 53.3 (53.5)

CATGAGGCTAC/ -76.4 -73.3 (-73.4) -215.7 -207.6 (-207.8) -9.53 -8.90 (-8.90) 53.5 51.3 (51.3)

CATGTGACTAC/ -57.0 -61.3 (-67.3) -160.8 -174.7 (-194.0) -7.18 -7.12 (-7.12) 45.4 44.5 (43.8)

CCATCGCTACC/ -78.7 -74.1 (-74.0) -221.0 -207.1 (-206.7) -10.17 -9.87 (-9.87) 55.8 55.6 (55.6)

CCATTGCTACC/ -75.1 -67.7 (-70.4) -212.3 -189.2 (-197.8) -9.30 -9.02 (-9.02) 52.7 53.1 (52.5)

GATCTGTGTAC/ -64.4 -65.6 (-68.3) -183.4 -187.7 (-196.5) -7.49 -7.40 (-7.40) 46.0 45.4 (45.0)

GCTAGGTATCC/ -69.6 -72.7 (-72.1) -194.6 -204.5 (-202.6) -9.24 -9.26 (-9.26) 53.8 53.1 (53.2)

GCTATGTATCC/ -66.2 -64.3 (-69.8) -187.9 -183.7 (-199.3) -7.86 -7.31 (-8.01) 47.6 45.1 (47.7)

CAAATAAAG/ -54.6 -50.2 (-50.6) -166.0 -150.9 (-152.1) -3.12 -3.40 (-3.40) 23.1 23.6 (23.6)

CGAGTGTCC/ -55.9 -58.2 (-58.2) -158.3 -165.0 (-164.9) -6.83 -7.04 (-7.04) 43.5 44.5 (44.5)

CGATTATCG -48.6 -51.4 (-52.2) -140.6 -149.7 (-152.2) -4.95 -4.98 (-4.98) 32.4 32.9 (32.9)

CGTCTGTCC/ -62.3 -61.6 (-61.6) -176.0 -173.6 (-173.6) -7.70 -7.77 (-7.77) 47.4 47.9 (47.9)

CGTGTCTCC/ -60.3 -55.6 (-55.6) -172.0 -157.9 (-158.1) -6.90 -6.62 (-6.62) 43.4 42.4 (42.4)

GGAATTTCC -47.4 -53.3 (-53.3) -138.4 -157.2 (-157.3) -4.50 -4.54 (-4.54) 29.5 30.5 (30.5)

GGACTGTCC -59.4 -59.0 (-59.0) -168.5 -167.5 (-167.6) -7.08 -7.04 (-7.04) 44.5 44.4 (44.3)

GGAGTCTCC -51.1 -52.1 (-52.1) -146.7 -150.0 (-150.1) -5.62 -5.58 (-5.58) 36.6 36.5 (36.4)

CATGATGCTAC/ -77.3 -73.1 (-73.1) -220.8 -209.6 (-209.5) -8.86 -8.09 (-8.09) 50.3 47.6 (47.6)

CATGTTACTAC/ -61.4 -63.8 (-64.6) -175.5 -184.3 (-186.9) -6.99 -6.64 (-6.64) 43.8 41.8 (41.7)

GATCTTTGTAC/ -77.7 -66.2 (-66.6) -227.7 -193.0 (-194.2) -7.09 -6.34 (-6.34) 42.8 40.2 (40.1)

GGATGTATAGC/ -72.9 -65.7 (-66.1) -210.1 -188.1 (-189.3) -7.70 -7.36 (-7.36) 45.9 45.2 (45.1)

CGCTAGAGTCGG/ -65.5 -71.7 (-72.2) -184.3 -202.6 (-204.1) -8.31 -8.86 (-8.86) 50.0 51.4 (51.3)

GGCTGAGATCGC/ -79.7 -77.0 (-77.1) -226.0 -217.6 (-217.8) -9.64 -9.51 (-9.51) 53.2 53.3 (53.2)

Table B.1: Measurement of PairFold accuracy on a set of DNA duplexes.

