

Symbolic Boolean Manipulation with
Ordered Binary Decision Diagrams

Randal E. Bryant∗

Fujitsu Laboratories, Ltd.
1015 Kamikodanaka, Nakahara-ku

Kawasaki 211, Japan

June, 1992

Ordered Binary Decision Diagrams (OBDDs) represent Boolean functions as directed acyclic
graphs. They form a canonical representation, making testing of functional properties such as
satisfiability and equivalence straightforward. A number of operations on Boolean functions
can be implemented as graph algorithms on OBDD data structures. Using OBDDs, a wide
variety of problems can be solved throughsymbolic analysis. First, the possible variations
in system parameters and operating conditions are encoded with Boolean variables. Then
the system is evaluated for all variations by a sequence of OBDD operations. Researchers
have thus solved a number of problems in digital system design, finite state system analysis,
artificial intelligence, and mathematical logic. This paper describes the OBDD data structure,
and surveys a number of applications that have been solved by OBDD-based symbolic analysis.

Categories and Subject Descriptors: I.1 [Algebraic Manipulation]: Expressions and Their
Representations, Algorithms; B.6 [Logic Design]: Reliability and Testing, Design Aids; F.1.1
[Models of Computation]: Automata; I.2.3 [Deduction and Theorem Proving]: Algorithms

General Terms: Algorithms, Verification

Additional Key Words and Phrases: Binary decision diagrams, branching programs, symbolic
manipulation, symbolic analysis, Boolean functions, Boolean algebra

∗Current address: School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

1

CONTENTS

CONTENTS 2
INTRODUCTION 3
1. OBDD REPRESENTATION 4

1.1. Binary Decision Diagrams. 4
1.2. Ordering and Reducing. 4
1.3. Effect of Variable Ordering . 6
1.4. Complexity Characteristics. 7
1.5. Refinements and Variations. 10

2. OPERATIONS 10
3. CONSTRUCTION AND MANIPULATION 11

3.1. Theapply Operation . 11
3.2. Therestrict Operation . 14
3.3. Derived Operations . 15
3.4. Performance Characteristics. 15
3.5. Implementation Techniques. 15

4. REPRESENTING MATHEMATICAL SYSTEMS 16
4.1. Encoding of Finite Domains. 17
4.2. Sets . 18
4.3. Relations. 19

5. DIGITAL SYSTEM DESIGN APPLICATIONS 20
5.1. Verification. 20
5.2. Design Error Correction. 20
5.3. Sensitivity Analysis . 21
5.4. Probabilistic Analysis . 22

6. FINITE STATE SYSTEM ANALYSIS 26
7. OTHER APPLICATION AREAS 29
8. AREAS FOR IMPROVEMENT 29
9. SUMMARY 30
REFERENCES 30

2

INTRODUCTION

Many tasks in digital system design, combinatorial optimization, mathematical logic, and artificial
intelligence can be formulated in terms of operations over small, finite domains. By introducing
a binary encoding of the elements in these domains, these problems can be further reduced to
operations over Boolean values. Using a symbolic representation of Boolean functions, we can
express a problem in a very general form. Solving this generalized problem via symbolic Boolean
function manipulation then provides the solutions for a large number of specific problem instances.
Thus, an efficient method for representing and manipulating Boolean functions symbolically can
lead to the solution of a large class of complex problems.

Ordered Binary Decision Diagrams (OBDDs) [Bryant 1986] provide one such representation. This
representation is defined by imposing restrictions on the the Binary Decision Diagram (BDD)
representation introduced by Lee1 [Lee 1959] and Akers [Akers 1978], such that the resulting
form is canonical. These restrictions and the resulting canonicity were first recognized by Fortune,
Hopcroft, and Schmidt [Fortune et al 1978]. Functions are represented as directed acyclic graphs,
with internal vertices corresponding to the variables over which the function is defined and terminal
vertices labeled by the function values 0 and 1. Although the OBDD representation of a function
may have size exponential in the number of variables, many useful functions have more compact
representations.

Operations on Boolean functions can be implemented as graph algorithms operating on OBDDs.
Tasks in many problem domains can be expressed entirely in terms of operations on OBDDs, such
that a full enumeration of the problem space (e.g., a truth table, state transition graph, or search
tree) need never be constructed. Researchers have solved problems using OBDDs that would not
be possible by more traditional techniques such as case analysis or combinatorial search.

To date, most applications of OBDDs have been in the areas of digital system design, verification,
and testing. More recently, interest has spread into other areas such as concurrent system design,
mathematical logic, and artificial intelligence.

This paper provides a combined tutorial and survey on symbolic Boolean manipulation with OB-
DDs. The next threesections describe the OBDD representationand the algorithmsused to construct
and manipulate them. The following section describes several basic techniques for representing
and operating on a number of mathematical structures, including functions, sets, and relations, by
symbolic Boolean manipulation. We illustrate these techniques by describing some of the appli-
cations for which OBDDs have been used to date and conclude by describing further areas for
research. Although most of the application examples involve problems in digital system design, we
believe that similar methods can be applied to a variety of application domains. For background,
we assume only that the reader has a basic knowledge of Boolean functions, digital logic design,
and finite automata.

1Lee represented Boolean functions as Binary DecisionPrograms, a form of straight-line program. Such a program
can be viewed as a linear ordering of the vertices in a directed acyclic graph, and hence the distinction between these
two forms is minor.

3

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

fx1 x2 x3

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

Figure 1: Truth Table and Decision Tree Representations of a Boolean Function.A dashed
(solid) tree branch denotes the case where the decision variable is 0 (1).

1. OBDD REPRESENTATION

Binary decision diagrams have been recognized as abstract representations of Boolean functions
for many years. Under the name “branching programs” they have been studied extensively by
complexity theorists [Wegener 1988; Meinel 1990]. The key idea of OBDDs is that by restricting
the representation, Boolean manipulation becomes much simpler computationally. Consequently,
they provide a suitable data structure for a symbolic Boolean manipulator.

1.1. Binary Decision Diagrams

A binary decision diagram represents a Boolean function as a rooted, directed acyclic graph. As an
example, Figure 1 illustrates a representation of the functionf(x1, x2, x3) defined by the truth table
given on the left, for the special case where the graph is actually a tree. Each nonterminal vertexv
is labeled by a variablevar(v) and has arcs directed toward two children:lo(v) (shown as a dashed
line) corresponding to the case where the variable is assigned 0, andhi(v) (shown as a solid line)
corresponding to the case where the variable is assigned 1. Each terminal vertex is labeled 0 or 1.
For a given assignment to the variables, the value yielded by the function is determined by tracing
a path from the root to a terminal vertex, following the branches indicated by the values assigned
to the variables. The function value is then given by the terminal vertex label. Due to the way the
branches are ordered in this figure, the values of the terminal vertices, read from left to right, match
those in the truth table, read from top to bottom.

1.2. Ordering and Reducing

For anOrderedBDD (OBDD), we impose a total ordering< over the set of variables and require
that for any vertexu, and either nonterminal childv, their respective variables must be ordered
var(u) < var(v). In the decision tree of Figure 1, for example, the variables are orderedx1 <
x2 < x3. In principle, the variable ordering can be selected arbitrarily—the algorithms will operate
correctly for any ordering. In practice, selecting a satisfactory ordering is critical for the efficient
symbolic manipulation. This issue is discussed in the next section.

4

x3 x3

x2

x3

0 1

x3

x2

x1

x3

x2

0 1

x3

x2

x1

x2

0 1

x3

x1

A). Duplicate Terminals B). Duplicate Nonterminals C). Redundant Tests

Figure 2:Reduction of Decision Tree to OBDD.Applying the three reduction rules to the tree of
Figure 1 yields the canonical representation of the function as an OBDD.

We define three transformation rules over these graphs that do not alter the function represented:

Remove Duplicate Terminals: Eliminate all but one terminal vertex with a given label and redirect
all arcs into the eliminated vertices to the remaining one.

Remove Duplicate Nonterminals: If nonterminal verticesu andv havevar(u)=var(v), lo(u)=
lo(v), andhi(u)=hi(v), then eliminate one of the two vertices and redirect all incoming arcs
to the other vertex.

Remove Redundant Tests:If nonterminal vertexv haslo(v)=hi(v), then eliminatev and redirect
all incoming arcs tolo(v).

Starting with any BDD satisfying the ordering property, we can reduce its size by repeatedly
applying the transformation rules. We use the term “OBDD” to refer to a maximally reduced
graph that obeys some ordering. For example, Figure 2 illustrates the reduction of the decision
tree shown in Figure 1 to an OBDD. Applying the first transformation rule (A) reduces the eight
terminal vertices to two. Applying the second transformation rule (B) eliminates two of the vertices
having variablex3 and arcs to terminal vertices with labels 0 (lo) and 1 (hi). Applying the third
transformation rule (C) eliminates two vertices: one with variablex3 and one with variablex2. In
general, the transformation rules must be applied repeatedly, since each transformation can expose
new possibilities for further ones.

The OBDD representation of a function is canonical—for a given ordering, two OBDDs for a
function are isomorphic. This propertyhas several important consequences. Functional equivalence
can easily be tested. A function is satisfiable if and only if its OBDD representation does not
correspond to the single terminal vertex labeled 0. Any tautological function must have the terminal
vertex labeled 1 as its OBDD representation. If a function is independent of variablex, then its
OBDD representation cannot contain any vertices labeled byx. Thus, once OBDD representations
of functions have been generated, many functional properties become easily testable.

