
High-Level Specification and Automatic Generation of

IP Interface Monitors

by

Márcio T. Oliveira

B.S., Federal University of Minas Gerais, Brazil, 1999.

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia

August 2003

c© Márcio T. Oliveira, 2003

Abstract

A central problem in functional verification is to check that a circuit block is producing

correct outputs while enforcing that the environment is providing legal inputs. To attack

this problem, several researchers have proposed monitor-based methodologies, which offer

many benefits. This thesis presents a novel, high-level specification style for these monitors,

along with a linear-size, linear-time translation algorithm into monitor circuits. The specifi-

cation style naturally fits the complex, but well-specified interfaces used between IP blocks

in systems-on-chip. To demonstrate the advantage of our specification style, we have spec-

ified monitors for various versions of the Sonics OCP protocol as well as the AMBA AHB

protocol, and have developed a prototype tool that automatically translates specifications

into Verilog or VHDL monitor circuits.

ii

Contents

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

Acknowledgments viii

Dedication ix

1 Introduction 1

1.1 Motivation . 1

1.2 Project . 2

1.3 Contributions . 3

2 Background 4

2.1 Monitors . 4

2.2 Extended Regular Expressions . 6

2.3 Industrial Specification Languages . 8

3 High-Level Monitor Specification 12

3.1 Specification Style . 12

iii

3.2 Formal Semantics . 17

3.3 Specification Style Restrictions . 21

3.3.1 Empty Strings and Kleene Stars 21

3.3.2 Non-determinism . 22

3.3.3 Pipeline Re-entrance . 22

4 Translation into Monitor Circuits 24

4.1 Translation Algorithm . 24

4.1.1 Base Case . 26

4.1.2 Choice Operator . 26

4.1.3 Sequence Operator . 28

4.1.4 Pipeline Operator . 28

4.1.5 Kleene Star . 29

4.1.6 Storage Variables . 30

4.1.7 Monitor Circuit . 30

4.2 Complexity Analysis . 31

5 Examples 34

5.1 ARM AMBA AHB Bus . 34

5.1.1 Specification . 35

5.2 Sonics OCP . 55

5.2.1 Specification . 56

5.3 Results . 61

6 Conclusion and Future Work 63

Bibliography 65

Appendix A Pipelined Regular Expression Monitor Compiler Manual 67

A.1 Introduction to PREMiS . 67

A.1.1 Overview . 67

iv

A.1.2 Identifiers and Reserved Words 67

A.1.3 Input Signals . 68

A.1.4 Storage Variables . 69

A.1.5 Constants . 69

A.1.6 Primitive Expressions . 70

A.1.7 Extended Regular Expressions . 72

A.1.8 Define Statement . 75

A.1.9 Productions . 76

A.1.10 Variable Assignment . 77

A.1.11 Input File Format . 77

A.2 Running the PREMiS Compiler . 78

A.2.1 Command Line Syntax and Options 78

A.2.2 Output File . 78

Appendix B Language Grammar 79

v

List of Tables

5.1 Results for the AHB slave, AHB master, OCP slave, OCP master. 62

A.1 Operator Precedence . 70

A.2 Extended Regular Expression Operator Precedence 72

vi

List of Figures

2.1 Monitor Circuit . 5

3.1 Multiple Pipelined Transactions . 16

3.2 Parse Tree . 17

3.3 Parse Tree Configurations . 18

4.1 Choice Operator Circuit Construction . 27

5.1 System Using AHB as the Main Bus . 35

5.2 AHB Example Configuration . 36

vii

Acknowledgments

I would like to thank Alan Hu for all he has done for me, from providing academic guidance

to providing food and money. I have been very fortunate to have him as my advisor. Even

after I have left UBC he held weekly meetings with me until I finished the writing of this

thesis. I also would like express my gratitute to Resve Saleh for agreeing on being the

second reader of my thesis. At last, I would like to thank the ISD students for providing

such a good work environment, and specially to Xiushan Feng for helping me with the

practical aspects of submitting my thesis while I was away from Vancouver.

MÁRCIO T. OLIVEIRA

The University of British Columbia

August 2003

viii

To my parents and Daniela

ix

Chapter 1

Introduction

1.1 Motivation

Standard design practice is block-based — the design task is carved into small pieces to be

tackled by an individual designer or a small team. In the past, block boundaries and inter-

faces have been casually negotiated through face-to-face discussions among the designers.

This informal negotiation does not scale with the push for higher productivity and complex-

ity. In addition, we would like to reuse pre-designed and pre-verified IP blocks — either

designed previously in-house or purchased from third-party IP suppliers. As a result, the

trend is towards designing with large, complex blocks with well-defined functionality and

interfaces.

This trend generates two complementary verification problems: how to verify that

a block behaves properly in its intended environment without having to model and verify

the rest of the system, and how to verify that a system behaves properly without having

to instantiate all blocks and flatten the design. Current verification practice for the first

problem is to create (by hand) an abstracted environment model for formal verification or

a testbench for simulation-based verification. Current practice for the second problem is to

create by hand abstract models of the blocks and the system, or else to attempt to verify

the whole system and suffer from state explosion in formal verification or slow simulation

1

speeds and poor coverage during system-level simulation. In either case, this practice is

labor-intensive, error-prone, and results in time-consuming false error reports (if the models

are too flexible) or missed bugs (if the models are too strict).

Several groups have proposed interface-monitor-based methodologies (e.g., [10, 16,

9]) to address this problem. The common theme is to create a monitor circuit that watches

the interface between a block and the rest of the system and flags any violations of the

interface protocol. The key insight, empirically confirmed in several case studies, is that

designing a passive, declarative monitor is easier than designing an active stub to model the

environment. Furthermore, because the monitor may be symmetric between the block and

the rest of the system, the same monitor can be used to verify both the block with the system

abstracted as well as the system with the blocks abstracted, thereby supporting a composi-

tional/hierarchical verification style. The monitor also provides a precise documentation of

the interface, on which formal sanity checks can be applied. Finally, it is possible to convert

a monitor circuit automatically into a testbench (stimulus generator) for simulation-based

verification [20]. The advantages of a monitor-based methodology are compelling.

Unfortunately, although impressive monitors have been built [15], creating a mon-

itor for a complex protocol is a challenging task because all properties must be extracted

from the English written document. This process may lead to incomplete or incorrect spec-

ifications, since it isn’t straightforward to determine the full behavior of the interface by

looking at a set of properties that may or may not depend on each other.

1.2 Project

This work introduces a high-level specification style designed explicitly to simplify spec-

ification of interface monitors. Our goal is to provide an extremely easy way to generate

monitors for common interface idioms. With numerous emerging standards for system-

on-chip interconnect, the need for a simple, concise, and readable way to specify interface

protocols is clear. Being able to translate these high-level specifications automatically into

monitor circuits allows tapping the power of monitor-based methodologies. By using our

2

specification style, IP suppliers will be able to formally verify that their cores conform to

an interface protocol as well as supply a monitor for that protocol that is both easily human-

readable and directly usable by verification tools.

1.3 Contributions

The most obvious contribution of our research is the demonstration that regular expressions

work very well for specifying IP interface monitors. That statement, however, is actually

false. Existing specification styles based on regular expressions do rather poorly as soon

as the interface protocol becomes as complex as typical system-on-chip interconnect pro-

tocols. However, by introducing two novel extensions — storage variables and a pipelining

operator — we have created a specification style that does work very well for interface

monitors. This new high-level specification style can be used to describe the full behavior

of the interface, making it easier to write, read and modify than a specification written as a

set of properties. Since the full behavior of the interface is specified, it is straightforward to

check it against the English document for completeness. The properties are implied from

the model during the translation to a monitor circuit. The new extensions require a new

algorithm for translating specifications into monitor circuits. We have implemented this al-

gorithm in a prototype tool that translates specifications into monitor circuits in Verilog or

VHDL. Finally, we have demonstrated the usefulness of our specification style by develop-

ing monitors for two standards for system-on-chip interconnect: large portions of ARM’s

AMBA AHB high-performance bus protocol [2] and several versions of OCP (Open Core

Protocol) originated by Sonics [17].

3

Chapter 2

Background

2.1 Monitors

A monitor is a circuit that watches the inputs and outputs of two or more connected blocks

and flags any protocol violation (see Figure 2.1). Even though the idea is very simple, a

monitor is a very powerful verification tool.

A well-written monitor is a complete and unambiguous specification of the inter-

face behavior. It can also be used to constrain the inputs of a block, allowing it to be verified

before it is connect to any other block. This approach is especially useful for formal veri-

fication where blocks are verified separately because the tools available as of today can not

handle large designs.

A practical, industrial-strength verification methodology can be built on extensive

use of monitors [5]. Using monitor circuits to encapsulate properties to be checked is an

established idea. Many companies specialize in writing and selling monitors of standard

interfaces like PCI, AGP, or AMBA. These are usually written in an HDL language like

Verilog or VHDL.

Our work was directly motivated by the elegance and power of monitor-based ap-

proaches to interface specification [10, 16, 9]. The emphasis of those efforts was mainly on

the value of this way of thinking; little emphasis is on the specification language. Our focus

4

Monitor
Error

Rest of System

Block

Monitor
Error

Rest of System

Arbitrary

Monitor
Error

Block
Arbitrary

Environment

Figure 2.1: A monitor circuit watches the interface and flags any violations of the proto-
col. The block and system can be formally verified separately. The monitor can also be
converted into a simulation testbench.

is on the specification language; we seek to harness those results by providing a shortcut to

specifying monitors.

For example, in the style of [16], a monitor is specified as a set of independent

properties in the form antecedent ⇒ consequent. An example is show below:

previous(request) && !ack => request

previous(!request) => !ack

The first formula guarantees that if request is high than it must stay high until ack is

received. The second formula guarantees that ack can only be high if request was high

on the last cycle. Even though this style seems simple, which is also an advantage, it is

possible to describe complex monitors using it. Also, by adding a few restrictions on the

way the formulas are written, other advantages such as being able to blame the block that

was responsible for causing an error, can be obtained (See [16].). One of the disadvantages

of this style is that the properties are not written at the transaction level, but at a lower

level. Many properties may be needed to describe a transaction, which makes the process

of understanding the specification harder.

5

2.2 Extended Regular Expressions

Since a monitor is a finite state automaton, a possible idea is to use regular expressions to

represent it. Regular expressions describe regular languages (languages that can be rec-

ognized by a deterministic finite automaton). Every regular expression describes a regular

language and every regular language can be described by a regular expression. A regular

expression can be composed by the empty string ε, atomic symbols (letters of the language

alphabet) and three operations: union, concatenation, and Kleene star.

Given a regular expression r, let L(r) denote the language (set of strings)

recognized by r. We define L as follows:

Base Case: If a is a letter of the alphabet, then L(a) = {a}

Union: If r1 and r2 are regular expressions, then L(r1 ∪ r2) = L(r2)∪L(r2)

Concatenation: If r1 and r2 are regular expressions, then L(r1,r2) = the set

of all strings ω = ω1,ω2 such that ω1 ∈ L(r1) and ω2 ∈ L(r2)

Kleene star: If r is a regular expression, then L(r∗) = {ε}∪
S

i≥1 L(ri) where

L(ri) = L(r, · · · ,r
︸ ︷︷ ︸

i times

)

The most direct influence on our work is earlier work from the synthesis commu-

nity: Production-Based Specification (PBS) [14]. This work uses an extended regular ex-

pression language to specify state machines, which are synthesized in polynomial time into

circuits, never explicitly building a deterministic finite-state machine and thereby avoiding

a potential blowup. Production-based specification has proven to be particularly well-suited

to synthesizing protocol state machines, and hence was a natural starting point for our re-

search.

PBS extends regular expressions by adding new operators, like the exception oper-

ator, and most important of all, by allowing sub-expressions to be annotated with VHDL

code. Every time a sub-expression is matched, the associated VHDL code is executed.

This specification style allows the description of complex protocols without the necessity

of explicitly describing the control logic associated with it.

6

In PBS, the regular expression is written in a production-based style, hence the

name Production-Based Specification. Productions are nothing but a name given to a sub-

expression, which can be used in other productions. Recursion is not allowed, so the pro-

ductions can be collapsed into a single regular expression. Recursion would allow specify-

ing non-regular languages. The following is an example extracted from [13]:

Count -> Valid | Invalid;

Valid -> ONE* Low* ONE*;

{

IS_LEGAL <= ’1’;

}

Invalid -> ONE* ZERO+ ONE+ ZERO;

{

IS_LEGAL <= ’0’;

COUNT := 0;

}

Low -> ZERO; {COUNT := COUNT + 1;}

This machine counts the number of consecutive zeros in a bit stream. The VHDL code

shown below (also extracted from [13]) shows a possible VHDL implementation for this

machine.

process

begin

wait until CLK’event and CLK = ’1’;

if (SEEN_TRAILING and DATA = ’0’) then

IS_LEGAL <= ’0’;

COUNT <= 0;

elsif (SEEN_ZERO and DATA = ’1’) then

SEEN_TRAILING := TRUE;

7

elsif (DATA = ’0’) then

SEEN_ZERO <= ’1’;

COUNT := COUNT + 1;

end if;

end process;

A specification in PBS is usually very compact if compared with the HDL descrip-

tion of the same protocol, making it very easy to read, write, and modify. Also, productions

are an intuitive way to break the description into smaller functional parts.