Table B.2 gives a comparison between the PairFold prediction and experimental and

predicted values reported by Xia et al. [67] on a set of RNA duplexes. Column 1 shows the

first sequence. The second sequence is the perfect complement of the first one. The slash

at the end of some sequences indicate non-self-complementary sequences. Columns 2 and 3

give the standard enthalpy change (in kcal/mol): the experimental results (column 2), the

PairFold prediction (column 3), and the prediction reported in [67] (between parentheses

in column 3). The same format is adopted in the next columns for standard entropy change

(eu), standard free energy change (kcal/mol) and melting temperature (◦C). The bases near

the star signs show that the structure predicted by PairFold is different than expected, i.e.

they are predicted as free bases as opposed to paired bases. More details are discussed in

Section 5.5.1.

Sequences ∆H◦ (kcal/mol) ∆S◦ (eu) ∆G◦

37
(kcal/mol) Tm (◦C)

exp PairFold (X) exp PairFold (X) exp PairFold (X) exp PairFold (X)

CCGG -34.2 -32.4 (-33.8) -95.6 -90.1 (-95.0) -4.55 -4.47 (-4.36) 27.2 25.9 (25.3)

CGCG -33.3 -30.2 (-32.5) -95.6 -85.5 (-93.2) -3.66 -3.67 (-3.62) 19.3 17.7 (18.8)

GCGC -30.5 -36.4 (-36.8) -83.4 -102.3 (-103.4) -4.61 -4.67 (-4.68) 26.6 28.7 (29.1)

GGCC -35.8 -38.6 (-38.0) -98.1 -106.8 (-105.2) -5.37 -5.47 (-5.42) 34.3 35.4 (34.9)

ACGCA*/ -45.4 -41.8 (-36.3) -130.4 -118.3 (-100.5) -4.97 -5.10 (-5.14) 29.4 29.8 (29.0)

AGCGA/ -46.3 -43.1 (-37.4) -133.0 -122.2 (-103.7) -5.05 -5.20 (-5.22) 30.2 30.7 (29.9)

CACAG/ -40.2 -38.8 (-39.1) -115.4 -110.9 (-111.9) -4.70 -4.40 (-4.45) 24.5 24.0 (24.1)

GCACG/ -45.3 -42.9 (-43.8) -126.2 -119.0 (-121.5) -6.17 -6.00 (-6.04) 37.5 36.3 (36.7)

GCUCG/ -43.4 -43.1 (-44.8) -120.1 -119.0 (-124.7) -6.14 -6.20 (-6.12) 37.2 37.7 (37.4)

ACCGGU -59.8 -52.8 (-49.2) -164.5 -144.9 (-133.0) -8.51 -7.87 (-7.94) 53.9 50.5 (51.8)

AGCGCU -50.1 -51.6 (-50.3) -135.7 -141.0 (-136.6) -7.99 -7.87 (-7.94) 52.0 50.8 (51.6)

AGGCCU -48.2 -53.8 (-51.6) -128.4 -145.5 (-138.4) -8.36 -8.67 (-8.68) 55.3 55.3 (55.9)

CACGUG -50.3 -49.4 (-50.7) -141.0 -138.4 (-142.4) -6.59 -6.47 (-6.54) 42.8 42.1 (42.4)

CAGCUG -51.5 -50.4 (-53.1) -144.7 -139.1 (-147.8) -6.68 -7.27 (-7.28) 43.1 47.2 (46.6)

CCAUGG -56.9 -51.1 (-53.4) -159.9 -141.0 (-148.8) -7.30 -7.37 (-7.32) 46.4 47.7 (46.6)

CCGCGG -60.8 -54.6 (-59.3) -164.3 -142.9 (-158.6) -9.84 -10.27 (-10.14) 59.8 65.5 (62.2)

CCUAGG -54.1 -47.7 (-51.8) -149.1 -129.4 (-143.0) -7.80 -7.57 (-7.49) 50.0 49.8 (48.1)

CGCGCG -54.5 -52.4 (-58.1) -146.4 -138.4 (-156.8) -9.12 -9.47 (-9.40) 57.8 61.2 (58.5)

CGGCCG -54.1 -54.6 (-59.3) -142.6 -142.9 (-158.6) -9.90 -10.27 (-10.14) 63.2 65.5 (62.2)
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CUGCAG -55.4 -50.4 (-53.1) -155.7 -139.1 (-147.8) -7.11 -7.27 (-7.28) 45.3 47.2 (46.6)