As Figures 1 and 2 illustrate, we can construct the OBDD representation of a function given its truth
table by constructing and reducing a decision tree. This approach is practical, however, only for

5

0

b3

a3

b2

a2

1

b1

a1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

Figure 3:OBDD Representations of a Single Function for Two Different Variable Orderings.

functions of a small number of variables, since both the truth table and the decision tree have size
exponential in the number of variables. Instead, OBDDs are generally constructed by “symbolically
evaluating” a logic expression or logic gate network using theapply operation described in Section
3.

1.3. Effect of Variable Ordering

The form and size of the OBDD representing a function depends on the variable ordering. For
example, Figure 3 shows two OBDD representations of the function denoted by the Boolean
expressiona1·b1+a2·b2+a3·b3, where·denotes theAnd operation and+ denotes theOr operation.
For the case on the left, the variables are ordereda1 < b1 < a2 < b2 < a3 < b3, while for the case
on the right they are ordereda1 < a2 < a3 < b1 < b2 < b3.

We can generalize this function to one over variablesa1, . . . , an andb1, . . . , bn given by the expres-
sion:

a1·b1 + a2·b2 + · · · + an ·bn

Generalizing the first variable ordering toa1 < b1 < · · · < an < bn yields an OBDD with
2n nonterminal vertices—one for each variable. Generalizing the second variable ordering to
a1 < · · · < an < b1 < · · · < bn, on the other hand, yields an OBDD with 2(2n − 1) nonterminal
vertices. For large values ofn, the difference between the linear growth of the first ordering versus
the exponential growth of the second has a dramatic effect on the storage requirements and the
efficiency of the manipulation algorithms.

Examining the structure of the two graphs of Figure 3, we can see that in the first case the variables
are paired according to their occurrences in the Boolean expressiona1·b1 + a2·b2 + a3·b3. Thus,

6

Function Class Complexity
Best Worst

Symmetric linear quadratic
Integer Addition (any bit) linear exponential
Integer Multiplication (middle bits) exponential exponential

Table 1:OBDD complexity for common function classes.

from every second level in the graph, only two branch destinations are required: one to the terminal
vertex labeled 1 for the case where the corresponding product yields 1, and one to the next level for
the case where every product up to this point yields 0. On the other hand, the first 3 levels in the
second case form a complete binary tree encoding all possible assignments to thea variables. In
general, for each assignment to thea variables, the function value depends in a unique way on the
assignment to theb variables. As we generalize this function and ordering to one over 2n variables,
the firstn levels in the OBDD form a complete binary tree.

Most applications using OBDDs choose some ordering of the variables at the outset and construct all
graphs according to this ordering. This ordering is chosen either manually, or by a heuristic analysis
of the particular system to be represented. For example, several heuristic methods have been devised
that, given a logic gate network, generally derive a good ordering for variables representing the
primary inputs. [Fujita et al 1988; Malik et al 1988]. Others have been developed for sequential
system analysis [Jeong et al 1991]. Note that these heuristics do not need to find the best possible
ordering—the ordering chosen has no effect on the correctness of the results. As long as an ordering
can be found that avoids exponential growth, operations on OBDDs remain reasonably efficient.

1.4. Complexity Characteristics

OBDDs provide a practical approach to symbolic Boolean manipulation only when the graph sizes
remain well below the worst case of being exponential in the number of variables. As the previous
examples show, some functions are sensitive to the variable ordering but remain quite compact as
long as a good ordering is chosen. Furthermore, there has been ample empirical evidence indicating
that many functions encountered in real applications can be represented efficiently as OBDDs. One
way to more fully understand the strengths and limitations of OBDDs is to derive lower and upper
bounds for important classes of Boolean functions.

Table 1 summarizes the asymptotic growth rate for several classes of Boolean functions, and their
sensitivity to the variable ordering. Symmetric functions, where the function value depends only
the number of arguments equal to 1, are insensitive to the variable ordering. Except for the trivial
case of constant functions, these functions have graphs ranging between linear (e.g., parity) and
quadratic (e.g., at least half the inputs equal 1).

We can consider each output of ann-bit adder as a Boolean function over variablesa0, a1, . . . , an−1,
representing one operand, andb0, b1, . . . , bn−1, representing the other operand. The function for
any bit has OBDD representations of linear complexity for the orderinga0 < b0 < a1 < b1 < · · · <
an−1 < bn−1, and exponential complexity for the orderinga0 < · · · < an−1 < b0 < · · · < bn−1. In

7

2/3ai

bi

ci ci+1

2/3

c1

a0

b0

• • • • • •

bn-1

an-1

cn-1

Out
0

Figure 4:Linear Arrangement of Circuit Computing Most Significant Bit of Integer Addition

fact, these functions have representations similar to those for the function shown in Figure 3.

The Boolean functions representing integer multiplication, on the other hand, form a particularly
difficult case for OBDDs. Regardless of the ordering, the Boolean function representing either of
the middle two outputs of ann-bit multiplier have exponential OBDD representations. [Bryant
1991].

Upperbounds forother classes of Boolean functions can be derived based on the structuralproperties
of their logic network realizations. Berman [Berman 1989] and more recently McMillan [McMillan
1992] have derived useful bounds for several classes of “bounded width” networks. Consider a
network withn primary inputs and one primary output consisting ofm “logic blocks.” Each block
may have multiple inputs and outputs. Primary inputs are represented by “source” blocks with
no input and one output. As an example, Figure 4 shows a network having as output the most
significant sum bit of ann-bit adder. This network consists of a carry chain computing the carry
input cn−1 into the final stage. Blocks labeled “2/3” compute theMajority function having 1 as
output when at least two inputs are 1. The output is computed as theExclusive-Or of the most
significant bits of the inputs andcn−1.

Define alinear arrangementof the network as a numbering of the blocks from 1 tom such that the
block producing the primary output is numbered last. Define theforward cross sectionat blocki as
the total number of wires from an output of a blockj such thatj < i to an input of a blockk such
that i ≤ k. Define the forward cross sectionwf of the circuit (with respect to an arrangement) as
the maximum forward cross section for all of the blocks. As the dashed line in Figure 4 shows, our
adder circuit has a forward cross section of 3. Similarly, define thereverse cross sectionat blocki
as the total number of wires from an output of a blockj such thatj > i to an input of a blockk such
thati ≥ k. In arrangements where the blocks are orderedtopologically(the only case considered by
Berman), such as the one shown in Figure 4, the reverse cross section is 0. Define the reverse cross
sectionwr of the circuit (with respect to an arrangement) as the maximum reverse cross section for
all of the blocks. Given these measures, it can be shown that there is an OBDD representing the
circuit function with at mostn2wf 2wr vertices. Furthermore, finding an arrangement with low cross
section leads to a good ordering of the function variables—namely the reverse of the ordering of
the corresponding source blocks in the arrangement.

This bound based on network realizations leads to useful bounds for a variety of Boolean functions.
For example, functions having realizations with constant forward cross section and zero reverse
cross section, such as the adder circuit of Figure 4, have linear OBDD representations. A symmetric
function ofn variables can be realized by a circuit having forward cross section 2+ logn and reverse
cross section 0. This circuit consists of a series of stages to compute the total number of inputs

8

x i

Bi

si

LiLi-1

si-1
• • •

• • •

• • •

• • •

0
L0

s0

B0

x0 xn-1

Bn-1

Out

Ln-1Ln-1 Ln-2

sn-2

• • • • • •

Figure 5: Linear Arrangement of Within- K Ring Circuit . As shown by the dashed line, the
circuit has forward cross section 2+ ⌈log2 K⌉ and reverse cross section⌈log2 K⌉.

having value 1, encoding the total as a⌈log2 n⌉-bit binary number. This realization implies the
quadratic upper bound in OBDD size stated in Table 1.

Figure 5 shows an application of this result for a circuit with non-zero reverse cross section. This
circuit shows a general realization of theWithin-K function, whereK is some constant such that
0 < K < n. For inputsx0, x1, . . . , xn−1, this function yields 1 if there are two inputsxi andxi′

equal to 1 such thati′ equalsi + j modn for some valuej such that 0< j < K. As Figure 5
illustrates, this function can be computed by a series of blocks arranged in a ring, where each block
Bi has as outputs a 1-bit valuesi and ak-bit integer valueLi, wherek = ⌈log2 K⌉:

si =

{

1, xi = 1 andLi−1 6= 0
si−1, otherwise

Li =

K − 1, xi = 1
Li−1 − 1, xi = 0 andLi−1 > 0
0, otherwise.

In this realization, eachLi signal encodes the number of remaining positions with which the most
recent input value of 1 can be paired, while eachsi signal indicates whether a pair of 1 input values
within distanceK has occurred so far. To realize the modular proximity measure, outputLn−1 of
the final stage is routed back to the initial stage. Note that although this circuit has a cyclic structure,
its output is uniquely defined by the input values. As the dashed line indicates, this ring structure
can be “flattened” into a linear arrangement having forward cross sectionk + 2 and reverse cross
sectionk. This construction yields an upper bound of(8K4K)n on the OBDD size. For constant
values ofK, the OBDD is of linear size, although the constant factor grows rapidly withK.