Because of all these characteristics, PBS seemed a natural starting point for our

monitor specification language. But as soon as we began writing monitors using PBS,

we found two major problems: pipelined protocols and memory storage. Most complex

protocols have some sort of pipelined behavior, and we were not able to describe it easily

with PBS. The problem is that the specification is done cycle-by-cycle, but pipelining is best

understood as overlapping computations. The other problem is that sometimes we need to

check for behavior such as “data should hold until ack” and even though it is possible to

describe this using PBS, it would be necessary to write a production for every possible value

of the data. Hence, some sort of memory storage is necessary.

2.3 Industrial Specification Languages

Many specification languages have been created recently, such as IBM’s Sugar [4], Intel’s

ForSpec [3], Fujitisu’s and Hitachi’s CWL [8], and Synopsys’ OpenVera Assertions [19].

These could be used to specify monitors, and are therefore related to our specification style.

This section will briefly survey these languages and highlight their advantages and disad-

vantages.

IBM’s Sugar is a property specification language that was initially based on the

branching-time temporal logic CTL [6] and regular expressions. A branching-time temporal

logic reasons about all the possible paths in the model. If a state has many successor states,

8

then the logic will consider all next states. A CTL formula is composed of path quantifiers

and temporal operators. The path quantifiers are A (“all paths”) and E (“there exists a

path”). The temporal operators are G (“always”), X (“next”), F (“eventually”), and U

(“until”). Every temporal operator must be immediately preceded by a path quantifier. The

following is a CTL formula for the property “every request must be followed by an ack”:

AG(request -> AF(ack))

This formula can be translated to English as, for all paths from the initial state it is globally

true that for every state where request is true then for all paths from these states ack will

eventually be true.

Even though CTL is a powerful temporal logic and its verification algorithms can

be implemented very efficiently, it may be very cumbersome to write the formulas to ex-

press some properties. Sugar’s basic idea is to use regular expressions and other syntactic

elements to facilitate the writing of complex temporal formulas. The example below shows

a Sugar formula and the corresponding CTL formula that represents the property that a

request must be followed by an ack within four clock cycles:

Sugar: AG(request -> next_event_f(clk)[1..4](ack))

CTL: AG(request -> AX(ack) || AX(AX(ack)) || AX(AX(AX(ack)))

|| AX(AX(AX(AX(ack)))))

The operator next_event_f is one of the Sugar language extensions. It doesn’t add any

expressive power to the language but it helps making the task of writing formulas easier.

It’s easy to see that if the formula involved a larger number of clock cycles it would be very

painful to write it in CTL.

Intel’s ForSpec is also a property specification language, but it is based on Linear

Temporal Logic (LTL) [11]. In a linear-time logic, a formula reasons about one possible

computation (one path) of the model. There are some CTL formulas that cannot be ex-

pressed in LTL; conversely there are some LTL formulas that cannot be expressed in CTL.

In theory, LTL implementation complexity is higher than CTL’s. The following is an LTL

formula that cannot be expressed in CTL:

9

FG p

The meaning of this formula is that p will eventually always be true.

Neither LTL nor CTL can express certain ω-regular properties. In order to solve

this problem, ForSpec extends LTL with regular events, which are a sequence of events

represented by a regular expression. The following is an example of a ForSpec formula

extracted from [3]:

Globally !(request,(!ack & !request)*,!ack & request)

This formula represents the property that if a request is made, another request can not be

made until an acknowledgment is received.

ForSpec also adds other facilities such as time windows and constructs to model

multiple clocks and resets. See [3] for more details.

Recently, Sugar was chosen as the standard property specification language by the

Accellera [1] organization. In order to satisfy Accellera requirements, a linear temporal

logic was added to Sugar, making it very similar to ForSpec with respect to expressive

power.

Sugar and ForSpec are related to our specification style in the sense that both use

regular expressions to facilitate the writing of temporal expressions. The fundamental dif-

ference is that Sugar and ForSpec are designed to specify properties, whereas our aim is to

easily and compactly specify entire interface protocols. Therefore, we provide constructs to

partition the interface protocol into functional units. We also provide support for common

idioms, such as pipelining, which are not directly supported by either Sugar or ForSpec.

The preceding specification languages evolved from temporal logic; others, such

as Synopsys’ OpenVera Assertions (OVA), evolved from testbench/simulation languages.

OVA’s syntax is similar to Verilog, constructs like if-then-else and for loops can be used

to facilitate the writing of assertions. The basic construct of the language is a temporal

sequence. These sequences can be used to verify coverage and also to generate biased

testbenches. Two interesting aspects of the language, which are very similar to aspects in

10

our specification style, are that sequences can be composed as if they were productions,

and data can be stored during any time in the sequence to be used later. Below is an OVA

sequence example:

if (enable) then

(request #1 !ack #1 ack)

The sequence (request #1 !ack #1 ack) will only begin to be verified if the pre-

condition enable is satisfied. The property describes the sequence in which request must

be followed by !ack, which must be followed by ack. In this example, the sequence extends

for three cycles.

The key differences between OVA and our work is that OVA was not designed to

be fully synthesizable, which means that a formula written in OVA may or may not be

synthesizable. OVA also does have direct support for pipelining.

The language that is most similar to our specification style is Fujitisu’s and Hitachi’s

Component Wrapper Language (CWL)1. CWL is an interface specification language based

on regular expressions. The idea is to use regular expressions to write a generalized ver-

sion of a waveform, which is called a transaction. These transactions can be composed to

specify the full behavior of the interface. As in our specification style, pipelining is au-

tomatically supported by using special operators to compose transactions. CWL and our

work evolved in parallel and neither group was aware of the other. We published first in

an international conference, at which time, we were told of the forthcoming release of the

CWL Specification [8]. Their current tool [7] that translates CWL to Verilog does not sup-

port the pipelining operators described in the language. The strong similarities between the

two independent efforts suggests that the specification style clearly captures fundamentally

useful concepts.

1CWL evolved from the specification language OwL [18], which supports productions but not
pipelining.

11

Chapter 3

High-Level Monitor Specification

3.1 Specification Style

In this section, we introduce our specification style, which addresses the limitations de-

scribed in Chapter 2. We call our style PREMiS, which stands for Pipelined Regular Ex-

pression Monitor Specification. In this section, we present our style informally by example,

and in Section 3.2, we define the formal semantics. Appendix A is the language reference

manual.

We introduce the specification style incrementally, starting with regular expressions,

and then introducing productions, storage variables, and pipelining. Examples taken from

the AMBA AHB protocol will illustrate the concepts. We will try to provide enough infor-

mation for readers unfamiliar with AHB to understand the examples.

Fundamentally, a regular expression specifies a language, which is just a set of

strings, which are sequences of characters, which are drawn from some alphabet. Analo-

gously, we start at the very beginning with the alphabet of our specification style. The inter-

face between a block and the rest of the system consists of a bunch of wires: some are inputs

to the block; some are outputs. For example, an AHB slave device interfaces to the system

via several wires, such as HADDR[31:0], a 32-bit address input; HRDATA[31:0], a 32-bit

data output; HWRITE, HTRANS[1:0], HSIZE[2:0], HBURST[2:0], which are control sig-

12

nals describing the type and size of a transfer; and HREADY, HREADYOUT, and HRESP[1:0],

which are hand-shaking and response signals. All of these wires are inputs to the monitor,

which passively watches their values. Accordingly, the fundamental building-block of our

specifications is an assignment of values to the wires on the interface at a given clock cycle.

For convenience, we allow the user to specify any Boolean formula on the interface

wires. For example, the AHB protocol defines encodings for the different transfer and

response types, so we allow the user to specify:

define idle = !HTRANS[0] & !HTRANS[1];

define busy = HTRANS[0] & !HTRANS[1];

define nonseq = !HTRANS[0] & HTRANS[1];

define seq = HTRANS[0] & HTRANS[1];

define okay = !HRESP[0] & !HRESP[1];

define error = HRESP[0] & !HRESP[1];

define retry = !HRESP[0] & HRESP[1];

define split = HRESP[0] & HRESP[1];

Any Boolean formula on the interface wires (and defined formulas) is a primitive expres-

sion.

Given primitive expressions, we can define regular expressions recursively in the

usual manner. Any primitive expression is a regular expression. A regular expression

concatenated to another regular expression is a regular expression. We use a comma as

our concatenation operator. For example, the AHB specification defines different response

codes for a slave to signal to the master:

wait_state -> !HREADY & okay;

okay_resp -> HREADY & okay;

error_resp -> (!HREADY & error) , (HREADY & error);

retry_resp -> (!HREADY & retry) , (HREADY & retry);

13

split_resp -> (!HREADY & split) , (HREADY & split);

The error, retry, and split responses take two cycles: the first with HREADY low, the second

with HREADY high. The choice (denoted by ||) between regular expressions is a regular

expression. For example, to specify that a transfer can be one of four different kinds, we

can write:

transfer -> idle_trans || busy_trans ||

nonseq_trans || seq_trans;

Finally, we have the Kleene closure to denote repetition:

resp -> wait_state* , (okay_resp ||

error_resp || split_resp || retry_resp);

The above expression specifies the response phase to be any number of wait states, followed

by one of the response types.

For notational convenience, we use productions as they were defined in production-

based specifications [14]. We have actually been using productions already in the preceding

paragraph. The symbol to the left of the -> operator is defined to be an abbreviation for

the regular expression on the right-hand side. To guarantee that specifications correspond

to finite-state machines, productions cannot be recursive.

The above definitions are the same as earlier regular-expression specification styles

and appear to be convenient for describing protocols. The behavior of an AHB slave device,

for example, is simply a sequence of transfers or idle periods:

slave -> (slave_idle || transfer)*

where slave_idle means HREADY is low or the slave is not selected, and transfer is

defined as above. Describing the full details of typical IP block interface protocols, however,

quickly reveals the limitations of a pure regular-expression specification style.

The first major obstacle is persistent storage of information. In AHB, for example,

a slave device can reply with a split response, indicating that it needs a long time to com-

plete the request. The interface monitor for a split-capable slave should remember the ID

14

numbers of all masters who have splits pending, to ensure that a slave does not signal com-

pletion of a split transaction that has not happened. Encoding such information with regular

expressions is possible, but painful: for every possible value of the saved information, the

user must write a slightly modified version of every production that is affected. Instead, we

propose storage variables as a simple alternative. The user can declare finite-state variables

as part of the specification. At any point in a regular expression, values can be assigned

to the storage variables. The values of the storage variables are available in any Boolean

formula defining a primitive expression. The monitor for an AHB slave could have a 16-

bit storage variable, with one bit for each possible master to indicate whether it has had a

request that has been split. Whenever the slave issues a split, the corresponding bit is set;

whenever the slave issues a split completion, the corresponding bit is checked.

The other major obstacle is pipelining. Almost all high-performance interfaces are

pipelined to some degree. Most formal specifications describe the cycle-by-cycle behavior

of an interface, but unfortunately, pipelining is extremely hard to specify (or understand) at

the cycle-by-cycle level. Trying to specify pipelining via regular expressions or any other

cycle-by-cycle style requires the user to entangle all the possible parallel behaviors by hand,

resulting in a difficult, error-prone specification process and an unreadable specification.

Instead, pipelining is most naturally understood as an operation that overlaps sequential

operations (Figure 3.1). In the AHB protocol, the arbitration phase, address (request) phase,

and data (response) phases are all pipelined. The official AMBA specification document [2]

describes these phases sequentially in English, and then presents timing diagrams to attempt

to show how they entangle in pipelined operation. Our solution is to provide an explicit

pipelining operator, similar to the concatenation operator. For example, for an AHB slave

monitor, a transfer has an address phase followed by a response phase:

idle_trans -> (idle & HSEL & HREADY) , okay_resp;

busy_trans -> (busy & HSEL & HREADY) , okay_resp;

nonseq_trans -> (nonseq & HSEL & HREADY) , resp;

seq_trans -> (seq & HSEL & HREADY) , resp;

15

req resp

req resp

req resp

Time

Figure 3.1: This figure shows multiple pipelined transactions, where each transaction has a
request phase and a response phase: (req@resp)*. Our pipeline operator marks the point
where the next computation overlaps the current one. At that point, we fork a new “thread”
to complete the current transaction (dotted arrow), while the current thread continues with
the rest of the regular expression, if any (solid arrow).

(HSEL indicates this slave is selected; HREADY is the handshake that indicates the address

phase is complete.) However, the address and response phases are pipelined, so that the

response phase of one transfer occurs at the same time as the address phase of the next

transfer. In our specification style, we simply replace the concatenation operator with the

pipeline operator @:

idle_trans -> (idle & HSEL & HREADY) @ okay_resp;

busy_trans -> (busy & HSEL & HREADY) @ okay_resp;

nonseq_trans -> (nonseq & HSEL & HREADY) @ resp;

seq_trans -> (seq & HSEL & HREADY) @ resp;

The semantics of the pipeline operator are that the thread of control forks into two sub-

threads when the pipeline operator is encountered: one sub-thread continues with the reg-

ular expression as if the right-hand operand of the pipeline operator did not exist, the other

sub-thread focuses only on the right-hand operand, ignoring the rest of the regular expres-

sion. The thread accepts a string only if both sub-threads accept (Figure 3.1). Multistage

pipelines are easily specified as (a @ (b @ (c @ ...))).