GACGUC -58.1 -55.0 (-54.7) -163.5 -154.5 (-153.6) -7.35 -7.07 (-7.02) 46.2 45.1 (45.1)

GAGAGA/ -62.0 -55.1 (-51.0) -178.1 -155.7 (-142.7) -6.95 -6.80 (-6.67) 40.6 41.0 (40.6)

GAGCUC -62.3 -56.0 (-57.1) -175.3 -155.2 (-159.0) -7.98 -7.87 (-7.76) 48.7 49.7 (49.0)

GAGGAG/ -55.7 -54.0 (-55.6) -152.2 -147.7 (-153.4) -8.50 -8.20 (-8.03) 50.9 49.6 (48.2)

GCAACG/ -50.6 -49.5 (-50.6) -140.5 -137.4 (-140.5) -7.01 -6.90 (-6.97) 42.6 42.1 (42.6)

GCAUCG/ -51.9 -51.7 (-54.2) -143.9 -143.2 (-151.2) -7.26 -7.30 (-7.25) 44.1 44.4 (43.9)

GCAUGC -62.3 -55.1 (-56.4) -177.2 -153.2 (-157.2) -7.38 -7.57 (-7.64) 45.7 48.1 (48.3)

GCCGCG/ -59.7 -56.6 (-60.8) -157.4 -147.7 (-161.4) -10.88 -10.80 (-10.73) 63.9 65.1 (62.7)

GCCGGC -62.7 -60.8 (-63.6) -166.0 -159.7 (-168.8) -11.20 -11.27 (-11.20) 67.2 68.4 (66.6)

GCGCCG/ -57.9 -56.6 (-60.8) -151.3 -147.7 (-161.4) -10.91 -10.80 (-10.73) 65.2 65.1 (62.7)

GCGCGC -66.0 -58.6 (-62.3) -178.5 -155.2 (-167.0) -10.62 -10.47 (-10.46) 62.1 64.7 (63.1)

GCGCGG/ -71.2 -56.6 (-60.8) -192.7 -147.7 (-161.4) -11.38 -10.80 (-10.73) 61.9 65.1 (62.7)

GCGGCG/ -58.5 -56.6 (-60.8) -155.0 -147.7 (-161.4) -10.40 -10.80 (-10.73) 61.8 65.1 (62.7)

GCGUCG/ -52.4 -53.7 (-56.4) -140.6 -145.1 (-153.8) -8.76 -8.70 (-8.64) 53.7 52.8 (51.9)

GCUACG/ -58.0 -48.1 (-51.5) -162.7 -131.5 (-142.2) -7.56 -7.30 (-7.34) 45.0 44.9 (44.9)

GCUAGC -59.1 -51.7 (-54.8) -165.1 -141.6 (-151.4) -7.92 -7.77 (-7.81) 49.3 50.1 (49.8)

GGAUCC -53.7 -56.7 (-57.4) -149.1 -157.1 (-160.0) -7.44 -7.97 (-7.80) 47.6 50.1 (48.9)

GGCGCC -67.8 -60.8 (-63.6) -182.0 -159.7 (-168.8) -11.33 -11.27 (-11.20) 65.2 68.4 (66.6)

GGCGCG/ -63.5 -56.6 (-60.8) -170.1 -147.7 (-161.4) -10.78 -10.80 (-10.73) 61.6 65.1 (62.7)

GGUACC -54.9 -52.9 (-53.7) -153.4 -145.5 (-147.8) -7.35 -7.77 (-7.81) 46.6 49.8 (49.9)

GUCGAC -53.6 -55.0 (-54.7) -150.1 -154.5 (-153.6) -7.09 -7.07 (-7.02) 45.3 45.1 (45.1)

GUGCAC -59.6 -55.6 (-55.0) -167.5 -155.2 (-152.6) -7.65 -7.47 (-7.60) 47.7 47.4 (48.4)

GUGGUG/ -48.8 -53.6 (-53.5) -132.7 -147.7 (-147.0) -7.67 -7.80 (-7.87) 47.4 47.2 (47.6)

GUGUCG/ -50.9 -52.2 (-52.7) -140.9 -145.1 (-146.6) -7.18 -7.20 (-7.21) 43.7 43.7 (43.8)