McMillan has generalized this technique totree arrangementsin which the network is organized
as a tree of logic blocks with branching factorb and with the primary output produced by the block
at the root. In such an arrangement, forward (respectively, reverse) cross section refers to wires
directed toward (respectively, away from) the root. Such an arrangement yields an upper bound on

the OBDD size ofn
[

2bnb−1
]wf 2wr

. The upper bound for the linear arrangement is given by this
formula forb = 1. Observe that for constant values ofb, wf , andwr, the OBDD size is polynomial
in n.

9

These upper bound results give some insight into why many of the functions encountered in digital
design applications have efficient OBDD representations. They also suggest strategies for finding
good variable orderings by finding network realizations with low cross section. Results of this form
for other representations of Boolean functions could prove useful in characterizing the potential of
OBDDs for other application domains.

1.5. Refinements and Variations

In recent years, many refinements to the basic OBDD structure have been reported. These include
using a single, multi-rooted graph to represent all of the functions required [Brace et al 1990;
Karplus 1989; Minato et al 1990; Reeves and Irwin 1987], adding labels to the arcs to denote
Boolean negation [Brace et al 1990; Karplus 1989; Minato et al 1990; Madre and Billon 1988] and
generalizing the concept to other finite domains [Srinivasan et al 1990]. These refinements yield
significant savings in the memory requirement—generally the most critical resource in determining
the complexity of the problems that can be solved. Applications that require generating over 1
million OBDD vertices are now routinely performed on workstation computers.

2. OPERATIONS

Let us introduce some notation for describing operations on Boolean functions. We will use the
standard operations of Boolean algebra:+ forOr,·forAnd,⊕ forExclusive-Orand an overline
for Not. In addition, we will use the symbol⊕ to indicate the complement of theExclusive-Or

operation (sometimes referred to asExclusive-Nor). We will also use summation (
∑

) and
product (

∏

) notation in reference to Boolean sums (Or) and products (And). Observe that these
operations are defined overfunctionsas well as over the Boolean values 0 and 1. For example, iff
andg are functions over some set of variables, thenf + g is itself a functionh over these variables.
For some assignment~a of values to the variables,h(~a) yields 1 if and only if eitherf(~a) or g(~a)
yields 1. The constant functions, yielding either 1 or 0 for all variable assignments, are denoted1
and0, respectively.

The function resulting when some argumentx to a functionf is assigned a constant valuek (either
0 or 1) is called arestrictionof f (other references call this a “cofactor” off [Brayton et al 1984])
denotedf |x←k. Given the two restrictions of a function with respect to a variable, the function
can be reconstructed as

f = x· f |x←0 + x· f |x←1

This identity is commonly referred as theShannon expansionof f with respect tox, although it
was originally recognized by Boole [Brown 1990].

A variety of other useful operations can be defined in terms of the algebraic operations plus the
restriction operation. Thecompositionoperation, where a functiong is substituted for variablex
of functionf is given by the identity

f |x←g = g · f |x←0 + g · f |x←1 .

The variable quantificationoperation, where some variablex to function f is existentially or

10

b

0

d

1

c

a A1

A2

A3

A4 A5

A6

0 1

d

c

a B1

B2

B3 B4

B5

Figure 6:Example Arguments toApply operation. Vertices are labeled for identification during
the execution trace.

universally quantified is given by the identities

∃x f = f |x←0 + f |x←1
∀x f = f |x←0· f |x←1

Some researchers prefer to call these operationssmoothing(existential) andconsensus(universal)
to emphasize that they are operations on Boolean functions, rather than on truth values [Lin et al
1990]

3. CONSTRUCTION AND MANIPULATION

A number of symbolic operations on Boolean functions can be implemented as graph algorithms
applied to the OBDDs. These algorithms obey an important closure property—given that the argu-
ments are OBDDs obeying some ordering, the result will be an OBDD obeying the same ordering.
Thus we can implement a complex manipulation with a sequence of simpler manipulations, always
operating on OBDDs under a common ordering. Users can view a library of BDD manipulation
routines as an implementation of a Boolean function abstract data type. Except for the selection
of a variable ordering, all of the operations are implemented in a purely mechanical way. The user
need not be concerned with the details of the representation or the implementation.

3.1. Theapply Operation

Theapply operation generates Boolean functions by applying algebraic operations to other func-
tions. Given argument functionsf andg, plus binary Boolean operator〈op〉, (e.g.,And or Or)
apply returns the functionf 〈op〉 g. This operation is central to a symbolic Boolean manipulator.
With it we can complement a functionf by computingf ⊕ 1. Given functionsf andg, and “don’t
care” conditions expressed by the functiond (i.e., d(~x) yields 1 for those variable assignments~x

11

A4,B3 A5,B4

A3,B2

A6,B2

A2,B2

A3,B4A5,B2

A6,B5

A1,B1

Figure 7:Execution Trace for Apply operation with operation +. Each evaluation step has as
operands a vertex from each argument graph.

for which the function values are unimportant,) we can test whetherf andg are equivalent for all
“care” conditions by computing(f ⊕ g) + d and testing whether the result is the function1. We
can also construct the OBDD representations of the output functions of a combinational logic gate
network by “symbolically interpreting” the network. That is, we start by representing the function
at each primary input as an OBDD consisting of a test of a single variable. Then, proceeding in
order through the network, we use theapply operation to construct an OBDD representation of
each gate output according to the gate operation and the OBDDs computed for its inputs.

Theapply algorithm operates by traversing the argument graphs depth-first, while maintaining
two hash tables: one to improve the efficiency of the computation, and one to assist in producing a
maximally reduced graph. Note that whereas earlier presentations treated the reduction to canonical
form as a separate step [Bryant 1986], the following algorithm produces a reduced form directly.
To illustrate this operation, we will use the example of applying the+ operation to the functions
f(a, b, c) = (a + b)·c + d andg(a, b, c) = (a·c) + d, having the OBDD representations shown in
Figure 6.

The implementation of theapply operation relies on the fact that algebraic operations “commute”
with the Shannon expansion for any variablex:

f 〈op〉 g = x·
(

f |x←0 〈op〉 g|x←0
)

+ x·
(

f |x←1 〈op〉 g|x←1
)

(1)

Observe that for a functionf represented by an OBDD with root vertexrf , the restriction with
respect to a variablex such thatx ≤ var(rf) can be computed simply as:

f |x←b

rf , x < var(rf)
lo(rf), x = var(rf) andb = 0
hi(rf), x = var(rf) andb = 1

That is, the restriction is represented by the same graph, or one of the two subgraphs of the root.

Equation 1 forms the basis of a recursive procedure for computing the OBDD representation of
f 〈op〉 g. For our example, the recursive evaluation structure is illustrated in Figure 7. Note that

12

0

d

c

b

1

a

0 1

d

c

b

11

c

a

Figure 8: Result Generation for Apply operation. The recursive calling structure naturally
leads to an unreduced graph (left). By applying reduction rules at the end of each recursive call,
the reduced graph is generated directly (right).

each evaluation step is identified by a vertex from each of the argument graphs. Suppose functions
f andg are represented by OBDDs with root verticesrf andrg, respectively. For the case where
bothrf andrg are terminal vertices, the recursion terminates by returning an appropriately labeled
terminal vertex. In our example, this occurs for the evaluations A4, B3, and A5, B4. Otherwise,
let variablex be thesplitting variable, defined as the minimum of variablesvar(rf) andvar(rg).
OBDDs for the functionsf |x←0 〈op〉 g|x←0 and f |x←1 〈op〉 g|x←1 are computed by
recursively evaluating the restrictions off andg for value 0 (indicated in Figure 7 by the dashed
lines) and for value 1 (indicated by solid lines). For our example, the initial evaluation with vertices
A1, B1 causes recursive evaluations with vertices A2, B2 and A6, B5.

To implement theapply operation efficiently, we add two more refinements to the procedure
described above. First, if we ever reach a condition where one of the arguments is a terminal vertex
representing the “dominant” value for operation〈op〉 (e.g., 1 forOr and 0 forAnd), then we can
stop the recursion and return an appropriately labeled terminal vertex. This occurs in our example
for the evaluations A5, B2 and A3, B4. Second, we avoid ever making multiple recursive calls on the
same pair of arguments by maintaining a hash table where each entry has as key a pair of vertices
from the two arguments and as datum a vertex in the generated graph. At the start of an evaluation
for argumentsu andv, we check for an entry with key〈u, v〉 in this table. If such an entry is
found, we return the datum for this entry, thereby avoiding any further recursion. If no entry is
found, then we follow the steps described above, creating a new entry in the table before returning
the result. In our example, this refinement avoids multiple evaluations of the arguments A3, B2

and A5, B2. Observe that with this refinement, the evaluation structure is represented by a directed
acyclic graph, rather than the more familiar tree structure for recursive routines.