16

#

,

a ||

b c

Figure 3.2: Parse tree for the PREMiS expression “a , (b ‖ c)”

3.2 Formal Semantics

In this section, we formally define if a given string is accepted or rejected by a PREMiS

expression.

For mathematical convenience, we restrict the PREMiS expression such that the

sub-expression controlled by a Kleene star cannot accept the empty string. Regular expres-

sions can be normalized to obey this restriction, as was described in [12].

Given a PREMiS expression, there exists a unique parse tree that represents it. The

parse tree consists of nodes and edges connecting these nodes. Each internal node is labeled

by one of the possible operators (choice “||”, Kleene star “*”, pipelining “@”, concatenation

“,”). The leaves are the letters of the alphabet. Figure 3.2 shows the parse tree for the

PREMiS expression “a , (b || c)”. The “#” symbol is used to mark the root of the tree.

We give a unique number to each node by traversing the parse tree in a depth first

order. See Figure 3.3. We can then define the function t(n), which returns the operator as-

sociated with the node numbered by n. If the node is a leaf, this function returns the symbol

T . We also define the function l(n), that when applied to the node n, returns the letter of the

alphabet represented by this node if the node is a leaf and is undefined otherwise.

A parse tree configuration can be defined by picking one of the edges of the tree

(active edge) and giving a direction for this edge. It is easy to see that there are 2n unique

configurations for every tree, where n is the number of edges. Figure 3.3 shows all possible

17

6

1

2

3 4

5

#

,

a ||

b c 6

1

2

3 4

5

#

,

a ||

b c 6

1

2

3 4

5

#

,

a ||

b c 6

1

2

3 4

5

#

,

a ||

b c 6

1

2

3 4

5

#

,

a ||

b c

6

1

2

3 4

5

#

,

a ||

b c 6

1

2

3 4

5

#

,

a ||

b c 6

1

2

3 4

5

#

,

a ||

b c 6

1

2

3 4

5

#

,

a ||

b c 6

1

2

3 4

5

#

,

a ||

b c

Figure 3.3: All possible configurations for the parse tree for the PREMiS expression
“a , (b ‖ c)”. Nodes are numbered according to a depth-first traversal. Configurations are
also ordered according to a depth-first traversal. In the figure, the order is top row, left-to-
right, then bottom row, left-to-right.

configurations for the parse tree representing the PREMiS expression “a , (b || c)”.

A configuration can be described in two ways. First, we can use the node to where

the active edge points and give the direction of the edge according to this node. The fol-

lowing are the four ways to describe this direction: from above, from below (for nodes with

one child), from left (for nodes with 2 children), and from right (for nodes with 2 children).

Second, we can use the node from where the active edge points and give the direction of the

edge according to this node. The following are the four ways to describe this direction: to

above, to below (for nodes with one child), to left (for nodes with 2 children), and to right

(for nodes with 2 children). The first configuration in figure 3.3 can be described as (node

1, to below) or as (node 2, from above). It is easy to see that the two configurations are

equivalent.

We now define a function V : con f iguration × string −→ B , that determines

whether a string will be accepted, starting from a configuration:

18

Definition 1 Given a configuration c and a string σ, define the function V (c,σ) as follows.

If ε denotes the empty string:

V (c,ε) =

1 if c = (n, f rom below) and t(n) = #

0 if c = (n, f rom above) and t(n) = T

1 if c = (n, f rom above) and t(n) = ∗

1 if c = (n, f rom below) and t(n) = ∗

V ((n, to le f t),ε)
W

if c = (n, f rom above) and t(n) = ‖

V ((n, to right),ε)

V ((n, to above),ε) if c = (n, f rom le f t) and t(n) = ‖

V ((n, to above),ε) if c = (n, f rom right) and t(n) = ‖

V ((n, to le f t),ε) if c = (n, f rom above) and t(n) = ,

V ((n, to right),ε) if c = (n, f rom le f t) and t(n) = ,

V ((n, to above),ε) if c = (n, f rom right) and t(n) = ,

V ((n, to le f t),ε) if c = (n, f rom above) and t(n) = @

V ((n, to right),ε)
V

if c = (n, f rom le f t) and t(n) = @

V ((n, to above),ε)

1 if c = (n, f rom right) and t(n) = @

19

If σ = ax, where a is a letter of the alphabet and x is a string:

V (c,ax) =

0 if c = (n, f rom below) and t(n) = #

0 if c = (n, f rom above) and t(n) = T

and l(n) 6= a

V ((n, to above),x) if c = (n, f rom above) and t(n) = T

and l(n) = a

V ((n, to above),ax)
W

if c = (n, f rom above) and t(n) = ∗

V ((n, to below),ax)

V ((n, to above),ax)
W

if c = (n, f rom below) and t(n) = ∗

V ((n, to below),ax)

V ((n, to le f t),ax)
W

if c = (n, f rom above) and t(n) = ‖

V ((n, to right),ax)

V ((n, to above),ax) if c = (n, f rom le f t) and t(n) = ‖

V ((n, to above),ax) if c = (n, f rom right) and t(n) = ‖

V ((n, to le f t),ax) if c = (n, f rom above) and t(n) = ,

V ((n, to right),ax) if c = (n, f rom le f t) and t(n) = ,

V ((n, to above),ax) if c = (n, f rom right) and t(n) = ,

V ((n, to le f t),ax) if c = (n, f rom above) and t(n) = @

V ((n, to right),ax)
V

if c = (n, f rom le f t) and t(n) = @

V ((n, to above),ax)

1 if c = (n, f rom right) and t(n) = @

We argue that V is a well-defined function by defining an ordering on pairs of con-

figurations and strings. Pairs with shorter strings come later in the ordering. For pairs with

same length strings, the order is determined by the configurations. We order configurations

based on the location and direction of the active edge. For any node n, the configuration

(n, f rom above) comes before all configurations in which the active edge is below node n,

and those configurations come before (n, to above). Similarly, (n, f rom le f t) comes before

(n, to right). Intuitively, configurations are ordered according to the order and direction of a

20

depth-first traversal visiting each edge of the parse tree. Figure 3.3 shows the configurations

in this order. It is easy to see that all rules either shorten a string or generate a configuration

later in the ordering, except the rule “(n, f rom below), type(n) = ∗”. Since we do not allow

sub-expressions controlled by a Kleene Star to accept the empty string, every time we reach

this configuration, it is guaranteed that the string will be shorter.

3.3 Specification Style Restrictions

We impose three restrictions on our specification style: (1) the sub-expression within a

Kleene star cannot accept the empty string, (2) every choice must be deterministic, and

(3) a pipeline thread can not start again until it finishes its previous computation. In this

section, we describe how to statically detect if a PREMiS sub-expression controlled by a

Kleene star accepts the empty string, how to avoid non-determinism, and how to handle

pipeline re-entrance.

3.3.1 Empty Strings and Kleene Stars

In [12], a function Λ that detects if a regular expression accepts the empty string is de-

scribed. If E and F are regular expressions and a is a terminal, Λ is defined as:

Λ(a) = f alse Λ(E∗) = true

Λ(E‖F) = Λ(E)∨Λ(F) Λ(E,F) = Λ(E)∧Λ(F)

In order to handle the pipeline operator, we take the parse tree for the PREMiS

expression and delete the right-hand-operand edges of all pipeline operators, resulting in

several, disjoint (sub)-trees. We then remove all pipeline operators by connecting its left-

hand-operand to the immediately preceding operator. For each sub-expression controlled

by a Kleene star, in all trees, we apply the function Λ. If the result is true for any of the

sub-expressions, then this expression is not a valid PREMiS expression.

Also in [12], a function to normalize regular expressions to avoid this case is pre-

sented. We were not able to find an easy way to modify this function to handle the pipeline

21

operator, and we are not even sure that such a function exists. In practice, this restriction

has not been a problem for us.

3.3.2 Non-determinism

Non-determinism may occur when the choice operator or the Kleene star operator is used.

The example below shows a PREMiS expression where it is not possible to know which

sub-expression is being matched if the first letter of the string being parsed is an a:

(a , b) || (a , c)

The following example shows how a Kleene star may generate non-determinism:

a* , (a , b)

If an a is the first letter of the string being parsed, then it may represent the a in the sub-

expression a* or the a in the sub-expression (a , b).

In order to be able to automatically generate efficient monitors, we do not allow

non-determinism to occur in our specification style.

To avoid non-determinism, we impose the restriction that whenever a configuration

generates two possible next configurations (except for the pipeline operator), one of these

configurations must not accept the string consisting of the first letter of the string being

parsed. The configurations that may cause non-determinism are: active edge pointing to a

choice operator from above, or active edge pointing to a Kleene star.

3.3.3 Pipeline Re-entrance

We define pipeline re-entrance to be when the right-hand sub-expression of a pipeline op-

erator has not finished yet and a new activation occurs. In the example below, pipeline

re-entrance can not be avoided (for any valid string with length greater than two):

p -> (a @ (b , c))*;

22

In many practical cases, it is desirable to be able to write such expressions. A good

example is the AMBA AHB slave, where the pipelined response for a request can take an

unlimited amount of time. The following example is based on the AMBA AHB slave:

slave -> (idle || transfer)*;

idle -> !HREADY;

transfer -> (HREADY) @ response;

response -> (!HREADY & a_okay)* , (HREADY & a_okay);

At first glance, re-entrance may occur, since the response phase may take an unlimited

amount of time to finish: (!HREADY & a_okay)*. However, since a new request must

wait until the previous response is finished (the synchronization is done using the HREADY

signal), it will never occur.

We do not impose any pipeline re-entrance restriction statically on the parse tree, but

we enforce this rule dynamically in the monitor circuit. Thus, we obtain a higher degree of

freedom during the specification writing, but we still enforce this rule during the execution

of the monitor.

23

Chapter 4

Translation into Monitor Circuits

4.1 Translation Algorithm

The translation process starts by macro-expanding all productions, since the productions

cannot be recursive, resulting in a single (extended) regular expression for the monitor. In

theory, this expansion can produce an exponential size blow-up, but in practice, this is often

not a problem. The translation from an extended regular expression to circuits can best be

understood as recursively building a circuit for each sub-expression, so the structure of the

circuit exactly matches the structure of the regular expression. The circuit passes activation

signals from sub-circuit to sub-circuit, corresponding to possible parses of the input string

by the regular expression. We will elaborate on this construction below.

Our translation is similar to previous work in efficiently converting regular expres-

sions into circuits [14, 12]. The key differences of our algorithm are building a monitor

circuit, rather than a recognizer circuit, handling storage variables, and handling pipelining.

The first difference is that we are interested in monitoring the on-going behavior of

an interface, rather than recognizing a regular language, which was the focus of previous

work. A recognizer asserts its “OK” output only when the input sequence is a string in the

language of the regular expression. A monitor, on the other hand, asserts its OK output

as long as the sequence seen so far has not done anything not permitted by the regular

24

expression. Accordingly, our logic that tracks the correspondence between the interface

and the regular expression (the activation signals) is essentially the same as previous work,

but the logic to generate the OK signal is completely different.

Pipelining is the most difficult difference. Intuitively, we will create a single thread

for each pipeline stage, and the circuit for each thread behaves roughly like previous trans-

lations of regular expressions into circuits. The monitor is satisfied only if all active threads

are satisfied. Additional bookkeeping is required to track the exact status of each thread.

More precisely, take the (macro-expanded) parse tree for the monitor’s regular ex-

pression and delete the right-hand-operand edges of all pipeline operators, resulting in sev-

eral, disjoint parse (sub-)trees. Our restrictions on the specifications (deterministic choice

and single thread per pipeline stage) guarantee that each sub-tree will support exactly one

thread. Each thread i will generate a thread enable output tenable i and a thread OK output

toki. The monitor is satisfied as long as for all threads, tenable i ⇒ toki. (We use ⇒ to

denote logical implication.)

Each regular (sub-)expression is converted into a circuit that can read all storage

variables and interface wires. The circuit also has an activate-in input a i, an activate-out

output ao, a circuit-enabled output e, an OK output ok, and an “OK-plus” output ok p:

ai ao

e ok okp

...
interface wires and storage variables

Intuitively, the activate signals indicate where a thread is in the regular expression, the

enabled signal e indicates if this sub-circuit is enabled (is trying to match the interface

signals), and the OK signal indicates that the sub-circuit is enabled and agrees with the

current values on the interface wires. The OK-plus signal is a technical detail needed to

handle the possibility of recognizing the empty string with a Kleene star; intuitively, it

indicates that the sub-circuit is OK at this point even if all stars (zero or more repetitions)

25

became pluses (one or more repetitions).

Given an extended regular expression, the circuit is build inductively as described

in sections 4.1.1– 4.1.7.