UCAUGA -41.9 -53.3 (-44.1) -121.2 -157.1 (-127.4) -4.31 -4.57 (-4.60) 27.2 30.7 (29.5)

UCCGGA -51.9 -59.0 (-51.2) -142.3 -163.6 (-139.0) -7.79 -8.27 (-8.16) 50.1 51.3 (52.7)

UCGCGA -48.9 -56.8 (-50.0) -135.7 -159.1 (-137.2) -6.85 -7.47 (-7.42) 44.6 47.1 (48.3)

UCUAGA -36.5 -49.9 (-42.5) -101.8 -145.5 (-121.6) -4.95 -4.77 (-4.77) 31.0 31.5 (30.5)

*UGAUCA* -44.7 -51.1 (-44.1) -128.0 -149.4 (-127.4) -5.05 -4.77 (-4.60) 32.6 31.6 (29.5)

*UGCGCA* -51.5 -55.2 (-50.2) -139.7 -152.0 (-136.2) -8.22 -8.07 (-8.00) 53.1 51.1 (52.0)

AAGGAGG/ -58.7 -59.5 (-59.7) -158.6 -161.2 (-162.1) -9.54 -9.50 (-9.42) 56.2 55.8 (55.1)

ACUGUCA*/ -52.2 -61.2 (-55.5) -142.9 -171.2 (-152.9) -7.92 -8.10 (-8.14) 48.2 47.5 (48.7)

AGUCUGA/ -51.5 -62.5 (-56.6) -141.8 -175.1 (-156.1) -7.52 -8.20 (-8.22) 45.7 47.8 (49.0)

GACUCAG/ -64.1 -62.5 (-64.1) -177.5 -171.9 (-177.1) -9.05 -9.20 (-9.12) 52.0 53.2 (52.4)

GAGUGAG/ -70.5 -62.5 (-64.1) -196.0 -171.9 (-177.1) -9.71 -9.20 (-9.12) 53.7 53.2 (52.4)

GUCACUG/ -57.8 -62.3 (-63.0) -158.6 -171.9 (-173.9) -8.62 -9.00 (-9.04) 51.1 52.1 (52.2)

AACUAGUU -54.6 -56.9 (-54.0) -153.0 -163.6 (-153.6) -7.16 -6.17 (-6.41) 45.7 39.7 (41.2)

AAUGCAUU -59.8 -59.8 (-57.1) -169.7 -173.2 (-164.0) -7.18 -6.07 (-6.28) 45.0 39.1 (40.1)

ACCUUUGC/ -77.4 -67.9 (-66.9) -215.3 -185.7 (-182.1) -10.64 -10.30 (-10.43) 56.3 57.5 (58.4)

ACUAUAGU -59.2 -57.5 (-57.5) -168.4 -163.6 (-162.8) -6.98 -6.77 (-6.98) 44.0 43.0 (44.2)

ACUUAAGU -47.2 -56.9 (-54.0) -132.4 -163.6 (-153.6) -6.16 -6.17 (-6.41) 40.3 39.7 (41.2)

AGAGAGAG/ -73.7 -70.3 (-71.9) -201.7 -191.2 (-196.9) -11.12 -11.00 (-10.83) 59.6 60.2 (58.9)

AGAUAUCU -64.5 -61.3 (-61.2) -186.8 -175.2 (-175.0) -6.58 -6.97 (-6.97) 41.4 43.7 (43.7)

AGUUAACU -52.4 -56.9 (-54.0) -148.5 -163.6 (-153.6) -6.36 -6.17 (-6.41) 41.1 39.7 (41.2)

AUACGUAU -54.4 -56.0 (-56.5) -154.2 -161.0 (-162.0) -6.53 -6.07 (-6.28) 42.0 39.2 (40.4)

AUCUAGAU -59.9 -61.3 (-61.2) -169.9 -175.2 (-175.0) -7.20 -6.97 (-6.97) 45.1 43.7 (43.7)

AUGCGCAU -64.4 -68.8 (-69.0) -174.8 -189.4 (-189.6) -10.17 -10.07 (-10.20) 60.3 58.2 (58.7)

AUGUACAU -55.9 -60.9 (-59.1) -159.3 -175.2 (-168.6) -6.49 -6.57 (-6.81) 41.7 41.6 (43.0)