Each evaluation step returns as result a vertex in the generated graph. The recursive evaluation
structure naturally defines an unreduced graph, where each evaluation step yields a vertex labeled
by the splitting variable and having as children the results of the recursive calls. For our example,
this graph is illustrated on the left hand side of Figure 8. To generate a reduced graph directly,

13

b

c

0 1

c

b

a

0 1

cc

0 1

c

a

Figure 9:Example ofRestrict operation. Restricting variableb of the argument (left) to value
1 involves bypassing vertices labeled byb (center), and reducing the graph (right).

each evaluation step attempts to avoid creating a new vertex by applying tests corresponding to
the transformation rules described in Section 1.2. Suppose an evaluation step has splitting variable
x, and the recursive evaluations return verticesv0 andv1. First we test whetherv0 = v1, and if
so return this vertex as the procedure result. Second, we test whether the generated graph already
contains some vertexv havingvar(v) = x, lo(v) = v0, andhi(v) = v1. This test is assisted by
maintaining a second hash table containing an entry for each nonterminal vertexv in the generated
graph with key〈var(v), hi(v), lo(v)〉. If the desired vertex is found, it is returned as the procedure
result. Otherwise, a vertex is added to the graph, its entry is added to the hash table, and the vertex
is returned as the procedure result. Similarly, terminal vertices are entered in the hash table having
their labels as keys. A new terminal vertex is generated only if one with the desired label is not
already present. For our example, this process avoids creating the shaded vertices shown on the
left hand side of Figure 8. Instead, the graph on the right hand side is generated directly. Observe
that this graph represents the functiona + b·c + d, which is indeed the result of applying theOr

operation to the two argument functions.

The use of a table to avoid multiple evaluations of a given pair of vertices bounds the complexity
of theapply operation and also yields a bound on the size of the result. That is, suppose functions
f andg are represented by OBDDs havingmf andmg vertices, respectively. Then, there can be
at mostmf mg unique evaluation arguments, and each evaluation adds at most one vertex to the
generated result. Given a good implementation of the hash tables, each evaluation step can be
performed, on average, in constant time. Thus, both the complexity of the algorithm and the size
of the generated result must beO(mf mg).

3.2. Therestrict Operation

Computing a restriction to a function represented by any kind of BDD is straightforward. To restrict
variablex to valuek, we can simply redirect any arc into a vertexv havingvar(v) = x to point
either tolo(v) for k = 0, or tohi(v) for k = 1. Figure 9 illustrates the restriction of variableb in
the functionb·c + a·b·c to the value 1. With the original function given by the OBDD on the left,
redirecting the arcs has the effect of bypassing any vertex labeled byb, as illustrated in the center.

14

As this example shows, a direct implementation of this technique may yield an unreduced graph.
Instead, the operation is implemented by traversing the original graph depth-first. Each recursive
call has as argument a vertex in the original graph and returns as result a vertex in the generated
graph. To ensure that the generated graph is reduced, the procedure maintains a hash table with an
entry for each vertex in the generated graph, applying the same reduction rules as those described
for the apply operation. For our example, the result would be an OBDD representation of the
functionc as shown on the right hand side of the Figure 9.

Computing the restriction of a functionf having an OBDD representation ofmf vertices involves
at mostmf recursive calls, each generating at most one vertex in the result graph. Using a good
hash table implementation, each recursive step requires constant time on average. Thus, both the
complexity of the algorithm and the size of the generated result must beO(mf).

3.3. Derived Operations

As was described in Section 2, a variety of operations on Boolean functions can be expressed in
terms of algebraic and restriction operations. Theapply and therestrict algorithms therefore
provide a way to implement these other operations. Furthermore, for each of these operations,
both the complexity and the size of the generated graph are bounded by some polynomial function
of the argument functions. For functionf , let mf denote the size of its OBDD representation.
Given two functionsf and g, and “don’t care” conditions expressed by a functiond, we can
compute the equivalence off and g for the “care” conditions in timeO(mf mg md). We can
compute the composition of functionsf andg with two restrictions and three calls toapply. This
approach would have time complexityO(m2

f m2
g). By implementing the entire computation with

one traversal, this complexity can be reduced toO(mf m2
g) [Bryant 1986]. Finally, we can compute

the quantification of a variable in a functionf in timeO(m2
f).

3.4. Performance Characteristics

A problem is solved using OBDDs by expressing the task as a series of operations on Boolean func-
tions such as those discussed above. As we have seen, all of these operations can be implemented
by algorithms having complexity polynomial in the sizes of the OBDDs representing the argu-
ments. As a result, OBDD-based symbolic Boolean manipulation has two advantages over other
common approaches. First, as long as the graphs remain of reasonable size, the total computation
remains tractable. Second, although the graph sizes can grow with each successive operation, any
single operation has reasonable worst case performance. In contrast, most other representations of
Boolean functions lack this “graceful degradation” property. For example, even if a function has
a reasonably compact sum of products representation, its complement may be of exponential size
[Brayton et al 1984].

3.5. Implementation Techniques

From the standpoint of implementation, OBDD-based symbolic manipulation has very different
characteristics frommany othercomputational tasks. During the courseof a computation, thousands
of graphs, each containing thousands of vertices, are constructed and discarded. Information is

15

Class Typical Operations Typical Tests
Logic ∧, ∨, ¬, ∀, ∃ satisfiability, implication

Finite domains domain dependent equivalence
Functions application, composition equivalence

Sets ∪, ∩, − subset
Relations composition, closure symmetry, transitivity

Table 2:Example Systems that can be Represented with Boolean Functions.

represented in an OBDD more by its overall structure rather than in the associated data values,
and hence very little computational effort is expended on any given vertex. Thus, the computation
has a highly dynamic character, with no predictable patterns of memory access. To date, the most
successful implementations have been on workstation computers with large physical memories,
where careful attention has been given to programming the memory management routines [Brace
et al 1990].

To extract maximum performance, it would be desirable to exploit the potential of pipelined and
parallel computers. In symbolic analysis tasks, parallelism could exist at themacro level where
many operations are performed simultaneously, and at themicro level where many vertices within
a given OBDD are operated on simultaneously. Compared to other tasks that have been success-
fully mapped onto vector and parallel computers, OBDD manipulation requires considerably more
communication and synchronization among the computing elements, and considerably less local
computation. Thus, this task provides a challenging problem for the design of parallel computer
architectures, programming models, and languages. Nonetheless, some of the early attempts have
proved promising. Researchers have successfully exploited vector processing [Ochi et al 1991] and
have shown good results executing on shared memory multiprocessors [Kimura and Clarke 1990].
Both of these implementations exploit micro parallelism by implementing theapply operation by a
breadth-first traversal of the argument graphs, in contrast to the depth-first traversal of conventional
implementations.

4. REPRESENTING MATHEMATICAL SYSTEMS

Some applications, most notably in digital logic design, call for the direct representation and ma-
nipulation of Boolean functions. In general, however, the power of symbolic Boolean manipulation
comes more from the ability of binary values and Boolean operations to represent and implement
a wide range of different mathematical domains. This basic principle is so well ingrained that
we seldom even think about it. For example, few people would define the ADD operation of a
computer as a set of 32 Boolean functions over a set of 64 arguments. Table 2 lists examples of
several areas of mathematics where objects can be represented, operated on, and analyzed using
symbolic Boolean manipulation, as long as the underlying domains are finite.

By providing a unified framework for a number of mathematical systems, symbolic Boolean ma-
nipulation can solve not just problems in the individual areas, but also ones involving multiple areas
simultaneously. For example, recent programs to analyze the sequential behavior of digital circuits
(see Section 6), involve operating in all of the areas listed in Table 2. The desired properties of

16

·t

X

1

0

0 1 X

0 0 0

0 1 X

0 X X

+t

X

1

0

0 1 X

0 1 X

1 1 1

X 1 X

a a t

X

1

0

X

0

1

Table 3:Ternary Extensions ofAnd, Or, andNot. The third valueX indicates an unknown or
potentially nondigital voltage.

the system are expressed as formulas in a logic. The system behavior is given by the next-state
functions of the circuit. The analyzer computes sets of states having some particular properties.
The transition structure of the finite state system is represented as a relation. During execution, the
analyzer can readily shift between these representations, using only OBDDs as the underlying data
structures. Furthermore, the canonical property of OBDDs makes it easy to detect conditions such
as convergence, or whether any solutions exist to a problem.

The key to exploiting the power of symbolic Boolean manipulation is to express a problem in a form
where all of the objects are represented as Boolean functions. In the remainder of this section we
describe some standard techniques that have been developed along this line. With experience and
practice, a surprisingly wide range of problems can be expressed in this manner. The mathematical
concepts underlying these techniques have long been understood. None of the techniques rely
specifically on the OBDD representation—they could be implemented using any of a number of
representations. OBDDs have simply extended the range of problems that can be solved practically.
In doing so, however, the motivation to express problems in terms of symbolic Boolean operations
has increased.

4.1. Encoding of Finite Domains

Consider a finite set of elementsA where|A| = N . We can encode an element ofA as a vector
of n binary values, wheren = ⌈log2 N⌉. This encoding is denoted by a functionσ: A → {0, 1}n

mapping each element ofA to a distinctn-bit binary vector. Letσi(a) denote theith element in
this encoding. A function mapping elements inA to elements inA, f : A → A is represented as a
vector ofn Boolean functions~f , where eachfi: {0, 1}n → {0, 1} is defined as:

fi(σ(a)) = σi(f(a))

In many applications, the domains have a “natural” encoding, e.g., the binary encoding of finite
integers, while in others it is constructed artificially.

As an example, the COSMOS symbolic simulator [Cho and Bryant 1989] uses OBDDs to compute
the behavior of a transistor circuit symbolically. Such a simulator can be used to automatically
generate tests for faults in a circuit and to formally verify that the circuit has some desired behavior.
The circuit model represents node voltages with a three-valued signal set, where values0 and
1 represent low and high voltages, and the third valueX indicates an unknown or potentially

17

nondigital voltage. During symbolic simulation, the node states must be computed as three-valued
functions over a set of Boolean variables introduced by the user to represent values of the primary
inputs or initial state. COSMOS represents the state of a node by a pair of OBDDs. That is, it
encodes each of theN = 3 elements of the signal set as a vector ofn = 2 binary values according
to the encodingσ(0) = [0, 1], σ(1) = [1, 0], andσ(X) = [1, 1].