4.1.1 Base Case

If the expression is a primitive expression, build the combinational logic to evaluate the

Boolean formula for the primitive expression. Let f denote the output of this formula. The

enable output e is equal to the activate input ai. Both ok and okp are set to ai ∧ f . The

activate-out signal is ai ∧ f delayed by one clock signal (one flip-flop in the circuit).

e = ai

ok = ai ∧ f

okp = ai ∧ f

ao = delay(ai ∧ f)

4.1.2 Choice Operator

If X and Y are regular expressions with corresponding circuit translations, then build the

circuit for X || Y from the circuits for X and Y as follows: (Denote the signals for X ’s

circuit with [X], similar for Y . See Figure 4.1.)

ai[X] = ai

ai[Y] = ai

e = e[X]∨ e[Y]

ok = ok[X]∨ok[Y]

okp = okp[X]∨okp[Y]

26

e[X] ok[X] okp [X]

e ok okp

X

Y

e[Y] okp [Y]ok[Y]

ai[X]

ai[Y] ao[Y]

ao[X]

ai ao

Figure 4.1: Circuits are built recursively from the circuits for their sub-expressions. The
dotted lines show the construction for the activation signals for the choice operator X ||Y .

27

ao = ao[X]∨ao[Y]

4.1.3 Sequence Operator

Similarly, build the circuit for X , Y as follows:

ai[X] = ai

ai[Y] = ao[X]

e = e[X]∨ e[Y]

ok = (e[X] ⇒ ok[X])∧ (e[Y] ⇒ ok[Y])∧

(ok[X]∨ok[Y])

okp = okp[X]∨okp[Y]

ao = ao[Y]

The first two equations connect the activation signals so that X goes first, and then

activates Y in sequence. The e and okp constructions are intuitive — the circuit as a whole

is enabled or “OK-plus” if either sub-circuit is enabled or OK-plus. The extra clauses for

ok are needed because X or Y might consist of a Kleene star, and the construction for the

Kleene star is always OK as soon as the circuit is activated, regardless of the values on the

interface wires (because the star allows matching zero copies of the repeating expression).

The extra clauses prevent these empty-match OK signals from propagating erroneously.

4.1.4 Pipeline Operator

For X @ Y , all of X ’s signals are connected to the corresponding signals for the circuit for

(X @ Y), since the current thread ignores Y . In addition, a new thread for Y gets activated

when X completes:

28

ai[X] = ai

e = e[X]

ok = ok[X]

okp = okp[X]

ao = ao[X]

ai[Y] = ao[X]

4.1.5 Kleene Star

Build the circuit for X* as follows:

ai[X] = ai ∨ao[X]

e = e[X]∨ao[X]

ok = ok[X]∨ai ∨ao[X]

okp = okp[X]

ao = !okp ∧ (ai ∨ao[X])

Because of the repetition, the circuit self-activates, so the ao[X] signal appears in

several formulas. The Kleene star accepts the empty string, so the ai signal appears com-

binationally in the equations for ok and ao (as well as indirectly in e for the first cycle of

X ’s activation). Here, we see the use of the okp signal: the activate output is disabled if X

is truly matching the interface (rather than vacuously matching because of a Kleene star).

The deterministic choice restriction prevents the case where ao should be true at the same

time as okp[X].

29

4.1.6 Storage Variables

Storages variables are translated into memory elements that can be read or written at any

time during the parsing of the input string. The memory elements can be read in the same

way as the inputs to the monitor can be read. Writes occur through actions.

Each action is associated with a node of the parse tree. Actions are activated when

the ao signal of the sub-expression to which the action is associated is asserted. We do

not allow actions to be connected to a node representing the pipeline operator, because the

semantics of that is not well defined.

The changes to the storage variables can be seen at the same time that the action

is activated. Since many actions can be active at the same time, it is possible for a storage

variable to be set more than once at the same time. In this case, we use the order imposed

on the parse tree nodes (See Section 3.2.) to define which assignment to a storage variable

will take place. If two or more conflicting assignments can take place at the same time,

the one associated with the action connected to the node with the highest number will be

executed.

4.1.7 Monitor Circuit

In Section 3.3, we imposed three restrictions to allow efficiently building a monitor: (1) no

empty strings within Kleene stars, (2) deterministic choice, and (3) one thread per pipeline

stage. The first two are imposed statically on the regular expression. To enforce the third re-

striction, we augment our monitor to generate a pipeline-violation error. Intuitively, for each

pipeline operator X @Y , trying to activate Y when it is already running generates a pipeline-

violation error. A complication, however, is that the signals from the already running thread

and the new activation can interfere. The easiest way around this complication is to gener-

ate three versions of every signal in the construction described in sections 4.1.1– 4.1.7: the

regular version as described already; a primed version, which ignores any new activation;

and a double-primed version, which tracks only the first cycle of a new activation. The

formulas for the primed signals are identical to the ones above, with primed signal names

30

replacing unprimed signal names, except for the initial thread activate signal a ′
i[Y] = false

instead of ai[Y] = ao[X] (cf. Section 4.1.4), and at all base case circuits (cf. Section 4.1.1),

the outputs a′o are driven by the same flip-flop (unprimed) that drives the corresponding ao.

By disabling a′i[Y], the primed version of the thread ignores new activations, but indicates

if the thread is still enabled. The formulas for the double-primed signals are also identical

to the regular signals, except with double-primed signal names, and in the base case, a ′′
o is

always false rather than driven by the flip-flop. In other words, the double-primed version

sees only the initial activation of a thread, and not any subsequent cycles. (Considerable

redundancy could be eliminated, but this construction is easy to explain and implement.)

A pipeline-violation error occurs whenever a new activation occurs while the thread is still

running: ai[Y]∧ok′p[Y]. The thread enable and ok signals are defined as tenable = e[Y] and

tok = (e′[Y] ⇒ ok′[Y])∧ (e′′[Y] ⇒ ok′′[Y]). Intuitively, if an existing activation is enabled,

it must be ok, and if a new activation is enabled it must also be ok.

The top-level monitor ok signal is represented by
Vn

i=1(tenablei ⇒ toki) where n is

the number of threads in the circuit.

4.2 Complexity Analysis

In this section, we present the complexity analysis of the translation algorithm presented

in the previous section. In order to facilitate the analysis, we will divide it into four parts:

productions flattening, PREMiS operators, storage variables, and the top-level monitor cir-

cuitry.

Productions Flattening: the translation process starts by macro-expanding all productions

and all multiple concatenation “ˆ” operators. A multiple concatenation operator al-

lows a sub-expression to be automatically concatenated n times, where n is a constant.

The sub-expression controlled by a multiple concatenation operator is replaced by the

same expression, concatenated n times.

In theory, macro-expanding productions and multiple concatenation operators can

31

produce an exponential size blow-up. For example, the specification below:

p1 -> p2, p2;

p2 -> p3, p3;

...

pn -> b, b;

produces the PREMiS expression (b, b, ..., b, b) which contains 2n operators,

where n is the number of operators in the original specification. The multiple concate-

nation operator produces a pseudo-polynomial blow-up. The length of the expanded

expression is linear in the value of n, but exponential in the length of the original

expression, because the value of a number is exponential in the number of digits

needed to represent it. For example, the PREMiS expression (a,b)ˆ3 is replaced by

(a,b),(a,b),(a,b).

PREMiS Operators: for each of the operators in sections 4.1.1– 4.1.5, a constant amount

of circuitry is generated. It is also easy to see that the circuitry generation takes a

constant time for each operator.

Storage Variables: storage variables do not add any size complexity to the circuitry gen-

erated, except for a storage element for each variable. The activation signals for the

actions are the same signals constructed during the translation of the PREMiS oper-

ators. The logic to resolve multiple assignments is a simple priority circuit with size

linear in the number of concurrent assignments.

Top-Level Monitor Circuitry: the circuitry for the tenable and tok signals and for the

pipeline re-entrance detection can be accounted for in the cost of the pipeline opera-

tor. For each pipeline operator, we replicate its circuitry twice. These circuits differ

only on the base case and on the thread activation signals (cf. section 4.1.7), making

them the same size as the original circuitry.

32

The top-level monitor circuitry
Vn

i=1(tenablei ⇒ toki) depends only on the number n

of pipeline operators in the PREMiS expression. Thus, this construction is linear in

size and time with respect to the number of pipeline operators present in the PREMiS

expression.

Since all the steps necessary to build a monitor circuit from a macro-expanded

PREMiS expression generate a constant amount of circuitry, the translation complexity

is linear with respect to the number of operators and storage variables in the expression. In

theory, macro-expanding the productions can produce an exponential size blow-up, but in

practice this has not been a problem.

33

Chapter 5

Examples

This chapter describes in detail the specification of the AMBA AHB master and slave,

and the Sonics OCP master and slave. The results obtained from the specification and the

translation into monitor circuits are also shown.

5.1 ARM AMBA AHB Bus

The ARM Advanced Microcontroller Bus Architecture (AMBA) is a set of three System-

on-Chip buses: Advanced Peripheral Bus (APB), Advanced System Bus (ASB), and Ad-

vanced High-performance Bus (AHB). APB is a simple, low-performance bus designed

for low-bandwidth peripherals like keypads. It can be connected to AHB or ASB through

a bridge. ASB is a high-performance bus which can be used to connect high-bandwidth

modules like processors and on-chip memories. AHB is a new generation bus that supports

pipelined operations for improved performance. Figure 5.1 shows a possible configuration

of a system using AHB as the main bus.

The AMBA AHB specification describes the following components:

• Master: able to initiate read or write transfers.

• Slave: responds to transfers indicating to the master the success, failure or waiting of

the data.

34

Memory Interface
High-bandwidth

DMA bus
master

High-performance
ARM processor

B
R
I
D
G
E

UART Timer

Keypad PIO

High-bandwidth
on-chip RAM

AHB

AHB to APB Bridge

APB

Figure 5.1: System using AHB as the main bus and APB to connect the peripherals. Figure
extracted from [2].

• Arbiter: responsible for granting the masters access to the bus. Only one master

at a time is allowed to initiate transfers. The specification does not describe any

arbitration algorithm, allowing the designer to choose it according to the application

requirements.

• Decoder: selects the active slave given the transfer address set by the active master.

Figure 5.2 shows an example of an AHB configuration.

5.1.1 Specification

Slave

The specification starts by declaring the interface wires that are the inputs (HTRANS, HREADY,

HSEL) and outputs (HRESP) of the slave. The data and address signals are not included

because they do not affect the slave behavior.

input HTRANS[1:0], HREADY, HSEL;

output HRESP[1:0];

Two internal variables are used. i_split keeps track of which masters have been split by

this slave. i_master keeps track of the number of the master performing the transfer.

internal i_split[15:0];

35

HWDATA

HRDATA

HADDR
Master

1

HWDATA

HRDATA

HADDR

Master
2

HWDATA

HRDATA

HADDR

3
Master

Arbiter

Decoder

HADDR

HWDATA

HRDATA
1

Slave

HADDR

HWDATA

HRDATA

Slave
2

HADDR

HWDATA

HRDATA

Slave
3

HADDR

HWDATA

HRDATA

Slave
4

Address and
control mux

Write data mux

Read data mux

Figure 5.2: AHB configuration consisting of three masters, four slaves, the arbiter, and the
decoder. Figure extracted from [2].

36

internal i_master[3:0];

The following are abbreviations for the four different transfers a slave can perform and for

the four different responses it can issue for every transfer.