CAAAAAAG/ -53.8 -51.1 (-51.4) -158.7 -149.9 (-150.5) -4.61 -4.60 (-4.75) 28.6 28.2 (28.9)

CAUGCAUG -73.7 -67.6 (-71.8) -206.3 -187.4 (-200.8) -9.67 -9.47 (-9.54) 54.9 55.5 (54.5)

CGACGCAG/ -70.5 -71.8 (-77.3) -187.4 -189.9 (-207.8) -12.32 -12.90 (-12.83) 67.1 69.5 (66.7)

CUCGCACA*/ -72.6 -73.2 (-73.4) -195.1 -196.7 (-197.5) -12.11 -12.20 (-12.13) 64.9 65.2 (64.8)

GAACGUUC -77.0 -68.2 (-68.3) -218.3 -191.3 (-191.6) -9.30 -8.87 (-8.88) 52.3 52.3 (52.5)

GAUAUAUC -62.0 -59.9 (-64.8) -180.4 -173.2 (-189.0) -6.09 -6.17 (-6.14) 39.1 39.6 (39.4)

GAUGCAUC -72.8 -73.2 (-75.8) -201.9 -203.5 (-212.0) -10.12 -10.07 (-10.02) 57.2 56.8 (55.9)

GGCUUCAA*/ -61.6 -69.9 (-67.9) -165.7 -191.2 (-185.1) -10.20 -10.60 (-10.54) 59.1 58.3 (58.6)

GUAUAUAC -63.4 -56.1 (-61.0) -185.1 -161.6 (-176.8) -5.94 -5.97 (-6.15) 38.3 38.7 (39.6)

GUCUAGAC -76.0 -70.3 (-72.7) -212.5 -193.9 (-201.6) -10.11 -10.17 (-10.15) 56.2 58.2 (57.5)

GUUCGAAC -74.2 -68.2 (-68.3) -211.0 -191.3 (-191.6) -8.76 -8.87 (-8.88) 50.4 52.3 (52.5)

UAGAUCUA -60.1 -63.7 (-59.5) -170.6 -182.3 (-168.8) -7.25 -7.17 (-7.20) 45.3 44.5 (45.1)

UAUGCAUA -67.7 -62.8 (-58.9) -195.0 -180.3 (-167.0) -7.27 -6.87 (-7.08) 44.4 43.0 (44.4)

UCCUUGCA*/ -70.3 -73.8 (-67.8) -190.8 -201.5 (-182.5) -11.09 -11.30 (-11.27) 60.7 60.5 (62.4)

UCUAUAGA -62.1 -63.7 (-59.5) -177.7 -182.3 (-168.8) -6.96 -7.17 (-7.20) 43.5 44.5 (45.1)

*UGACCUCA*/ -76.1 -75.4 (-70.0) -205.6 -205.4 (-188.6) -12.34 -11.70 (-11.51) 64.6 61.9 (62.8)

*UUCCGGAA* -67.4 -70.0 (-64.9) -182.6 -192.6 (-177.0) -10.79 -10.27 (-10.02) 62.4 58.8 (59.1)

*UUGCGCAA* -62.2 -68.4 (-63.9) -167.6 -188.7 (-174.2) -10.18 -9.87 (-9.86) 61.2 57.3 (58.6)

*UUGGCCAA* -63.7 -70.6 (-65.1) -169.8 -193.2 (-176.0) -11.00 -10.67 (-10.60) 65.3 60.6 (62.1)

*UUGUACAA* -49.5 -60.5 (-54.0) -137.8 -174.5 (-153.2) -6.70 -6.37 (-6.47) 43.6 40.6 (41.5)

CAAAAAAAG/ -59.8 -57.7 (-58.2) -175.1 -168.3 (-169.5) -5.47 -5.50 (-5.68) 33.8 33.8 (34.7)

AAGGUUGGAA*/ -75.8 -84.7 (-81.0) -203.6 -230.9 (-218.9) -12.69 -13.10 (-13.10) 66.5 64.9 (66.2)

CAUGCG/ -48.6 -48.9 (-52.2) -134.0 -135.1 (-145.6) -7.00 -7.00 (-7.01) 42.9 42.8 (42.5)