The “next-state functions” computed by the simulator are defined entirely according to this Boolean
encoding, allowing Boolean functions to accurately describe the three-valued circuit behavior. For
example, Table 3 shows the three-valued extensions of the logic operationsAnd, Or, andNot.
Observe that the operations yieldX in every case where an unknown argument would cause an
uncertainty in the function value. Letting[a1, a0] denote the encoding of a three-valued signala,
the three-valued operation can be expressed entirely in terms of Boolean operations:

[a1, a0] ·t [b1, b0] = [a1·b1 , a0 + b0]

[a1, a0] +t [b1, b0] = [a1 + b1 , a0·b0]

[a1, a0]
t

= [a0, a1]

During operation, the simulator operates much like a conventional event-driven logic simulator. It
begins with each internal node initialized to state[1, 1] indicating the node value is unknown under
all conditions. During simulation, node states are updated by evaluating the Boolean representation
of the next-state function with theapply operation. Each time the state of a node is recomputed,
the old state is compared with the new state, and if not equivalent, an event is created for each
fanout of the node. This process continues until the event list becomes empty, indicating that the
network is in a stable state. This method of processing events relies heavily on having an efficient
test for equivalence.

4.2. Sets

Given an encoding of a setA, we can represent and manipulate its subsets using “characteristic
functions” [Cerny and Marin 1977]. A setS ⊆ A is denoted by the Boolean functionχS :
{0, 1}n → {0, 1}, where

χS(~x) =
∑

a∈S

∏

1≤i≤n

xi ⊕σi(a),

where⊕ represents the complement of theExclusive-Or operation. Operations on sets can then
be implemented by Boolean operations on their characteristic functions, e.g.,

χ∅ = 0

χS∪T = χS + χT

χS∩T = χS ·χT

χS−T = χS ·χT

18

SetS is a subset ofT if and only ifχS·χT = 0. In many applications of OBDDs, sets are constructed
and manipulated in this manner without ever explicitly enumerating their elements.

Alternatively, a (nonempty) set can be represented as the set of possible outputs of a function vector
[Coudert et al 1990]. That is, we consider~f to denote the set

{

a
∣

∣

∣ σ(a) = ~f(~b), for some~b ∈ {0, 1}n
}

This representationcan be convenient in applications where the system being analyzed is represented
as a function vector. By modifying these functions, we can also represent subsets of the system
states.

4.3. Relations

A k-ary relation can be defined as a set of orderedk-tuples. Thus, we can also represent and
manipulate relations using characteristic functions. For example, consider a binary relationR ⊆
A × A. This relation is denoted by the Boolean functionχR defined as:

χR(~x, ~y) =
∑

a∈A

∑

b∈A

aRb

∏

1≤i≤n

xi ⊕σi(a)

·

∏

1≤i≤n

yi ⊕σi(b)

With this representation, we can perform operations such as intersection, union, and difference on
relations by applying Boolean operations to their characteristic functions.

Using a combination of functional composition and variable quantification, we can also compose
relations. That is:

χR◦S = ∃~z
[

χR(~x, ~z)·χS(~z, ~y)
]

whereR ◦ S denotes the composition of relationsR andS. Quantification over a variable vector
involves quantifying over each of the vector elements in any order.

Taking this further, we can compute the transitive closure of a relation using fixed-point techniques
[Burch et al 1990a]. The functionχR∗ is computed as the limit of a sequence of functionsχRi

,
each defining a relation:

R0 = I

Ri+1 = I ∪ R ◦ Ri

whereI denotes the identity relation. The computation converges when it reaches an iterationi
such thatχRi

= χRi−1, again making use of efficient equivalence testing. If we think ofR as
representing a graph, with a vertex for each element inA, and an edge for each element inR, then
the relationRi denotes those pairs reachable by a path with at mosti edges. Thus, the computation
must converge in at mostN − 1 iterations, whereN = |A|. A technique known as “iterative
squaring” [Burch et al 1990a] reduces the maximum number of iterations ton = ⌈log2 N⌉. Each
iteration computes a relationR(i) denoting those pairs reachable by a path with at most 2i edges:

R(0) = I ∪ R

R(i+1) = R(i) ◦ R(i)

Many applications of OBDDs involve manipulating relations over very large sets, and hence the
reduction fromN iterations (e.g., 109) down ton (e.g., 30) can be dramatic.

19

MUX

a0
a1
a2
a3

Figure 10:Universal function block. By assigning different values to the variables~a, an arbitrary
2-input operation can be realized.

5. DIGITAL SYSTEM DESIGN APPLICATIONS

The use of OBDDs in digital system design, verification, and testing has gained widespread accep-
tance. In this section, we describe a few of the areas and methods of application.

5.1. Verification

OBDDs can be applied directly to the task of testing the equivalence of two combinational logic
circuits. This problem arises when comparing a circuit to a network derived from the system
specification [Bryant 1986], or when verifying that a logic optimizer has not altered the circuit
functionality. Using theapply operation, functional representations for both networks are derived
and tested for equivalence. By this method, two sequential systems can also be compared, as long
as they use the same state encoding [Madre and Billon 1988]. That is, the two systems must have
identical output and next-state functions.

5.2. Design Error Correction

Not content to simply detect the existence of errors in a logic design, researchers have developed
techniques to automatically correct a defective design. This involves considering some relatively
small class of potential design errors, such as a single incorrect logic gate, and determining if
any variant of the given network could meet the required functionality [Madre et al 1989]. This
analysis demonstrates the power of the quantification operations for computing projections, in this
case projecting out the primary input values by universal quantification.

Such an analysis can be performed symbolically by encoding the possible gate functions with
Boolean variables, as illustrated in Figure 10. As this example shows, an arbitraryk-input gate can
be emulated by a 2k-input multiplexor, where the gate operation is determined by the multiplexor
data inputs~a [Mead and Conway 1990]. Consider a single output circuitN , where one of the gates
is replaced by such a block, giving a resulting network functionality ofN(~x,~a), where~x represents
the set of primary inputs. Suppose that the desired functionality isS(~x). Our task is to determine
whether (and if so, how) the two functions can be made identical for all primary input values by
“programming” the gate appropriately. This involves computing the functionC(~a), defined as

C(~a) = ∀~x
[

N(~x,~a)⊕S(~x)
]

20

s s′

Ps

N
+

Permuters

N

=x

Decoderr

P

T x, r

Figure 11:Signal line modifier. A nonzero value ofPs alters the value carried by the line.

Figure 12:Computing sensitivities to single line modifications. Each assignment to the variables
in ~r causes the value on just one line to be modified.

Any assignment to~a for whichC yields 1 is then a satisfactory solution.

Although major design errors cannot be corrected in this manner, it eliminates the tedious task of
debugging circuits with common errors such as misplaced inverters, or the use of an incorrect gate
type. This task is also useful in logic synthesis, where designers want to alter a circuit to meet a
revised specification [Fujita et al 1991].

5.3. Sensitivity Analysis

A second class of applications involves characterizing the effects of altering the signal values on
different lines within a combinational circuit. That is, for each signal lines, we want to compute the
Boolean difference for every primary output with respect tos [Sellers et al 1968]. This analysis can
be performed symbolically by introducing “signal line modifiers” into the network. as illustrated
in Figure 11. That is, for each line that would normally carry a signal lines, we selectively alter the
value to bes′ under the control of a Boolean valuePs by computings′ = s⊕Ps. We can determine
the conditions under which some output of the circuit is sensitive to the value on a signal line by
comparing the outputs of the original and altered circuits, as illustrated in Figure 12. As this figure
illustrates, we can even compute the effect of every single-line modification in a circuit in one
symbolic evaluation [Cho and Bryant 1989]. That is, number every signal line from 0 tom−1, and

21

A B
C

D

Out
12 3 40

12 3 40

1:4

1:4

3:3

0:0

Figure 13: Circuit with uncertain delays . Gates labeled by min/max delays. Inverters have
distribution of delays.

introduce a set of⌈logm⌉ “permutation variables”~r. Each permutation signalPs is then defined
to be the function that yields 1 when the permutation variables are the binary representation of the
number assigned signals. In logic design terms, this is equivalent to generating the permutation
signals with a decoder having~r as input. The resulting functionT (~x, ~r) yields 1 if the original
network and the network permuted by~r produce the same output values for input~x.

One application of this sensitivity analysis is to automatic test generation. The sensitivity function
describes the set of all tests for each single fault. Suppose a signal line numbered in binary as~b
has functions(~x) in the normal circuit. Then an input pattern~a will detect a stuck-at-1 fault on

the line if and only ifT (~a,~b) ·s(~a) = 1. Similarly, ~a will detect a stuck-at-0 fault if and only

if T (~a,~b) ·s(~a) = 1. This method can also be generalized to sequential circuits and to circuits
represented at the switch-level [Cho and Bryant 1989].