/*

* Transfer type

*/

define a_idle = !HTRANS[0] & !HTRANS[1];

define a_busy = HTRANS[0] & !HTRANS[1];

define a_nonseq = !HTRANS[0] & HTRANS[1];

define a_seq = HTRANS[0] & HTRANS[1];

/*

* Slave responses

*/

define a_okay = !HRESP[0] & !HRESP[1];

define a_error = HRESP[0] & !HRESP[1];

define a_retry = !HRESP[0] & HRESP[1];

define a_split = HRESP[0] & HRESP[1];

The full slave specification can be split into seventeen smaller specifications. slave spec-

ifies the behavior of the slave regarding transfers and responses. The other specifications

assure that the slave can only complete (“unsplit”) a transaction that had been previously

split. The following declaration declares these seventeen monitors which run in parallel.

monitor slave,

unsplit_0, unsplit_1, unsplit_2, unsplit_3,

unsplit_4, unsplit_5, unsplit_6, unsplit_7,

unsplit_8, unsplit_9, unsplit_10, unsplit_11,

unsplit_12, unsplit_13, unsplit_14, unsplit_15;

37

The behavior of the slave can be defined as being idle or performing a transfer.

slave -> (idle || transfer)*;

If it is in an idle state, it is because it is not selected (another slave is performing a transfer)

or it has been selected but the last transfer hasn’t finished yet, indicated by HREADY low.

idle -> (!HSEL) || (HSEL & !HREADY);

A transfer can be an idle transfer, or a busy transfer, or a non-sequential transfer, or a

sequential transfer.

transfer -> idle_transfer ||

busy_transfer ||

nonseq_transfer ||

seq_transfer;

All the four transfers types consist of an address phase (indicated by HSEL & HREADY and

the type of the transfer) followed by a response phase. An idle or busy transfer must be

followed immediately with an OK response. The sequential and non-sequential transfers

may have wait states inserted by the slave during the response phase. The address phase and

response phase are pipelined, which means that the slave may be responding to a transfer

and at the same time reading the address and control signals for the next transfer, thus the

use of the pipeline operator “@”. For non-sequential and sequential transfers, the monitor

stores the number of the master performing the transfer. This information will be used later

if the slave responds with a split response.

idle_transfer -> (a_idle & HSEL & HREADY) @ okay_response;

busy_transfer -> (a_busy & HSEL & HREADY) @ okay_response;

nonseq_transfer -> ((a_nonseq & HSEL & HREADY)

{i_master <- HMASTER;}) @ response;

seq_transfer -> ((a_seq & HSEL & HREADY)

{i_master <- HMASTER;}) @ response;

38

A response may have any number of wait states inserted by the slave before one of the four

response types is given.

response ->

wait_state* ,

(okay_response || error_response ||

split_response || retry_response);

During a wait state the slave must keep HREADY low, and it must set the response wires to

a_okay.

wait_state -> !HREADY & a_okay;

The OK response takes one cycle and is indicated by HREADY high and the response wires

set to a_okay. The other three responses take two cycles, the first with HREADY low and

the second with HREADY high. The response wires can not have their values changed during

these two cycles. For a split response, the monitor uses the internal variable i_split to

keep track of the master the slave has split.

okay_response -> HREADY & a_okay;

error_response -> (!HREADY & a_error) , (HREADY & a_error);

retry_response -> (!HREADY & a_retry) , (HREADY & a_retry);

split_response -> ((!HREADY & a_split) , (HREADY & a_split))

{i_split[i_master] <- 1;};

If a slave unsplits a master, then it must have given a split response to this master before.

unsplit_0 -> (!HSPLIT[0] ||

(HSPLIT[0] & i_split[0]

{i_split[0] <- 0;}))*;

unsplit_1 -> (!HSPLIT[1] ||

(HSPLIT[1] & i_split[1]

{i_split[1] <- 0;}))*;

39

unsplit_2 -> (!HSPLIT[2] ||

(HSPLIT[2] & i_split[2]

{i_split[2] <- 0;}))*;

unsplit_3 -> (!HSPLIT[3] ||

(HSPLIT[3] & i_split[3]

{i_split[3] <- 0;}))*;

unsplit_4 -> (!HSPLIT[4] ||

(HSPLIT[4] & i_split[4]

{i_split[4] <- 0;}))*;

unsplit_5 -> (!HSPLIT[5] ||

(HSPLIT[5] & i_split[5]

{i_split[5] <- 0;}))*;

unsplit_6 -> (!HSPLIT[6] ||

(HSPLIT[6] & i_split[6]

{i_split[6] <- 0;}))*;

unsplit_7 -> (!HSPLIT[7] ||

(HSPLIT[7] & i_split[7]

{i_split[7] <- 0;}))*;

unsplit_8 -> (!HSPLIT[8] ||

(HSPLIT[8] & i_split[8]

{i_split[8] <- 0;}))*;

unsplit_9 -> (!HSPLIT[9] ||

(HSPLIT[9] & i_split[9]

{i_split[9] <- 0;}))*;

unsplit_10 -> (!HSPLIT[10] ||

(HSPLIT[10] & i_split[10]

{i_split[10] <- 0;}))*;

unsplit_11 -> (!HSPLIT[11] ||

40

(HSPLIT[11] & i_split[11]

{i_split[11] <- 0;}))*;

unsplit_12 -> (!HSPLIT[12] ||

(HSPLIT[12] & i_split[12]

{i_split[12] <- 0;}))*;

unsplit_13 -> (!HSPLIT[13] ||

(HSPLIT[13] & i_split[13]

{i_split[13] <- 0;}))*;

unsplit_14 -> (!HSPLIT[14] ||

(HSPLIT[14] & i_split[14]

{i_split[14] <- 0;}))*;

unsplit_15 -> (!HSPLIT[15] ||

(HSPLIT[15] & i_split[15]

{i_split[15] <- 0;}))*;

Master

The specification starts by declaring the interface wires that are the inputs and outputs of

the master.

input HGRANT;

input HREADY;

input HCLK;

input HRESP[1:0];

input HRDATA[31:0];

input HRESETn;

output HBUSREQ;

output HLOCK;

output HTRANS[1:0];

41

output HADDR[31:0];

output HWRITE;

output HSIZE[2:0];

output HBURST[2:0];

output HPROT[3:0];

output HWDATA[31:0];

The following are abbreviations for the four different types of transfers a master can per-

form, the eight possible burst types, and the four response types a slave can issue.

/*

* Transfer type

*/

define IDLE = !HTRANS[1] & !HTRANS[0];

define BUSY = !HTRANS[1] & HTRANS[0];

define NONSEQ = HTRANS[1] & !HTRANS[0];

define SEQ = HTRANS[1] & HTRANS[0];

/*

* Burst type

*/

define SINGLE = !HBURST[2] & !HBURST[1] & !HBURST[0];

define INCR = !HBURST[2] & !HBURST[1] & HBURST[0];

define WRAP4 = !HBURST[2] & HBURST[1] & !HBURST[0];

define INCR4 = !HBURST[2] & HBURST[1] & HBURST[0];

define WRAP8 = HBURST[2] & !HBURST[1] & !HBURST[0];

define INCR8 = HBURST[2] & !HBURST[1] & HBURST[0];

define WRAP16 = HBURST[2] & HBURST[1] & !HBURST[0];

define INCR16 = HBURST[2] & HBURST[1] & HBURST[0];

42

/*

* Response type

*/

define OKAY = !HRESP[1] & !HRESP[0];

define ERROR = !HRESP[1] & HRESP[0];

define RETRY = HRESP[1] & !HRESP[0];

define SPLIT = HRESP[1] & HRESP[0];

For convenience, we also use the abbreviations shown below. ARESP indicates if the re-

sponse given by the slave was an abnormal response (split, retry, or error). MIDDLE is

asserted if the master is performing a defined-length burst that hasn’t finished yet. CHOLD

and AHOLD assure that the current control signals and address signals have not changed since

they were last stored. DHOLD indicates that if a master is performing a write transfer, then

the data must not change. HOLD enforces CHOLD, AHOLD, and DHOLD at the same time.

define ARESP = i_sr | i_error;

define MIDDLE = i_count != i_burst;

define CHOLD = (i_size == HSIZE) & (i_prot == HPROT) &

(i_write == HWRITE);

define AHOLD = (i_addr == HADDR);

define DHOLD = (i_wdata == HWDATA) | !i_write;

define HOLD = CHOLD & AHOLD & DHOLD;

The following are the internal variables used by the monitor. i_sr indicates that the transfer

response was a split or retry response. i_error indicates that the transfer response was an

error response. i_count counts the number of transfers already performed in the current

burst. i_burst is the length of the current burst being performed by the master. i_incr

indicates that the current transfer is part of an undefined-length incremental burst. i_write,

i_size, i_prot, i_addr, and i_wdata are used to store the control signals, address sig-

nals, and write data signals.

43

internal i_sr = 0;

internal i_error = 0;

internal i_count[3:0] = 0;

internal i_burst[3:0] = 0;

internal i_incr = 0;

internal i_write = 0;

internal i_size[2:0] = 0;

internal i_prot[3:0] = 0;

internal i_addr[31:0] = 0;

internal i_wdata[31:0] = 0;

The master can be granted at any time by the arbiter, and for every transfer the master must

receive a grant from the arbiter. If the master is granted, then it must perform a transfer in

the next cycle. The process of looking at the grant and performing a transfer is pipelined in

the sense that at the same time the transfer is in progress, the master must also watch the

grant signals to find out if it will have to perform a transfer in the next cycle or not.

master ->

(not_ready || not_granted || (granted @ transfer))*;

The master only needs to look at the grant signal if HREADY is high. If HREADY is low, any

change to the grant signal will not affect the master.

not_ready ->

!HREADY;

If HREADY is high and the grant signal HGRANT is low, the master will not be able to perform

a transfer in the next cycle. Since the master has lost ownership of the address and control

bus, the internal variables that keep track of this type of information are reinitialized.

not_granted ->

(!HGRANT & HREADY)

44

{i_count <- 0; i_burst <- 0; i_write <- 0;

i_size <- 0; i_prot <- 0; i_addr <- 0;

i_wdata <- 0;};

A grant is indicated by HREADY being high and the grant signal HGRANT being high at the

same time.

granted ->

HGRANT & HREADY;

There are four types of transfers a master can perform: an idle transfer, a busy transfer, a

non-sequential transfer, or a sequential transfer.

transfer ->

idle_transfer ||

busy_transfer ||

nonseq_transfer ||

seq_transfer;

Every transfer may be immediately accepted, indicated by HREADY high, or it may be de-

layed by the slave, which drives HREADY low for a certain number of cycles.

idle_transfer ->

immediate_idle_transfer ||

wait_idle_transfer;

If the idle transfer is immediately accepted, the internal variables are reinitialized. Idle

transfers can not occur in the middle of a burst, unless an abnormal response is received.

This production does not handle the mandatory idle transfer after an abnormal response,

as indicated by ARESP being low. The production abnormal_response handles the case

where an abnormal response is received from the slave.

immediate_idle_transfer ->

45

(HREADY & IDLE & !MIDDLE & !ARESP)

{i_count <- 0; i_burst <- 0; i_write <- 0;

i_size <- 0; i_prot <- 0; i_addr <- 0;

i_wdata <- 0;};

If the idle transfer is being delayed by the slave, indicated by HREADY low, the master may

decide to change this transfer to a non-sequential transfer.

wait_idle_transfer ->

(!HREADY & IDLE & !MIDDLE & !ARESP)+ ,

(end_idle_transfer || nonseq_transfer);

end_idle_transfer ->

(HREADY & IDLE & !MIDDLE)

{i_count <- 0; i_burst <- 0; i_write <- 0;

i_size <- 0; i_prot <- 0; i_addr <- 0;

i_wdata <- 0;};

A busy transfer may only happen in the middle of a defined-length burst, indicated by

MIDDLE, or during an undefined-length incremental burst, indicated by i_incr. The master

may decide to change the transfer type to any other type if HREADY is low. Since the busy

transfer is performed during a burst, it must not change the control signal values, which

were set during the first transfer of the burst. CHOLD guarantees that the control signals

remain unchanged. For any transfer, if a split or retry response is received the master must

immediately perform an abnormal termination. If a error response is received, the master

has the option to perform an abnormal termination, or continue with the current transfer.

busy_transfer ->

(HREADY & BUSY & CHOLD & (MIDDLE | i_incr)) ||

((!HREADY & BUSY & CHOLD & (MIDDLE | i_incr) & !i_sr)+ ,

((HREADY & BUSY & CHOLD & (MIDDLE | i_incr) & !i_sr) ||

46

idle_transfer ||

seq_transfer ||

nonseq_transfer ||

abnormal_termination));

Sequential transfers can only occur after an initial non-sequential transfer is performed, this

condition is indicated by (MIDDLE | i_incr). For defined-length bursts, the master can

not perform a sequential transfer if it has already performed the number of transfers de-

fined in the first non-sequential transfer. i_count keeps track of the number of transfers

performed in the current burst. MIDDLE is true if i_count is not equal to the burst length

(i_burst). The monitor does not enforce the property that a burst must not cross a 1KB

boundary, and it also does not enforce any rule regarding the sequence of values allowed

in the address signals. Enforcing these rules would require a lot of effort because the cur-

rent version of the monitor specification language supports only two basic math operators:

addition and subtraction.

seq_transfer ->

immediate_seq_transfer ||

wait_seq_transfer;

immediate_seq_transfer ->

(((HREADY & SEQ & !i_sr & CHOLD & (MIDDLE | i_incr))

{i_count <- i_count + 1;}) @ response);

wait_seq_transfer ->

(((!HREADY & SEQ & !i_sr & CHOLD & (MIDDLE | i_incr))

{i_addr <- HADDR; i_wdata <- HWDATA;}) ,

(!HREADY & SEQ & !i_sr & HOLD)* ,

((((HREADY & SEQ & !i_sr & HOLD)

{i_count <- i_count + 1;}) @ response) ||

47

abnormal_termination));

Every burst must start with a non-sequential transfer. There are eight types of bursts, as

shown below.

nonseq_transfer ->

single ||

incr ||

wrap4 ||

incr4 ||

wrap8 ||

incr8 ||

wrap16 ||

incr16;

single ->

immediate_single ||

wait_single;

incr ->

immediate_incr ||

wait_incr;

wrap4 ->

immediate_wrap4 ||

wait_wrap4;

incr4 ->

immediate_incr4 ||

wait_incr4;

48

wrap8 ->

immediate_wrap8 ||

wait_wrap8;

incr8 ->

immediate_incr8 ||

wait_incr8;

wrap16 ->

immediate_wrap16 ||

wait_wrap16;

incr16 ->

immediate_incr16 ||

wait_incr16;