GAGCUG/ -51.6 -53.2 (-55.1) -142.2 -145.7 (-152.0) -7.49 -8.00 (-7.95) 45.5 48.5 (47.9)
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GCUGAG/ -55.9 -53.2 (-55.1) -155.2 -145.7 (-152.0) -7.72 -8.00 (-7.95) 46.2 48.5 (47.9)

GUGCAG/ -55.9 -53.0 (-54.0) -155.6 -145.7 (-148.8) -7.67 -7.80 (-7.87) 46.0 47.3 (47.5)

UAAGGUA/ -51.3 -52.8 (-46.4) -142.9 -150.9 (-129.8) -6.95 -6.00 (-6.18) 42.2 36.4 (37.4)

GAGAUCUC -75.0 -74.1 (-76.5) -209.2 -205.5 (-213.8) -10.11 -10.37 (-10.14) 56.5 58.0 (56.4)

GCCAUGGC -93.9 -79.5 (-83.2) -254.2 -210.6 (-222.6) -15.06 -14.17 (-14.16) 71.4 74.1 (72.2)

GCUGCGAC/ -86.2 -78.0 (-81.5) -233.0 -206.7 (-218.0) -13.93 -13.90 (-13.89) 67.9 71.5 (70.0)

UCCGCGCA*/ -81.2 -79.3 (-76.3) -214.6 -209.3 (-199.8) -14.59 -14.40 (-14.29) 73.2 73.3 (74.3)

CACUG/ -38.8 -38.8 (-39.1) -114.4 -110.9 (-111.9) -3.34 -4.40 (-4.45) 16.4 24.0 (24.4)

AGAGAG/ -58.2 -49.4 (-49.0) -165.7 -138.3 (-137.3) -6.81 -6.50 (-6.40) 40.7 39.5 (38.9)

AUGCAU -41.7 -46.6 (-43.5) -119.2 -136.5 (-126.0) -4.73 -4.27 (-4.42) 30.1 27.9 (28.1)

CGUACG -46.6 -44.5 (-48.2) -133.1 -124.2 (-135.8) -5.35 -5.97 (-6.01) 34.6 39.1 (39.4)

*UGGCCA* -59.9 -57.4 (-51.5) -164.1 -156.5 (-138.0) -8.99 -8.87 (-8.74) 55.3 55.3 (56.3)

GCAACGA/ -78.8 -62.8 (-59.3) -224.0 -174.1 (-162.5) -9.20 -8.80 (-8.87) 50.2 50.9 (52.3)

AGUAUACU -53.1 -57.5 (-57.5) -149.1 -163.6 (-162.8) -6.80 -6.77 (-6.98) 44.1 43.0 (44.2)

GAGAGAGA/ -91.2 -76.0 (-73.9) -256.0 -208.6 (-202.3) -11.80 -11.30 (-11.10) 57.6 59.8 (59.6)

GUGAUCAC -71.8 -73.7 (-74.3) -200.9 -205.5 (-207.4) -9.49 -9.97 (-9.98) 54.4 56.2 (56.2)

A6U6 -75.7 -84.9 (-80.2) -222.5 -253.2 (-236.6) -6.69 -6.37 (-6.84) 41.0 39.6 (41.4)

Table B.2: Measurement of PairFold accuracy on a set of RNA duplexes.

Table B.3 shows details about the predictions of PairFold presented in Table 5.2

from Section 5.5.2. The two sequences in the duplex and their corresponding secondary

structures, are separated by a space. For each duplex, the first structure is the predicted

secondary structure using PairFold, and the second structure is the experimentally deter-

mined structure, reported in the referenced paper. The structures are drawn in dot-brackets

format. The underlined characters in the predicted structures indicate wrong predictions.

The underlined characters in the real structures indicate odd pairs.

No. RNA sequences, predicted structures, real structures

1 GCCGUCCCCCG CGGGGCUGAUGAGGCCGAAAGGCCGAAACGGC

pred. (((((.((((( ))))).......((((....))))...)))))

real (((((.((((( ))))).......((((....))))...)))))

2 UGCAGAUCAUGAGGAU AUCCUUGAUGGCAUGCACUAUGCGCGAUGAUCUGCA

pred. .((((((((((((((( ))))))....(((((...)))))...))))))))).

real ((((((((((.((((( ))))).....((((.....))))...))))))))))