A second application is in the area of combinational logic optimization. For a signal line numbered
in binary as~b, the functionT (~x,~b) represents the “don’t care set” for each line of the circuit, i.e.,
those cases where the circuit outputs are independent of the signal value on this line. Using this
information as guidance, the circuit optimizer can apply transformations such as eliminating a
signal line, or moving a line to a different gate output. One drawback of this approach, however, is
that the sensitivity function must be recomputed every time the optimizer modifies the circuit. An
alternative approach yields a more restricted, but “compatible” set of don’t care functions, where
the don’t care sets remain valid even as the circuit structure is altered [Sato et al 1990].

5.4. Probabilistic Analysis

Recently, researchers have devised a method for statistically analyzing the effects of varying circuit
delays in a digital circuit [Deguchi et al 1991]. This application of OBDDs is particularly intriguing,
since conventional wisdom would hold that such an analysis requires evaluation of real-valued
parametric variations, and hence could not be encoded with Boolean variables.

Consider a logic gate network in which each gate has a delay given by some probability distribution.
This circuit may exhibit a range of behaviors, some of which are classified as undesirable. The
“yield” is then defined as the probability that these behaviors do not occur. As an example, Figure
13 shows a simple circuit where two of the logic gates have a variable distribution of delays, and
we wish to evaluate the probability of a glitch occurring on node Out as the input signal A makes
a transition for 0 to 1. Figure 14 shows an analysis when signal A changes to 1 at time 0. Signals

22

D

C

Out (Independent)

Out (Actual)

0

1

2

3

4

5

6

7

8

0.00

0.10

0.20

0.30

TransitionProbability

Time

Figure 14:Effect of uncertain delays. Signal A switches from 0 to 1 at time 0. Ignoring signal
correlations causes overestimate of transition probability.

23

MUX

δ = 1

δ = 2

δ = 3

δ = 4

d0 d1 d2

in out

1 2 3 40

1/8

3/8 3/8

1/8

Figure 15: Modeling uncertain delays. Boolean variables control delay selection. Signals are
replicated according to delay distribution.

C and D will make transitions, where the transition times have probability distributions shown.
One simple analysis would be to treat the waveform probabilities for all signals as if they were
independently distributed. Then we can easily compute the behavior of each gate output according
to the gate function and input waveforms. For example, if we treat signals C and D as independent,
then we could compute the probability of a rising transition on node Out at timet as the product of
the probability that C makes a transition att and the probability that no transition on D occurs at
time≤ t. This would lead to the transition probability distribution labeled as “Out (Independent).”
The net probability of a transition occurring (i.e., a glitch) would then be computed as 30%. In
reality, of course, the transition times of signals C and D are highly correlated— both are affected by
the delay through the initial buffer gate. Hence, a more careful analysis would yield the transition
time probability distribution labeled as “Out (Actual),” having a net probability of occurrence of
12.5%. Thus, the simplified analysis underestimates the circuit yield. In other cases, a simplified
analysis will overestimate the yield [Deguchi et al 1991].

To solve this problem through symbolic Boolean analysis, we must make two restrictions. First, all
circuit delays must be integer-valued (for an appropriately chosen time unit), and hence transitions
occur only at discrete time points. Second, the delay probabilities for a gate must be multiples of
a value 1/k, wherek is a power of 2. For example both variable gates in Figure 13 have delays
ranging from 1 to 4. One has uniformly distributed delays[1/4, 1/4, 1/4, 1/4], while the other has
delays that more nearly approximate a normal distribution[1/8, 3/8, 3/8, 1/8]. The delay value
for a gate can then be encoded by a set of logk Boolean variables, as shown in Figure 15. That is,
we model the circuit element with ak-input multiplexor, where a delay value having probabilityc/k
is fed toc of the inputs. The circuit is then evaluated using a symbolic extension of a conventional
logic gate simulation algorithm. The signal value on a node N at each timet is then a Boolean
functionN(t) of the delay variables.

For the example of Figure 15 suppose that variables[e1, e0] encode the delay between A and B,
while variables[d2, d1, d0] encode the delay between B and C, as shown in Table 4. For timest < 0,
the node functions are given as:A(t) = B(t) = D(t) = Out(t) = 0 andC(t) = 1. For times
t ≥ 0, node A has functionA(t) = 1, while the others would be computed as:

B(t) = e1·e0·A(t−1) + e1·e0·A(t−2) + e1·e0·A(t−3) + e1·e0·A(t−4)

C(t) = d2·d1·d0·B(t−1) + d2·(d1 + d0)·B(t−2) +

24

A → B
Delay Condition

1 e1·e0

2 e1·e0

3 e1·e0

4 e1·e0

B → C
Delay Condition

1 d2·d1·d0

2 d2·(d1 + d0)
3 d2·(d1 + d0)
4 d2·d1·d0

Table 4:Delay Conditions for Example Circuit.

d2·(d1 + d0)·B(t−3) + d2·d1·d0·B(t−4)

D(t) = B(t−3)

Out(t) = C(t)·D(t)

From these equations, the output signal would be computed asOut(t) = 0 for t ≤ 3 andt ≥ 8,
and for other times as:

Out(4) = d2·d1·d0·e1·e0

Out(5) = d2·d1·d0·e1·e0

Out(6) = d2·d1·d0·e1·e0

Out(7) = d2·d1·d0·e1·e0

We can compute a Boolean function indicating the delay conditions under which some undesirable
behavior arises. For example, we could compute the probability of a glitch occurring on node Out
asG =

∑

Out(t). In this case, we would computeG = d2·d1·d0, i.e., a glitch occurs if and only if
the delay between B and C equals 4.

Given a Boolean function representing the conditions under which some event occurs, we can
compute the event probability by computing thedensityof the function, i.e., the fraction of variable
assignments for which the function yields 1. With the aid of the Shannon expansion, the density
ρ(f) of a functionf can be shown to satisfy the recursive formulation:

ρ(1) = 1

ρ(0) = 0

ρ(f) =
1
2

[

ρ(f |x←0) + ρ(f |x←1)
]

Thus, given an OBDD representation off , we can compute the density in linear time by traversing
the graph depth-first, labeling each vertex by the density of the function denoted by its subgraph.
This computation is shown in Figure 16 for the OBDD representing the conditions under which
node C in Figure 15 has a rising transition at time 6, indicating that this event has probability 7/32.

25

d0

e1

d1

e0

e1

1

e0

0

e1

d0

d1

d2

1/8

1/4

3/16

1/2

1/4

1

1/2

0

1/4

1/4

1/4

7/32

Figure 16:Computation of Function Density. Each vertex is labeled by the fraction of variable
assignments yielding 1.

As this application shows, OBDD-based symbolic analysis can be applied to systems with complex
parametric variations. Although this requires simplifying the problem to consider only discrete
variations, useful results can still be obtained. The key advantage this approach has over other
simplified methods of probabilistic analysis (e.g., controllability/observability measures [Brglez
et al 1984]) is that it accurately considers the effects of correlations among stochastic values.

6. FINITE STATE SYSTEM ANALYSIS

Many problems in digital system verification, protocol validation, and sequential system optimiza-
tion require a detailed characterization of a finite state system over a sequence of state transitions.
Classic algorithms for this task construct an explicit representation of the state graph and then
analyze its path and cycle structure [Clarke et al 1986]. These techniques become impractical,
however, as the number of states grows large. Unfortunately, even relatively small digital systems
can have very large state spaces. For example, a single 32-bit register can have over 4× 109 states.

More recently, researchers have developed “symbolic” state graph methods, in which the state
transition structure is represented as a Boolean function [Burch et al 1990a; Coudert et al 1990].2

This involves first selecting binary encodings of the system states and input alphabet. The next-
state behavior is described as a relation given by a characteristic functionδ(~x, ~o, ~n) yielding 1
when input~x can cause a transition from state~o to state~n. As an example, Figure 18 illustrates
an OBDD representation of the nondeterministic automaton having the state graph illustrated in
Figure 17. This example represents the three possible states using two binary values by the encoding

2Apparently, McMillan [McMillan 1992] implemented the first symbolic model checker in 1987, but he did not
publish this work.

26

A B

C
01

00 10

01

1

0

0,1 0

o2

n1

o1

1

n2

0

n1

x

Figure 17: Explicit representation of non-deterministic finite state machine. The size of the
representation grows linearly with the number of states.

Figure 18:Symbolic representation of non-deterministic finite state machine. The number of
variables grows logarithmically with the number of states.

27

σ(A) = [0, 0], σ(B) = [1, 0], andσ(C) = [0, 1]. Observe that the unused code value[1, 1] can be
treated as a “don’t care” value for the arguments~o and~n in the functionδ. In the OBDD of Figure
18, this combination is treated as an alternate code for state C to simplify the OBDD representation.

For such a small automaton, the OBDD representation does not improve on the explicit representa-
tion. For more complex systems, on the other hand, the OBDD representation can be considerably
smaller. Based on the upper bounds derived for bounded width networks discussed in Subsec-
tion 1.4, McMillan [McMillan 1992] has characterized some conditions under which the OBDD
representing the transition relation for a system grows only linearly with the number of system com-
ponents, whereas the number of states grows exponentially. In particular, this property holds when
both (1) the system components are connected in a linear or tree structure, and (2) each component
maintains only a bounded amount of information about the state of the other components. As the
example of Figure 5 illustrated, this bound holds for ring-connected systems, as well, since a ring
can be “flattened” into a linear chain of bidirectional links. McMillan has identified a variety of
systems satisfying these conditions, including a hierarchical distributed cache in a shared memory
multiprocessor, and a ring-based distributed mutual exclusion circuit.