A single burst consists of only one transfer. For any non-sequential transfer, if the slave de-

lays the transfer by asserting HREADY low, the master must maintain the control and address

signals constant until HREADY becomes high. If the master is performing a write transfer,

then the write data must also not change. Non-sequential transfers can not happen in the

middle of a burst, indicated by MIDDLE.

immediate_single ->

(((HREADY & NONSEQ & SINGLE & !i_sr & !MIDDLE)

{i_incr <- 0; i_count <- 0; i_burst <- 0;}) @ response);

wait_single ->

((!HREADY & NONSEQ & SINGLE & !i_sr & !MIDDLE)

{i_incr <- 0; i_count <- 0; i_burst <- 0;

49

i_size <- HSIZE; i_prot <- HPROT;

i_write <- HWRITE; i_addr <- HADDR; i_wdata <- HWDATA;} ,

(!HREADY & NONSEQ & SINGLE & !i_sr & HOLD)* ,

((HREADY & NONSEQ & SINGLE & !i_sr & HOLD) @ response) ||

abnormal_termination);

If a non-sequential undefined incremental burst is performed, the internal variable i_incr

is set.

immediate_incr ->

(((HREADY & NONSEQ & INCR & !i_sr & !MIDDLE)

{i_incr <- 1; i_count <- 0; i_burst <- 0;

i_size <- HSIZE; i_prot <- HPROT;

i_write <- HWRITE;})

@ response);

wait_incr ->

((!HREADY & NONSEQ & INCR & !i_sr & !MIDDLE)

{i_incr <- 1; i_count <- 0; i_burst <- 0;

i_size <- HSIZE; i_prot <- HPROT;

i_write <- HWRITE; i_addr <- HADDR; i_wdata <- HWDATA;} ,

(!HREADY & NONSEQ & INCR & !i_sr & HOLD)* ,

((HREADY & NONSEQ & INCR & !i_sr & HOLD) @ response) ||

abnormal_termination);

For defined-length bursts, i_burst indicates the length of the burst, and i_count indi-

cates how many transfers have been performed in the current burst. Since a defined-length

non-sequential transfer is always the first transfer in any defined-length burst, i_count is

initialized to zero and i_burst is initialized to the length of the burst.

immediate_wrap4 ->

50

(((HREADY & NONSEQ & WRAP4 & !i_sr & !MIDDLE)

{i_incr <- 0; i_count <- 0; i_burst <- 4;

i_size <- HSIZE; i_prot <- HPROT; i_write <- HWRITE;})

@ response);

wait_wrap4 ->

((!HREADY & NONSEQ & WRAP4 & !i_sr & !MIDDLE)

{i_incr <- 0; i_count <- 0; i_burst <- 4;

i_size <- HSIZE; i_prot <- HPROT;

i_write <- HWRITE; i_addr <- HADDR; i_wdata <- HWDATA;} ,

(!HREADY & NONSEQ & WRAP4 & !i_sr & HOLD)* ,

((HREADY & NONSEQ & WRAP4 & !i_sr & HOLD) @ response) ||

abnormal_termination);

immediate_incr4 ->

(((HREADY & NONSEQ & INCR4 & !i_sr & !MIDDLE)

{i_incr <- 0; i_count <- 0; i_burst <- 4;

i_size <- HSIZE; i_prot <- HPROT; i_write <- HWRITE;})

@ response);

wait_incr4 ->

((!HREADY & NONSEQ & INCR4 & !i_sr & !MIDDLE)

{i_incr <- 0; i_count <- 0; i_burst <- 4;

i_size <- HSIZE; i_prot <- HPROT;

i_write <- HWRITE; i_addr <- HADDR; i_wdata <- HWDATA;} ,

(!HREADY & NONSEQ & INCR4 & !i_sr & HOLD)* ,

((HREADY & NONSEQ & INCR4 & !i_sr & HOLD) @ response) ||

abnormal_termination);

51

immediate_wrap8 ->

(((HREADY & NONSEQ & WRAP8 & !i_sr & !MIDDLE)

{i_incr <- 0; i_count <- 0; i_burst <- 8;

i_size <- HSIZE; i_prot <- HPROT; i_write <- HWRITE;})

@ response);

wait_wrap8 ->

((!HREADY & NONSEQ & WRAP8 & !i_sr & !MIDDLE)

{i_incr <- 0; i_count <- 0; i_burst <- 8;

i_size <- HSIZE; i_prot <- HPROT;

i_write <- HWRITE; i_addr <- HADDR; i_wdata <- HWDATA;} ,

(!HREADY & NONSEQ & WRAP8 & !i_sr & HOLD)* ,

((HREADY & NONSEQ & WRAP8 & !i_sr & HOLD) @ response) ||

abnormal_termination);

immediate_incr8 ->

(((HREADY & NONSEQ & INCR8 & !i_sr & !MIDDLE)

{i_incr <- 0; i_count <- 0; i_burst <- 8;

i_size <- HSIZE; i_prot <- HPROT; i_write <- HWRITE;})

@ response);

wait_incr8 ->

((!HREADY & NONSEQ & INCR8 & !i_sr & !MIDDLE)

{i_incr <- 0; i_count <- 0; i_burst <- 8;

i_size <- HSIZE; i_prot <- HPROT;

i_write <- HWRITE; i_addr <- HADDR; i_wdata <- HWDATA;} ,

(!HREADY & NONSEQ & INCR8 & !i_sr & HOLD)* ,

52

((HREADY & NONSEQ & INCR8 & !i_sr & HOLD) @ response) ||

abnormal_termination);

immediate_wrap16 ->

(((HREADY & NONSEQ & WRAP16 & !i_sr & !MIDDLE)

{i_incr <- 0; i_count <- 0; i_burst <- 16;

i_size <- HSIZE; i_prot <- HPROT; i_write <- HWRITE;})

@ response);

wait_wrap16 ->

((!HREADY & NONSEQ & WRAP16 & !i_sr & !MIDDLE)

{i_incr <- 0; i_count <- 0; i_burst <- 16;

i_size <- HSIZE; i_prot <- HPROT;

i_write <- HWRITE; i_addr <- HADDR; i_wdata <- HWDATA;} ,

(!HREADY & NONSEQ & WRAP16 & !i_sr & HOLD)* ,

((HREADY & NONSEQ & WRAP16 & !i_sr & HOLD) @ response) ||

abnormal_termination);

immediate_incr16 ->

(((HREADY & NONSEQ & INCR16 & !i_sr & !MIDDLE)

{i_incr <- 0; i_count <- 0; i_burst <- 16;

i_size <- HSIZE; i_prot <- HPROT; i_write <- HWRITE;})

@ response);

wait_incr16 ->

((!HREADY & NONSEQ & INCR16 & !i_sr & !MIDDLE)

{i_incr <- 0; i_count <- 0; i_burst <- 16;

i_size <- HSIZE; i_prot <- HPROT;

53

i_write <- HWRITE; i_addr <- HADDR; i_wdata <- HWDATA;} ,

(!HREADY & NONSEQ & INCR16 & !i_sr & HOLD)* ,

((HREADY & NONSEQ & INCR16 & !i_sr & HOLD) @ response) ||

abnormal_termination);

During an abnormal termination the master must perform an idle transfer. Since this transfer

will cancel any burst being performed, the internal variables are reinitialized.

abnormal_termination ->

(HREADY & IDLE & ARESP)

{i_count <- 0; i_burst <- 0; i_write <- 0;

i_size <- 0; i_prot <- 0; i_addr <- 0;

i_wdata <- 0;};

A response may have any number of wait states inserted by the slave before one of the four

response types is given.

response ->

wait_state* ,

(ok_response || error_response ||

split_response || retry_response);

During a wait state the slave must keep HREADY low, and it must set the response wires to

OKAY.

wait_state ->

!HREADY & OKAY;

The OK response takes one cycle and is indicated by HREADY high and the response wires

set to OKAY. The other three responses take two cycles, the first with HREADY low and the

second with HREADY high. The response wires can not have their values changed during

these two cycles. During the first cycle of the three abnormal response types, the respective

internal variable is set to indicate to the current transfer that the previous transfer received

an error response (i_error), or a retry response (i_sr), or a split response (i_sr).

54

ok_response ->

HREADY & OKAY;

error_response ->

(!HREADY & ERROR) {i_error <- 1;} ,

(HREADY & ERROR) {i_error <- 0;};

split_response ->

(!HREADY & SPLIT) {i_sr <- 1;} ,

(HREADY & SPLIT) {i_sr <- 0;};

retry_response ->

(!HREADY & RETRY) {i_sr <- 1;} ,

(HREADY & RETRY) {i_sr <- 0;};

5.2 Sonics OCP

Sonics Open Core Protocol (OCP) is actually a very broad, parameterized family of core-

centric protocols, spanning an enormous range of performance and cost objectives. The

interface monitors shown are for a Basic OCP master and slave with only one transaction

in-flight at a time.

In Basic OCP, the master presents a command at the same time as the address, as

well as the data if the command is a write. These values must be held constant until the slave

accepts the command by asserting SCmdAccept, which could happen in the same cycle that

the command is presented. Writes are posted (no response required once the slave accepts

the command), but read commands have a response phase during which the slave sends data

back to the master. The slave can insert zero or more wait states by keeping SResp set to the

null response. The slave terminates the response phase by setting SResp to indicate that the

data is valid or an error occurred. SResp can go non-null in the same cycle as SCmdAccept

55

is asserted, which can be in the same cycle as the master presents a command.

We restrict ourselves to Basic OCP because in more complex OCP configurations,

the master may issue a finite number of requests before any response comes back. Modeling

this behavior with PREMiS is not straightforward since this implies that the same pipeline

stage (wait for response) may be activated again before the computation of a previous acti-

vation has finished. The pipeline operator does not allow re-entrance (See Section 3.3.3.),

thus it can not be directly used. It is still possible to specify this behavior by writing multi-

ple monitors (See Section A.1.9.) that communicate using storage variables. Each monitor

would be a pipeline stage, and the same stage may have more than one monitor associ-

ated with it. In this case, the synchronization logic between multiple pipeline stages must

be explicitly written using storages variables. We suggest some possible enhancements to

PREMiS to address this problem in Chapter 6.

5.2.1 Specification

Slave

The specification starts by declaring the interface wires that are the inputs (MAddr, MCmd,

MData) and outputs (SCmdAccept, SResp, SData) of the slave.

input MAddr[31:0], MCmd[2:0], MData[31:0];

output SCmdAccept, SResp[1:0], SData[31:0];

The following are abbreviations for the three different transfers a slave can perform and for

the three different responses it can issue for every transfer:

define null_resp = !SResp[0] & !SResp[1];

define dva_resp = SResp[0] & !SResp[1];

define err_resp = SResp[0] & SResp[1];

define cmd_idle = !MCmd[0] & !MCmd[1] & !MCmd[2];

define cmd_write = MCmd[0] & !MCmd[1] & !MCmd[2];

56

define cmd_read = !MCmd[0] & MCmd[1] & !MCmd[2];

The behavior of the slave can defined as being idle or performing a transfer.

slave -> (idle || transfer)*;

If the master sets the command wires to cmd_idle indicating an idle transfer, then the slave

must set SCmdAccept to low and it must respond with a null response.

idle -> cmd_idle & !SCmdAccept & null_resp;

A transfer can be a write transfer or a read transfer.

transfer ->

write_transfer ||

read_transfer;

During a write transfer the slave must keep SCmdAccept low and set the response to null

until it accepts the transfer, indicated by SCmdAccept high and the response wires set to

null_resp.

write_transfer ->

(cmd_write & !SCmdAccept & null_resp)* ,

(cmd_write & SCmdAccept & null_resp);

If the master is performing a read transfer the slave can delay the acceptance of this trans-

fer by any number of cycles by setting SCmdAccept to low and the response wires to

null_resp.

read_transfer ->

(cmd_read & !SCmdAccept & null_resp)* ,

(wait_state_response || instant_response);

The slave may accept the transfer and delay the response by setting the response wires to

null_resp.

57

wait_state_response ->

(SCmdAccept & null_resp) ,

(!SCmdAccept & null_resp)* ,

response;

After delaying the response for a certain number of cycles the slave can issue a data valid

response (dva_resp) or an error response (err_resp). SCmdAccept must be kept low.

response ->

(!SCmdAccept & dva_resp) ||

(!SCmdAccept & err_resp);

An instant response consists of accepting the transfer (indicated by SCmdAccept) and at

the same time, setting the response wires to a data valid response (dva_resp) or an error

response (err_resp).

instant_response ->

(SCmdAccept & dva_resp) ||

(SCmdAccept & err_resp);

Master

The specification starts by declaring the interface wires that are the inputs (SCmdAccept,

SResp, SData) and outputs (MAddr, MCmd, MData) of the master.

input SCmdAccept, SResp[1:0], SData[31:0];

output MAddr[31:0], MCmd[2:0], MData[31:0];

The following are abbreviations for the three different transfers a master can perform and

for the three different responses the slave can issue for every transfer.