3 AAUAAACUCAACGGAGG CCUGCGUUCUGAUGAGUCCGUGAGGACGAAAGUUUACC

pred. ..((((((.((((.((( ))).)))).......((((....))))...))))))..

real ..((((((.(((((((( )))))))).......((((....))))...))))))..

4 GGCCACCUGACAGUCCUCUCC GGAGAGAGAAGUCAACCAGAGAAACACACCAACCCAUUGCACUCCGGGUUGGUGGUAUAUUACCUGGUACGGGGGAAACUUCGUGGUGGCCG

pred. (((((((.(((..(((((((( )))))).)).))).(((((..((((.(((((((((..........)))))))))))...))..)))))((((((....))))))))))))).

real ((((((((((((.(((((((( ))))))))))))).((((((((((.((((((((((..........)))))))))).).)).)))))))((((((....))))))))))))).

5 GCCGUAGGUUGCCC GGGCGACCCUGAUGAGUUGGGAAGAAACUGUGGCACUUCGGUGCCAGCAACGAAACGGU

pred. (((((.(((((((( )))))))).......((((.(......)..((((((....)))))).))))...)))))

real (((((.(((((((( )))))))).......((((...........((((((....)))))).))))...)))))

6 GCCGUAGGUUGCCC GGGCGACCCUGAUGAGUUGGCGGCACUUCGGUGCCGGGAAGAAACUGCAACGAAACGGU

pred. (((((.(((((((( ))))))))....((((((..((((((....))))))......)))).)).....)))))

real (((((.(((((((( )))))))).......((((.((((((....))))))...........))))...)))))

7 UCACAGUCCUCUUU GGGAGACGUGGUAUAUUACCUGGUUUCGACCAGAGAAACACACGAAAAAAAAAGAGAGAAGUGAA

pred. ((((..(((((((( ......((((((...((..(((((....)))))..)))).))))......)))))).)).)))).

real ((((....(((((( ......((((.........(((((....))))).......))))......))))))....)))).

8 AGACAGUCCAGAAA GGGAGUUUCUGAGAAGUCUACCAGAGAAACACACGUUGUGGUAUAUUACCUGGUA

pred. ((((..(((((((( .....)))))).)).))))(((((.....(((.....))).........))))).

real ((((....(((((( .....))))))....))))(((((.......(((...))).........))))).

9 AGACAGUCCAGAAAUCUCCCUCACAGUCCUCUUU GGGAGACGUGGUAUAUUACCUGGUUUCGACCAGAGAAACACACGAAAAAAAAAGAGAGAAGUGAGGGAGAUUUCUGAGA

pred. ((((..((((((((((((((((((..(((((((( ......((((((...((..(((((....)))))..)))).))))......)))))).)).)))))))))))))))).))

real ((((....((((((((((((((((....(((((( ......((((.........(((((....))))).......))))......))))))....))))))))))))))))...

AGUCUACCAGAGAAACACACGUUGUGGUAUAUUACCUGGUA

.))))(((((.....(((.....))).........))))).

.))))(((((.......(((...))).........))))).

10 UCAGAAGGCUGUAGACAAAUACUGG CCAGUAUUUGUCCUGAUGAGGCCUCGAGGCCGAAACAGCCUUCUGA

pred. ((((((((((((.(((((((((((( )))))))))))).......((((....))))...))))))))))))

real ((((((((((((.(((((((((((( ))))))))))))....(((((((....)))))))))))))))))))
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11 UUAGGCAUCUCCUAUGGCAGGAAGAAGCGGAGACAGCGACGAAGACCUCCUCAAGGCAGUCAGACUCAUC GGGAACAAAAGCUUAUCUCUGAUGAGGCCUCGAGGCCGAAACU

pred. .(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((.....((((( ((((...........)))).)))))((((....))))...)))

real ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((.(((...... ...............))).....((((((....)))))).)))

GCCUUGAGGAGGUCUUCGUCGCUGUCUCCGCUUCUUCCUGCCAUAGGAGAUGCCUAA

)))))))))))))))))))))))))))).))))))))))))))))))))))))))).

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Table B.3: Measurement of PairFold accuracy on a set of mRNA target - ribozyme pairs.
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