Given the OBDD representation, properties of a finite state system can then be expressed by fixed
point equations over the transition function, and these equations can be solved using iterative
methods, similar to those described to compute the transitive closure of a relation. For example,
consider the task of determining the set of states reachable from an initial state having binary coding
~q by some sequence of transitions. Define the relationS to indicate the conditions under which
for some input~x, there can be a transition from state~o to state~n. This relation has a characteristic
function

χS(~o, ~n) = ∃~x
[

δ(~x, ~o, ~n)
]

Then set of states reachable from state~q has characteristic function:

χR(~s) = χS∗(~q, ~s)

Systems with over 1020 states have been analyzed by this method [Burch et al 1990b], far larger
than could ever be analyzed using explicit state graph methods. A number of refinements have
been proposed to speed convergence [Burch et al 1990a; Filkorn 1991] and to reduce the size of
the intermediate OBDDs [Coudert et al 1990].

Unfortunately, the system characteristics that guarantee an efficient OBDD representation of the
transition relation do not provide useful upper bounds on the results generated by symbolic state
machine analysis. For example, one can devise a system having a linear interconnection structure
for which the characteristic function of the set of reachable states requires an exponentially-sized
OBDD [McMillan 1992]. On the other hand, researchers have shown that a number of real-life
systems can be analyzed by these methods.

One application of finite state system analysis is in verifying the correctness of a sequential digital
circuit. For example, one can prove that a state machine derived from the system specification is
equivalent to one derived from the circuit even though they use different state encodings. For this
application, more specialized techniques have also been developed that exploit characteristics of the
system to be verified, e.g., that the circuit is synchronous and deterministic, and that the specification
requires analyzing only a bounded number of clock cycles [Bose and Fisher 1989; Beatty et al 1991].
For example, we have verified pipelined data paths containing over 1000 bits of register state. Such
a system, having over 10300 states, exceeds the capacity of current symbolic state graph methods.

28

7. OTHER APPLICATION AREAS

Historically, OBDDs have been applied mostly to tasks in digital system design, verification, and
testing. More recently, however, their use has spread into other application domains. For example,
the fixed point techniques used in symbolic state machine analysis can be used to solve a number
of problems in mathematical logic and formal languages, as long as the domains are finite [Burch
et al 1990a; Touati et al 1991]. Researchers have also shown that problems from many application
areas can be formulated as a sets of equations over Boolean algebras which are then solved by a
form of unification [Büttner and Simonis 1987].

In the area of artificial intelligence, researchershave developed a truth maintenance system based on
OBDDs [Madre and Coudert 1991]. They use an OBDD to represent the “database,” i.e., the known
relations among the elements. They have found that by encoding the database in this form, the
system can make inferences more readily than with the traditional approach of simply maintaining
an unorganized list of “known facts.” For example, determining whether a new fact is consistent
with or follows from the set of existing facts involves a simple test for implication.

8. AREAS FOR IMPROVEMENT

Although a variety of problems have been solved successfully using OBDD-based symbolic ma-
nipulation, there are still many cases where improved methods are required. Of course, most of
the problems to be solved are NP-hard, and in some cases even PSPACE-hard [Garey and Johnson
1979]. Hence, it is unlikely that any method with polynomial worst case behavior can be found.
At best, we can develop methods that yield acceptable performance for most tasks of interest.

One possibility is to improve on the representation itself. For working with digital systems con-
taining multipliers and other functions involving a complex relation between the control and data
signals, OBDDs quickly become impractically large. Several methods have been proposed that
follow the same general principles of OBDD-based symbolic manipulation, but with fewer restric-
tions on the data structure. For example, Karplus has proposed a variant termed “If-Then-Else
DAGs,” where the test condition for each vertex can be a more complex function than a simple
variable test [Karplus 1989]. Researchers at CMU have experimented with “Free BDDs,” in which
the variable ordering restriction of OBDDs is relaxed to the extent that the variables can appear
in any order, but no path from the root to a terminal vertex can test a variable more than once
[Brace 1988]. Such graphs, known as “1-time branching programs” in the theoretical community
[Wegener 1988], have many of the desirable properties of OBDDs, including an efficient (although
probabilistic) method for testing equivalence [Blum and Chandra 1980]. Recently, techniques based
on this representation have been developed that maintain several of the desirable characteristics of
OBDDs, including a canonical form and a polynomial timeapply operation [Gergov and Meinel
1992]. Other researchers have removed all restrictions on variable occurrence, allowing paths with
multiple tests of a single variable [Ashar et al 1991; Burch 1991]. In each of these extensions,
we see a trade-off between the compactness of the representation and the difficulty of constructing
them or testing their properties.

In many combinatorial optimization problems, symbolic methods using OBDDs have not performed
as well as more traditional methods. In these problems, we are typically interested in finding only

29

one solution that satisfies some optimality criterion. Most approaches using OBDDs on the other
hand, derive all possible solutions and then select the best from among these. Unfortunately, many
problems have too many solutions to encode symbolically. More traditional search methods such
as branch-and-bound techniques often prove more efficient and able to solve larger problems. For
example, our test generation program determines all possible tests for each fault [Cho and Bryant
1989], whereas more traditional methods stop their search as soon as a single test is found. One
possibility would be apply the idea of “lazy” or “delayed” evaluation [Abelson et al 1985] to OBDD-
based manipulation. That is, rather than eagerly creating a full representation of every function
during a sequence of operations, the program would attempt to construct only as much of the
OBDDs as is required to derive the final information desired. Recent test generation programs have
some of this character, using a hybrid of combinatorial search and functional evaluation [Giraldi
and Bushnell 1990].

9. SUMMARY

As researchers explore new application areas and formulate problems symbolically, they find they
can exploit several key features of Boolean functions and OBDDs:

• By encoding the elements of a finite domain in binary, operations over these domains can be
represented by vectors of Boolean functions.

• Symbolic Boolean manipulation provides a unified framework for representing a number of
different mathematical systems.

• For many problems, a variable ordering can be found such that the OBDD sizes remain
reasonable.

• The ability to quickly test equivalence and satisfiability makes techniques such as iterative
methods and sensitivity analysis feasible.

• The apply andrestrict operations provide a powerful basis for many more complex
operations.

Discovering new application areas, and improving the performance of symbolic methods (OBDD
or otherwise) for existing areas will provide a fruitful area of research for many years to come.

REFERENCES

[Abelson et al 1985] Abelson, H., Sussman, G. J., and Sussman, J. 1985.Structure and Interpre-
tation of Computer Programs, MIT Press, Cambridge, MA, pp. 261–264.

[Akers 1978] Akers, S. B. 1978. Binary decision diagrams.IEEE Transactions on Computers C-27,
6 (Aug.), pp. 509–516.

[Ashar et al 1991] Ashar, P., Devadas, S., and Ghosh, A. 1991. Boolean satisfiability and equiva-
lence checking using generalbinarydecision diagrams.InternationalConference on Computer
Design, (Cambridge, Oct.). IEEE, New York, pp. 259–264.

30

[Beatty et al 1991] Beatty, D. L., Bryant, R. E., and Seger, C.-J. H. 1991. Formal hardware verifica-
tion by symbolic trajectory evaluation.Proceedings of the 28th ACM/IEEE Design Automation
Conference(San Francisco, June), ACM, New York, pp. 397–402.

[Berman 1989] Berman, C. L. 1989. Ordered binary decision diagrams and circuit structure.Inter-
national Conference on Computer Design(Cambridge, October), IEEE, New York, pp. 392–
395.

[Blum and Chandra 1980] Blum, M. W., and Chandra, A. K. 1980. Equivalence of free Boolean
graphs can be decided probabilistically in polynomial time.Information Processing Letters
10 (March 18), pp. 80–82.

[Bose and Fisher 1989] Bose, S., and Fisher, A. L. 1989. Verifying pipelined hardware using sym-
bolic logic simulation.International Conference on Computer Design(Boston, Oct.). IEEE,
New York.

[Brace 1988] Brace, K. S. 1988. private communication, Carnegie Mellon University, (Pittsburgh,
PA).

[Brace et al 1990] Brace, K. S., Bryant, R. E., and Rudell, R. L. 1990. Efficient implementation of a
BDD package.Proceedings of the 27th ACM/IEEE Design Automation Conference(Orlando,
June), ACM, New York, pp. 40–45.

[Brayton et al 1984] Brayton, R. K., Hachtel, G. D., McMullen, C. T., and Sangiovanni-Vincentelli,
A. L.. 1984.Logic Minimization Algorithms for VLSI Synthesis.Kluwer Academic Publishers,
Boston.

[Brglez et al 1984] Brglez, F., Pownall, P., and Hum, P. 1984. Applications of testability analysis:
From ATPG to critical path tracing.International Test Conference(Philadelphia, Oct.), IEEE,
New York, pp. 705–712.

[Brown 1990] Brown, F. M. 1990.Boolean Reasoning.Kluwer Academic Publishers, Boston.

[Bryant 1986] Bryant, R. E. 1986. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers C-35, 6 (Aug.), pp. 677–691.

[Bryant 1991] Bryant, R. E. 1991. On the complexity of VLSI implementations and graph repre-
sentations of Boolean functions with application to integer multiplication.IEEE Transactions
on Computers 402 (Feb.), pp. 205–213.