/* Response codes defined in standard. */

/* NULL, Data VAlid, and ERRor */

define null_resp = !SResp[0] & !SResp[1];

58

define dva_resp = SResp[0] & !SResp[1];

define err_resp = SResp[0] & SResp[1];

/* Commands defined in standard. */

define cmd_idle = !MCmd[0] & !MCmd[1] & !MCmd[2];

define cmd_write = MCmd[0] & !MCmd[1] & !MCmd[2];

define cmd_read = !MCmd[0] & MCmd[1] & !MCmd[2];

The behavior of the master can be defined as being idle or performing a transfer. If it is in

an idle state, it drives the command signals to cmd_idle.

master -> (cmd_idle || transfer)*;

A transfer can be a write transfer or a read transfer.

transfer -> write_transfer || read_transfer;

During a write transfer the master drives the command signals to cmd_write. It then

waits until the slave responds with the successful completion of the transfer by driving

SCmdAccept high. Writes are posted (no response required once the slave accepts the com-

mand).

write_transfer ->

(cmd_write & !SCmdAccept)*, (cmd_write & SCmdAccept);

The read transfer is a bit more complicated, starting with zero or more states waiting for the

slave to accept the command, followed by either an instantaneous response or a response

with zero or more wait states.

read_transfer ->

(cmd_read & !SCmdAccept)* ,

(wait_state_resp || instant_resp);

59

A wait state response starts with the slave accepting the transfer (indicated by SCmdAccept

high) and setting the response to null_resp. Any number of wait states can be inserted

before a final response is given.

wait_state_resp ->

(cmd_read & SCmdAccept & null_resp) ,

(cmd_idle & null_resp)* , response;

During an instant response, the slave drives the response signals to data valid (dva_resp)

or error (err_resp) at the same time that it accepts the transfer.

instant_resp -> (cmd_read & SCmdAccept & dva_resp) ||

(cmd_read & SCmdAccept & err_resp);

A response can be a data valid response or an error response.

response -> (cmd_idle & dva_resp) ||

(cmd_idle & err_resp);

In Basic OCP, the master presents a command at the same time as the address, as

well as the data if the command is a write. These values must be held constant until the

slave accepts the command by asserting SCmdAccept. For simplicity, the previous specifi-

cation does not check that the master holds the address and data values constant if the slave

does not accept the command immediately. To enforce this requirement, we need only

make a few changes to the specification. First, we would declare some storage variables to

remember the values of the address and data:

internal hold_addr[31:0] = 0;

internal hold_data[31:0] = 0;

Next, we modify the transfers so that if the slave does not accept the command immediately,

we remember the address (and data if applicable):

60

write_transfer ->

(cmd_write & SCmdAccept) /* Same cycle accept */

||

(

(cmd_write & !SCmdAccept)

/* Store original address and data. */

{ hold_addr <- MAddr; hold_data <- MData; } ,

(cmd_write & !SCmdAccept &

(hold_addr == MAddr) & (hold_data == MData)

) * ,

(cmd_write & SCmdAccept &

(hold_addr == MAddr) & (hold_data == MData))

);

The read transfer production is modified similarly. To enforce the same constraints using

regular expressions without storage variables would require separate read and write produc-

tions for each possible value of the address and data.

5.3 Results

Table 5.1 shows some statistics for the AHB slave, AHB master, OCP slave, and OCP mas-

ter. Considering that the AHB English written specification is 43 pages long (including

the arbiter, which was not described in this chapter), and it is still ambiguous and incom-

plete, the results obtained by expressing the same protocol in our specification style are very

encouraging.

61

Monitor Lines Productions Actions Internal Variables Flops
AHB Slave 64 29 19 2 292
AHB Master 308 44 28 10 1478
OCP Slave 54 8 0 0 118
OCP Master 52 7 0 0 118

Table 5.1: Results for the AHB slave, AHB master, OCP slave, and OCP master. Lines is
the total number of lines, including blank lines and lines with comments only, in the spec-
ification. Productions is the number of productions used to specify the interface. Actions
reflects the number of nodes in the parse tree that have an action associated with it. Internal
variables is the number of declared internal variables, each variable may be one bit or an
array of bits. Flops is the number of flops in the generated Verilog monitor.

62

Chapter 6

Conclusion and Future Work

We have presented a novel, high-level specification style for interface monitors, as well

as a linear-size, linear-time translation algorithm into monitor circuits. The specification

style naturally fits the interfaces used between IP blocks in systems-on-chip. We hope that

these results will facilitate the use and broaden the adoption of monitor-based verification

methodologies.

In the short term, we need to improve the translation tool. Our current implementa-

tion is rather crude. A revised, more robust tool would be better suited for public distribu-

tion. In addition, many optimizations are possible and should be implemented. To access

the tool flows of other verification researchers, our tool will have to be able to translate

specifications into the lower-level specifications used by other tools. In particular, we do

not anticipate difficulties translating from our specifications into the specifications used in

the interface-monitor research that inspired this work [10, 16, 9].

The macro-expansion of productions can blow-up the size of the regular expres-

sions. Additional research is needed to see if there are practical ways to avoid this problem,

such as by introducing new language features to simplify the expressions or by creating

better translations that schedule reuse of circuitry.

Out-of-order completion of transactions is not easily supported by the pipeline op-

erator. Usually, each transaction is tagged with a unique identifier that is carried through all

63

pipeline stages until its completion. This tag allows each pipeline stage to identify which

transaction it is currently being processed. Multiple issue of ordered transactions is also not

currently supported. For example, one of the possible OCP configurations allows a finite

number of transfer requests to be issued before a response is given to any of the transfers.

Responses are given in an ordered way, the first response to arrive is the response for the

first request issued and so on. Even though it is possible to specify this type of behavior by

explicitly creating multiple copies of the same pipeline stage (and using storage variables

for the tagged transactions) it would be interesting to add a new pipeline operator or even

extend the semantics of the current pipeline operator that would automatically handle these

cases. For example, this operator could allow more than one computation thread to be ac-

tive at a time in the same pipeline stage. In order to be able to translate the specification

into a monitor, it would be required that the maximum number of “pending requests” be

specified beforehand. Also, storages variables that are only valid inside a given pipeline

stage would be necessary to track the tag of each transaction. The translated monitor would

have as many copies of the pipeline stage as the maximum number of “pending requests”,

and it would have to able to schedule the usage of each of these resources.

An important line of future work is to gain experience with this specification style

on additional, real interface protocols. Applying the specification style in practice is the

only way to validate the adequacy of the specification style, or determine what additional

features are needed.

64

Bibliography

[1] Accellera Home Page. www.accellera.org.

[2] ARM Limited. AMBA Specification (Rev 2.0). 13 May 1999.

[3] Roy Armoni, Limor Fix, Alon Flaisher, Rob Gerth, Boris Ginsburg, Tomer Kanza,
Avner Landver, Sela Mador-Haim, Eli Singerman, Andreas Tiemeyer, Moshe Y. Vardi,
and Yael Zbar. The ForSpec temporal logic: A new temporal property-specification
language. In Tools and Algorithms for the Construction and Analysis of Systems: 8th
International Conference, pages 296–311. Springer, 2002. Lecture Notes in Computer
Science Number 2280.

[4] Ilan Beer, Shoham Ben-David, Cindy Eisner, Dana Fisman, Anna Gringauze, and
Yoav Rodeh. The temporal logic Sugar. In Computer-Aided Verification: 13th In-
ternational Conference, pages 363–367. Springer, 2001. Lecture Notes in Computer
Science Number 2102.

[5] Lionel Bening and Harry Foster. Principles of Verifiable RTL Design: A Functional
Coding Style Supporting Verification Processes in Verilog. Kluwer Academic Pub-
lishers, 2nd edition, 2001.

[6] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logic of Programs, pages 52–
71. Springer-Verlag, 1981. Lecture Notes in Computer Science Number 131.

[7] Fujitsu Limited, Fujitsu Laboratories Limited. CWL2HDL User’s Manual. Revision
1.0, 27 Jan 2003.

[8] Hitachi Limited, Fujitsu Laboratories Limited, Fujitsu Limited. Component Wrapper
Language User’s Guide (Rev 1.1). 01 Sep 2002.

[9] M. S. Jahanpour and E. Cerny. Compositional verification of an ATM switch mod-
ule using interface recognizer/suppliers (IRS). In International High-Level Design,
Validation, and Test Workshop, pages 71–76. IEEE, 2000.

65

[10] Matt Kaufmann, Andrew Martin, and Carl Pixley. Design constraints in symbolic
model checking. In Computer-Aided Verification: 10th International Conference,
pages 477–487. Springer, 1998. Lecture Notes in Computer Science Number 1427.

[11] A. Pnueli. The temporal logic of programs. In 18th IEEE Symposium on Foundation
of Computer Science, pages 46–57, 1977.

[12] Pascal Raymond. Recognizing regular expressions by means of dataflow networks.
In 23rd International Colloquium on Automata, Languages, and Programming, pages
336–347. Springer, 1996. Lecture Notes in Computer Science Number 1099.

[13] Andrew Seawright and Forrest Brewer. Synthesis from production-based specifica-
tions. In 29th Design Automation Conference, pages 194–199. ACM/IEEE, 1992.

[14] Andrew Seawright and Forrest Brewer. High-level symbolic construction techniques
for high performance sequential synthesis. In 30th Design Automation Conference,
pages 424–428. ACM/IEEE, 1993.

[15] Kanna Shimizu, David L. Dill, and Ching-Tsun Chou. A specification methodology
by a collection of compact properties as applied to the Intel Itanium Processor Bus pro-
tocol. In Correct Hardware Design and Verification Methods: 11th IFIP WG 10.5 Ad-
vanced Research Working Conference, (CHARME), pages 340–354. Springer, 2001.
Lecture Notes in Computer Science Number 2144.

[16] Kanna Shimizu, David L. Dill, and Alan J. Hu. Monitor-based formal specification of
PCI. In Formal Methods in Computer-Aided Design, pages 335–353. Springer, 2000.
Lecture Notes in Computer Science Number 1954.

[17] Sonics Incorporated. Open Core Protocol Specification 1.0. Document Version 1.2.

[18] Kei Suzuki, Kouji Ara, and Kazuo Yano. OwL: An interface description language for
IP reuse. In Custom Integrated Circuits Conference, pages 403–406, 1999.

[19] Synopsys Incorporated. OpenVera Language Reference Manual: Assertions. Docu-
ment Version 2.3, April 2003.

[20] Jun Yuan, Kurt Shultz, Carl Pixley, Hillel Miller, and Adnan Aziz. Modeling design
constraints and biasing in simulation using BDDs. In International Conference on
Computer-Aided Design, pages 584–589. IEEE/ACM, 1999.

66

Appendix A

Pipelined Regular Expression

Monitor Compiler Manual

A.1 Introduction to PREMiS

A.1.1 Overview

The Pipelined Regular Expression Monitor Specification (PREMiS) is a high-level spec-

ification style designed to facilitate the construction of interface monitors. The PREMiS

compiler automatically translates the interface specification into a Verilog or VHDL moni-

tor. This manual describes the PREMiS language and the usage of the compiler.

A.1.2 Identifiers and Reserved Words

An identifier in the PREMiS language is any sequence of alphabet letters, digits, and under-

scores, where the first character must be an alphabet letter. Identifiers are case-insensitive

in order to facilitate the translation to VHDL, which is also case-insensitive. Examples

of legal identifiers are: grant (same as GrAnt), split_2, data32. Examples of illegal

identifiers are: _grant, 2_split, 32data.

The following is the list of PREMiS reserved words:

67

internal input output in_out define monitor

Reserved words cannot be used as identifiers. Their meaning will be explained in detail in

the following sections.

A.1.3 Input Signals

The input signals of the monitor, are all the input and output signals of the block being

monitored. These signals must be declared at the beginning of the file, and they can be any

of the following three types:

• input: this signal is an input to the block being monitored.

• output: this signal is an output of the block being monitored.

• in_out: this signal is an input and an output to the block being monitored.

The actual implementation of the compiler does not make any distinction between these

types but in the future we intend to use these different types to be able to blame the block

responsible for causing an error.

The syntax for signal declarations is:

signal-type comma-separated-list-of-identifiers;

Arrays can be declared as identifier[begin:end]. A few examples of signal declara-

tion taken from the AMBA slave specification are shown below:

input HTRANS[1:0], HREADY, HSEL, HMASTER[3:0];

output HRESP[1:0], HSPLIT[15:0];

The signals HTRANS, HREADY, HSEL, and HMASTER are the slave inputs and signals HRESP

and HSPLIT are the slave outputs.

In order to access an element from an array, square brackets are used to index the

specific element. For example, HMASTER[2] refers to the third element of array HMASTER

which has size four.

68

A.1.4 Storage Variables

Storage variables are used in the PREMiS language to facilitate the monitor specification.

They can be seen as a type of memory. The main difference between a signal and a storage

variable is that the latter can have values assigned to it according to some conditions in the

specification (See Section A.1.10.). Other than that, they can be used in any place a signal

is expected.

The declaration of storage variables has almost the same syntax as signal declaration

with the difference that they can be initialized. Initialization values are constants (See

Section A.1.5.), and in case no initial value is set, the default value is 0 (zero). In the

PREMiS compiler input file, the declaration of storage variables is done in the beginning of

the file together with signal declarations.

A few examples from the AMBA master specification are shown below:

internal i_grant = 0;

internal i_first = 1;

internal i_wdata[31:0] = 0;

The storage variables i_grant and i_first are used by the monitor to keep track of the

grant signals and i_wdata is used to guarantee that the master will not change the data on

the bus during a write transfer.

A.1.5 Constants

Constants in the PREMiS language are unsigned integers represented in base ten. A few

examples usage of constants are shown below:

internal i_count[2:0] = 0

i_count != 7

i_count <- i_count + 1

In the first example the constants are used for declaring the size of the array and to ini-

tialize it to 0. The second line shows a constant being used in a comparison expression

69

(See Section A.1.6.), and in the last line the constant is used in a action expression (See

Section A.1.10.) .

A.1.6 Primitive Expressions

There are three types of expressions defined in the PREMiS language: primitive expressions

(explained here), extended regular expressions (explained in section A.1.7), and action ex-

pressions (explained in section A.1.10).

A primitive expression is a formula consisting of signals, storage variables, unary

operators, comparison operators and bitwise operators. The precedence of all operators are

listed in Table A.1 from highest precedence to lowest precedence.

Precedence Operators

Highest !
== ! =

Lowest | &

Table A.1: Operator precedence.

Signals and Storage Variables

Any monitor input signal or storage variable of size one is a primitive expression. Arrays

are not considered primitive expressions but array elements are.

Unary Operators

The only unary operator in the PREMiS language is the negation operator which is rep-

resented by the symbol “!”. This operator can be used with any primitive expression and

it cannot be used with arrays. For example: if HTRANS[1:0] is an array of size two then

!HTRANS is illegal but !HTRANS[0] is legal.

70

Comparison Operators

The equality operator “==” and the not equal operator “!=” are the two comparison opera-

tors present in the language.

Only input signals, storage variables and constants can be compared. An array

can be compared to another array only if both have the same size and the begin and end

positions match. Arrays can also be compared to constants if their size is big enough to

hold the constant. As an example, the following code shows the declaration of four arrays

A, B, C, D:

input A[0:1], B[0:2], C[1:2], D[0:2];

The only valid comparison of two arrays is between B and D. Even though arrays A and C

have the same size, they cannot be compared because the initial position of A (0) is different

of initial position of C (1) and their end positions (1 and 2) are also different. B and D can

be compared to any constant which has a value less than 8 and, A and C can be compared to

any constant which has a value less than 4. In summary:

B == C is legal

B != A is illegal because of size difference

A == C is illegal because of initial and end positions difference

A != 3 is legal

A == 4 is illegal because A can only represent values from 0 to 3

Bitwise Operators

The two bitwise operators in the language are the and operator “&” and the or operator “|”.

The left-hand-side and right-hand-side of the operators can be any primitive expres-

sion (arrays are not primitive expressions). The semantics for both operators is the same

semantics used for logic circuits. The following is an example form the AMBA AHB slave

specification:

!HTRANS[0] & !HTRANS[1] & HSEL & HREADY

71

The previous expression corresponds to the control signals for a slave being selected to

perform an idle transfer.

A.1.7 Extended Regular Expressions

A extended regular expression is a formula containing primitive expressions and extended

regular expression operators. The precedence of all operators are listed in Table A.2 from

highest precedence to lowest precedence.

Precedence Operators

Highest +
ˆ
*
||
,

Lowest @

Table A.2: Extended regular expression operator precedence.

Primitive Expressions

Any primitive expression is an extended regular expression.

Choice

The choice operator “||” is used to describe two possible behaviors. At least one of the

two sub-expressions must be in a matching state in order for the monitor not to generate an

error.

The following is an example from the AMBA AHB slave:

transfer -> idle_transfer ||

busy_transfer ||

nonseq_transfer ||

72

seq_transfer;

Each transfer can be one of the four possible types: idle, busy, non-sequential and sequen-

tial.

Concatenation

The concatenation operator “,” concatenates the behavior of two sub-expressions in a time

sequence. The monitor watches the left-hand-size and as soon as this sub-expression is over,

it starts to watch the right-hand-side. If a mismatch occurs in any of the two sub-expressions

the monitor will generate an error.

The following is an example from the AMBA AHB slave:

error_response -> (!HREADY & a_error) , (HREADY & a_error);

An error response consists of two cycles, the first one with HREADY low and the second one

with HREADY high.

Multiple Concatenation

The multiple concatenation operator “ˆ” is used to concatenate the behavior of a sub-

expressions a given number of times in a time sequence. The actual implementation of

the compiler expands the expression into a sequence of concatenations. For example, the

following expression:

frame_header -> oneˆ5, zeroˆ3;

is expanded in the sequence below by the compiler:

frame_header -> one, one, one, one, one, zero, zero, zero;

Pipeline

The pipeline operator “@” makes the monitor watch the left-hand sub-expression and as

soon as the parsing of this expression is done, the monitor starts two new threads, the first

73

will watch the right-hand sub-expression and the second will watch the sub-expression that

comes after the pipeline expression. Both threads must not generate an error in order for

the monitor to not generate an error.

The following is an example based on the ARM AMBA slave:

transfer -> ((a_nonseq & HSEL_1 & HREADY) @ response)*;

A transfer consists of an address phase (a_nonseq & HSEL_1 & HREADY) followed by a

pipelined response phase (@ response). As soon as the left-hand-side sub-expression is

done, the monitor starts two new threads, the first will watch the response sub-expression

and the second will watch the a_nonseq & HSEL_1 & HREADY sub-expression because of

the Kleene star operator. This way we can get the expected pipelined behavior, on every

cycle, an address phase and a response phase take place.

Kleene Star

The Kleene star operator “*” is used to represent zero or more repetitions of the behavior

described by the associated sub-expression.

The following is an example from the AMBA AHB slave:

response ->

wait_state* ,

(okay_response || error_response ||

split_response || retry_response);

A slave response may include any number of wait states before the actual response is set.

One-or-more

The one-or-more operator “+” is used to represent one or more repetitions of the behavior

described by the associated sub-expression. The compiler expands the one-or-more expres-

sion into a concatenation followed by a Kleene star expression. For example, the following

expression:

74

write_sequence -> write+;

is expanded into the expression below:

write_sequence -> write, write*;

Extended Regular Expression Restrictions

In order to be able to automatically build a monitor from the specification, we impose a few

restrictions on the extended regular expressions.

First, we require the expression contained within a Kleene star not to accept the

empty string. Known constructions can normalize regular expressions to obey this restric-

tion [12], but our implementation does not currently include this step.

Second, we forbid non-deterministic choice: we allow the choice operator, but the

choices must be distinguishable within the first clock cycle. In practice, this restriction

is not a problem because protocols are typically designed to make it easy to determine

immediately what action is occurring.

Finally, we allow at most one thread at a time to execute in a pipeline stage. For

example, the expression (a@(b,c))* generates an error when the second repetition arrives

at the b while the first repetition’s pipeline sub-thread is still at the c. This restriction

corresponds to allowing only one transaction at a time to use the hardware resources devoted

to a pipeline stage.

A.1.8 Define Statement

The define statement is used to declare an abbreviation for a primitive expression. These

definitions must be done after the signal and storage variable declaration section and before

the monitor statement section. An example from the AMBA AHB slave specification is

shown below:

define idle = !HTRANS[0] & !HTRANS[1];

define busy = HTRANS[0] & !HTRANS[1];

75

define nonseq = !HTRANS[0] & HTRANS[1];

define seq = HTRANS[0] & HTRANS[1];

The identifiers on the left-hand-side of the “=” operator are the abbreviation for the four

possible transfer types, idle, busy, nonsequential, and sequential.

A.1.9 Productions

A production is an abbreviation for an extended regular expression. Its name is an identifier

that can be used in other extended regular expressions. In fact, we have already been using

productions in the previous examples. In order to be able to obtain a finite state machine,

recursive productions are not allowed.

The syntax for a production declaration is:

production-name → extended-regular-expression;

The example below shows the usage of productions in the specification of an AMBA AHB

master that performs only idle transfers:

master_bus -> (idle || idle_transfer)*;

idle -> !i_grant;

idle_transfer ->

(a_idle & !HREADY & i_grant)* ,

(a_idle & HREADY & i_grant);

master_bus, idle, and idle_transfer are the production names.

The first production in the input file is the top-level production of the monitor. If

the file contains the specification of more than one monitor, then the monitor statement

must be used to indicate which production is the top-level production for each monitor. The

example below shows the usage of the monitor statement in the AMBA AHB master spec:

monitor master_bus, grant;

The productions master_bus and grant are the top-level productions of the two monitors

described in the AHB master specification.

76

A.1.10 Variable Assignment

Storage variables can have values assigned to them in an extended regular expression.

The assignment is triggered when the extended regular sub-expression associated with it

is matched. The following is an example from the AMBA AHB master:

grant -> ((HGRANT_1 & HREADY {i_grant <- 1;}) ||

(!HGRANT_1 & HREADY {i_grant <- 0;}) ||

(!HREADY))*;

The storage variable i_grant is assigned the value 1 every time the sub-expression

HGRANT_1 & HREADY is matched and it is assigned the value 0 when the sub-expression

!HGRANT_1 & HREADY is matched. If the sub-expression !HREADY is matched, i_grant

remains unchanged.

The right-hand-side of an assignment is an action expression. The action expression

can be a constant, a signal/variable, or a signal/variable array. Arithmetic addition “+” and

subtraction “-” are also available.

The same storage variable may have different values assigned to it in the same cycle.

The result of simultaneous assignments is implementation specific. In the current imple-

mentation, the order of assignments is defined by the parse tree of the regular expression,

with assignments done in the order of a pre-order traversal of the parse tree.

A.1.11 Input File Format

The PREMiS compiler input is a file consisting of four sections: Signal/Variable Declara-

tion, Define Declaration, Monitor Declaration, and Productions. The order of the sections

cannot be changed and the Define Declaration and Monitor Declaration parts are optional.

The Signal/Variable Declaration section is where all input signals and storage variables are

declared. The Define Declaration part contains the declaration of all primitive expression

abbreviations. If a file describes more than one monitor than the Monitor Declaration state-

ment indicates which production is the top-level production for each monitor. The last part

77

is a list of productions that describes the behavior of the interface being specified. A more

detailed explanation of each part is given in the following sections.

A.2 Running the PREMiS Compiler

A.2.1 Command Line Syntax and Options

The PREMiS compiler takes one file as input and it generates one file as output. The input

file is the specification of the monitor and the output file is a Verilog or VHDL monitor. The

command line syntax is:

premsc [options] <input-file>

where options are:

• -t <verilog, vhdl>: Set output language. The default value is verilog.

• -o <output-file>: Write output to output-file. The default value is stdout.

A.2.2 Output File

The compiler generates a Verilog file or a VHDL file as output. If the chosen language

is Verilog, the file contains one module called MONITOR. If VHDL is the chosen lan-

guage, the file contains one entity called MONITOR and one architecture description called

MONITOR_BEHAVIOUR.

The input signal declaration follows the same order they were declared in the speci-

fication. In addition to these signals there are two more inputs and one output to the monitor.

The first additional input is the clock signal and the second is the reset signal. The only out-

put is the OK signal which, when high, indicates that there have not been any violations

to the protocol yet. These additional signals are declared after the ones declared in the

specification, and they follow the order they were presented here.

78

Appendix B

Language Grammar

Below is the grammar for the PREMiS language. Non-terminal symbols are represented in

italics. Boxed items correspond to terminal symbols. The two undefined symbols (identifier

and constant) are described in Appendix A. The symbol ε denotes the empty string.

spec →

signal-declaration-list

| define-declaration-list

| start

| production-list

signal-declaration-list →

signal-declaration

| signal-declaration-list signal-declaration

signal-declaration →

type-specifier signal-list ;

type-specifier →

79

internal

| output

| input

| in-out

signal-list →

ε

| signal

| signal , signal-list

signal →

identifier

| identifier [constant : constant]

| identifier = constant

| identifier [constant : constant] = constant

define-declaration-list →

ε

| define-declaration

| define-declaration-list define-declaration;

define-declaration →

define identifier = boolean-expression ;

boolean-expression →

comparison-expression

| identifier

| identifier [index-expression]

| boolean-expression & boolean-expression

80

| boolean-expression | boolean-expression

| ! boolean-expression

| (boolean-expression)

comparison-expression →

comparison-term == comparison-term

| comparison-term != comparison-term

comparison-term →

identifier

| identifier [index-expression]

| constant

index-expression →

identifier

| constant

production-expression →

boolean-expression

| production-expression || production-expression

| production-expression , production-expression

| production-expression ˆ constant

| production-expression *

| production-expression +

| production-expression @ production-expression

| (production-expression)

| production-expression { action-list }

start →

81

ε

| monitor start-list ;

start-list →

identifier

| identifier , start-list

production-list →

production

| production production-list

production →

identifier -> production-expression ;

action-list →

action

| action action-list

action →

identifier <- action-expression ;

| identifier [index-expression] <- action-expression ;

action-expression →

constant

| identifier

| identifier [index-expression]

| action-expression - action-expression

| action-expression + action-expression

82