[Burch et al 1990a] Burch, J. R., Clarke, E. M., and McMillan, K. 1990. Symbolic model check-
ing: 1020 states and beyond.Fifth Annual IEEE Symposium on Logic in Computer Science
(Philadelphia, June), IEEE, New York, pp. 428–439.

[Burch et al 1990b] Burch, J. R., Clarke E. M., Dill, D. L., and McMillan, K. 1990. Sequential
circuit verification using symbolic model checking.Proceedings of the 27th ACM/IEEE Design
Automation Conference(Orlando, June) ACM, New York, pp. 46–51.

31

[Burch 1991] Burch, J. R. 1991. Using BDDs to verify multipliers.Proceedings of the 28th
ACM/IEEE Design Automation Conference, (San Francisco, June) ACM, New York, pp. 408-
412.

[Büttner and Simonis 1987] Büttner, W. and Simonis, H. 1987. “Embedding Boolean expressions
into logic programming.Journal of Symbolic Computation 4pp. 191–205.

[Cerny and Marin 1977] Cerny, E. and Marin, M. A. 1977. An approach to unified methodology of
combinational switching circuits.IEEE Transactions on Computers C-26, 8 (Aug.), pp. 745–
756.

[Cho and Bryant 1989] Cho, K., and Bryant, R. E., 1989. Test pattern generation for sequential
MOS circuits by symbolic fault simulation.Proceedings of the 26th ACM/IEEE Design Au-
tomation Conference(Las Vegas, June), ACM, New York, pp. 418–423.

[Clarke et al 1986] Clarke, E. M. , Emerson, E. A., and Sistla, A. P. 1986. Automatic verification
of finite-state concurrent systems using temporal logic specifications.ACM Transactions on
Programming Languages 82 (April), pp. 244–263.

[Coudert et al 1990] Coudert, O. Madre, J.-C., and Berthet, C. 1990. Verifying temporal properties
of sequential machines without building their state diagrams.Computer-Aided Verification
‘90, E. M. Clarke, and R. P. Kurshan,eds. (Rutgers, June), American Mathematical Society,
pp. 75–84.

[Deguchi et al 1991] Deguchi, Y., Ishiura, N., and Yajima, S. 1991. Probabilistic CTSS: Analysis
of timing error probability in asynchronous logic circuits.Proceedings of the 28th ACM/IEEE
Design Automation Conference, (San Francisco, June) ACM, New York, pp. 650–655.

[Filkorn 1991] Filkorn, T. 1991. A method for symbolic verification of synchronous circuits.Com-
puter Hardware Description Languages(Marseilles, April), IFIP, pp. 229–239.

[Fortune et al 1978] Fortune, S., Hopcroft, J., and Schmidt, E. M. 1978. The complexity of equiv-
alence and containment for free single variable program schemes.Automata, Languages and
Programming, Lecture Notes in Computer Science, Vol. 62, G. Goos, J. Hartmanis, Ausiello,
and Boehm,eds. Springer-Verlag, Berlin, pp. 227-240.

[Fujita et al 1988] Fujita, M., Fujisawa, H. and Kawato, N. 1988. Evaluations and improvements of
a Boolean comparison program based on binary decision diagrams.International Conference
on Computer-Aided Design(Santa Clara, Nov.), IEEE, New York, pp. 2–5.

[Fujita et al 1991] Fujita, M., Kakuda, T., and Matsunaga, Y. 1991. Redesign and automatic error
correction of combinational circuits.Logic and Architecture Synthesis: Proceedings of the
IFIP TC10/WG10.5 Workshop on Logic and Architecture Synthesis, P. Michel, and G. Saucier,
eds.Elsevier, Amsterdam, pp. 253–262.

[Garey and Johnson 1979] Garey, M. R., and Johnson, D. S. 1979.Computers and Intractability,
W. H. Freeman and Company, New York.

32

[Gergov and Meinel 1992] Gergov, J., and Meinel, C. 1992. Efficient analysis and manipulation
of OBDDs can be extended to read-once-only branching programs. Technical Report 92-10,
Universität Trier, Fachbereich IV—Mathematik/Informatik, Trier, Germany.

[Giraldi and Bushnell 1990] Giraldi, J., and Bushnell, M. L. 1990. EST: The new frontier in auto-
matic test-pattern generation.Proceedings of the 27th ACM/IEEE Design Automation Con-
ference(Orlando, June), ACM, New York, pp. 667–672.

[Jeong et al 1991] Jeong, S.-W., Plessier, B., Hachtel, G. D., and Somenzi, F. 1991. Variable or-
dering and Selection for FSM traversal.International Conference on Computer-Aided Design
(Santa Clara, Nov.), IEEE, New York, pp. 476–479.

[Karplus 1989] Karplus, K. 1989. Using if-then-else DAGs for multi-level logic minimization. In
Advanced Research in VLSI, C. Seitz,ed., MIT Press, Cambridge, pp. 101–118.

[Kimura and Clarke 1990] Kimura, S., and Clarke, E. M. 1990. A parallel algorithm for construct-
ing binary decision diagrams.International Conference on Computer Design(Boston, Oct.),
IEEE, New York, pp. 220–223.

[Lee 1959] Lee, C. Y. 1959. Representation of switching circuits by binary-decision programs.
Bell System Technical Journal 38, pp. 985–999.

[Lin et al 1990] Lin, B., Touati, H. J., and Newton, A. R. 1990. Don’t care minimization of multi-
level sequential logic networks.International Conference on Computer-Aided Design(Santa
Clara, Nov.), IEEE, New York, pp. 414–417.

[Madre and Billon 1988] Madre, J. C., and Billon, J. P. 1988. Proving circuit correctness us-
ing formal comparison between expected and extracted behaviour.Proceedings of the 25th
ACM/IEEE Design Automation Conference, (Anaheim, June), ACM, New York, pp. 205–210.

[Madre et al 1989] Madre, J.-C., Coudert, O., and Billon, J. P. 1989. Automating the diagnosis
and rectification of design errors with PRIAM.International Conference on Computer-Aided
Design(Santa Clara, Nov.), IEEE, New York, pp. 30–33.

[Madre and Coudert 1991] Madre, J.-C., and Coudert, O. 1991. A logically complete reasoning
maintenance system based on a logical constraint solver.12th International Joint Conference
on Artificial Intelligence(Sydney, Aug.), pp. 294–299.

[Malik et al 1988] Malik, S., Wang, A., Brayton, R. K., and Sangiovanni-Vincentelli, A. 1988.
Logic verification using binary decision diagrams in a logic synthesis environment.Interna-
tional Conference on Computer-Aided Design(Santa Clara, Nov.), IEEE, New York, pp. 6–9.

[McMillan 1992] McMillan, K. L. 1992. Symbolic model checking: an approach to the state
explosion problem. PhD thesis, School of Computer Science, Carnegie Mellon University.

[Mead and Conway 1990] Mead, C. A., and Conway, L. 1980.Introduction to VLSI Systems,
Addison-Wesley, Reading, MA.

33

[Meinel 1990] Meinel, C. 1990Modified branching programs and their computational power,
Lecture Notes in Computer Science Vol. 370, G. Goos, and J. Hartmanis,eds. Springer-Verlag,
Berlin.

[Minato et al 1990] Minato, S., Ishiura, N., and Yajima, S. 1990. Shared binary decision diagram
with attributed edges for efficient Boolean function manipulation.Proceedings of the 27th
ACM/IEEE Design Automation Conference(Orlando, June), ACM, New York, pp. 52–57.

[Ochi et al 1991] Ochi, H., Ishiura, N., and Yajima, S. 1991. Breadth-first manipulation of SBDD
of function for vector processing.Proceedings of the 28th ACM/IEEE Design Automation
Conference, (San Francisco, June) ACM, New York, pp. 413–416.

[Reeves and Irwin 1987] Reeves, D. S., and Irwin, M. J. 1987. Fast methods for switch-level
verification of MOS circuits.IEEE Transactions on CAD/IC CAD-65 (Sept.), pp. 766–779.

[Sato et al 1990] Sato, H., Yasue, Y., Matsunaga, Y., and Fujita, M. 1990. Boolean resubstitution
with permissible functions and binary decision diagrams.Proceedings of the 27th ACM/IEEE
Design Automation Conference(Orlando, June), ACM, New York, pp. 284–289.

[Sellers et al 1968] Sellers, F. F., Hsiao, M. Y., and Bearnson, C. L. 1968. Analyzing errors with
the Boolean difference.IEEE Transactions on Computers C-17, pp. 676–683.

[Srinivasan et al 1990] Srinivasan, A., Kam, T., Malik, S., and Brayton, R. K. 1990. Algorithms for
discrete function manipulation.International Conference on Computer-Aided Design(Santa
Clara, Nov.), IEEE, New York, pp. 92–95.

[Touati et al 1991] Touati, H. J., Brayton, R. K., and Kurshan, R. P. 1991. Testing language con-
tainment forω-automata using BDD’s.Formal Methods in VLSI Design(Miami, Jan.), ACM,
New York.

[Watanabe and Brayton 1991] Watanabe, Y., and Brayton, R. K. 1991. Heuristic minimization of
multiple-valued relations.International Conference on Computer-Aided Design(Santa Clara,
Nov.), IEEE, New York, pp. 126–129.

[Wegener 1988] Wegener, I. 1988. On the complexity of branching programs and decision trees
for clique functions.J. ACM 352 (April), pp. 461–471.

34

